n." A Consumer Library Interfaceto DWARF

David Anderson

1. INTRODUCTION

This document describes an interfacelitmwarf, a library of functions to pndde access to WARF
delugging information records, \WARF line number information, WARF address range and global
names information, weak names informationVARF frame description information, IARF static
function names, WARF static variables, andWARF type information.

The document has long mentioned the "Unix International Programming Languages Special Interest
Group" (PLSIG), under whose auspices th@VARF committee was formed around 1991Unix
International" was disbanded in the 1990s and no longer exists.

The DNARF committee publishedWWARF2 July 27, 1993.

In the mid 1990s this document and the library it describes (which the commiteeeemdorsed, hang
decided not to endorse or appecany particular library interface) was madeaidable on the internet by
Silicon Graphics, Inc.

In 2005 the VARF committee bgen an dfiliation with FreeStandardsgr In 2007 FreeStandardsgor
merged with The Linux Bundation. Th®WARF committee dropped itsfdfation with FreeStandardsgr
in 2007 and established the alfistd.og website. Seéhttp://www.dwarfstd.og" for current information
on standardization activities and a gayf the standard.

1.1 Copyright
Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2014 David Anderson.

Permission is hereby granted to gaw republish or use anor dl of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that duld be useful, but WITHOUT ANY WRRANTY,;
without even the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to act®ARMD delugging
information. There is no effort made in this document to address the creation of these records as those
issues are addressed separately (see "A Producer Library Interfasé RMD).

Additionally, the focus of this document is the functional iraed, and as such, implementation as well as

optimization issues are intentionally ignored.

1.3 Document History

A document vas written about 1991 which had similar layout and iat=$. Writterby people from Hal

rev 2.30, Sept 14, 2015 -1-

Corporation, That document described a library for readilgARF1. Theauthors distributed paper
copies to the committee with the clearly expressed intent to propose the document as a suppated interf
definition. Thecommittee decided not to pursue a library definition.

SGI wrote the document you arewneeading in 1993 with a similar layout and content arghrorzation,

but it was complete documentwsate with the intent to read \WARF2 (the IWARF version then in
existence). Thantent was (and is) to also s future revisions of B/ARF. All the function interdces
were changed in 1994 to uniformly return a simple integer success-code/Ns&) OK etc), generally
following the recommendations in the chapter titled "Candy Machine dotss'f of "Writing Solid Code",
a book by Stee Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIEs) are thgnsents of information placed in thelebug_*

sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic sourcesk debugging. Referto the latest DWARF Debugging Information

Format" from www.dwarfstd.qg for a more complete description of these entries.

This document adopts all the terms and definitionaSDWARF Debugging Information Format" versions
2,3,4, and 5.1t originally focused on the implementation at Silicon Graphics, Inc., butattempts to be
more generally useful.

1.5 Overview

The remaining sections of this document describe the proposed interfadedwar f , first by describing

the purpose of additional types ihefd by the interface, followed by descriptions of theilable
operations. Thiglocument assumes you are thoroughly familiar with the information contained in the
DWARF Debugging Information Format document.

We sparate the functions into\&eal categories to emphasize that not all consumers to use all the
functions. V¢ all the catgories Delbgger Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the ratlyer $at of function calls easier to
understand.

Unless otherwise specified, all functions and structures should ée #akbeing designed for Dejger
consumers.

The Debugger Interface of this library is intended to be used hygdelts. Theanterface is lav-level
(close to dwarf) but suppresses irvale detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sectignsp# at need. Andven then will probably
want to absorb only the information in a single compilation unit at a titndebugger does not care about
implementation details of the library.

The Internal-lgel Interface is for a WWARF prettyprinter and cheek A thorough prettyprinter will ant

to know al kinds of internal things (lie actual FORM numbers and actual offsets) so it can check for
appropriate structure in theVBARF data and print (on request) all that internal information for human
users and libdwarf authors and compileiters. Callsin this interface provide data a debugger does not
care about.

The High-level I nterface is for higher kel access (it is not really a highvd interface!). Programsuch as
disassemblers will want to be able to displayvaieinformation about functions and line numbers without
having to ivest too much effort in looking at\WARF.

The miscellaneous interface is just what is lgfirothe error handler functions.

The following is a brief mention of the changes in this libdwarf from the Eofdraft for DVARF \Version
1 and recent changes.

rev 2.30, Sept 14, 2015 -2-

1.6 Items Changed

Adding support for Package Files\lARF5) to enable access of address data usig BDRM_addrx.
See dwarf_set_tied_dbg(). (Septemtis, 2015)

Adding some ©VARF5 support and impved DWP Package File support, using
dwarf_next_cu_header_d().

Added a note about dwf_errmsg(): the string pointer returned should be considered ephemeral, not a
string which remains valid permanentlyser code should print it or cppit before calling other libdarf
functions on the specific Dwarf_Debug instance. (May 15, 2014)

Added a printf-callback so libdwarf will not actually print to stdout. Added dwarf_highpc_b() so return of
a DWARF4 DW_AT _high_pc of class constant can be returned prop@igust 15 2013)

Defined hav the nev operator DW_OP_GNU_const_type is handled. (January 26 2013)

Added dvarf_loclist_from_e&pr_b() function which adds guments of the WARF version (2 for

DWARF2, etc) and the offset size to the atfvloclist from_epr _a() function. Because the
DW_OP_GNU_implicit_pointer opcode is defined differently fokMBRF2 than for later ersions.

(November 2012)

Added nev functions (some for libdwarf client code) and internal logic support for tWARF4

.delug_types section. The nev functions are darf next cu_header c(), dawf siblingof b(),

dwarf_ofdie_b(), dvarf_get cu_die_ offset wgn_cu_header_&fet_b(), dvarf get die_infotypes_flag(),
dwarf_get_section_max_offsets_b().

New functions and logic support additional detailed error reporting so that more compiler bugs can be
reported sensibly by consumer code (as opposedvinchbbdwarf just assume things are ok and blindly
continuing on with erroneous data). Wmber 20, 2010

It seems impossible to default to botdWDFRAME_CFA_COL and BW_FRAME_CFA_COL3 in a single
build of libdwarf, so the default is mo unambiguously & FRAME_CFA_COL3 unless the coigfure
option --enable-oldframecol is specified at configure time. The functi@ifdaet frame_cfa alue() may
be used to werride the default : using that functionvgs consumer applications full control (its use is
highly recommended). (January 17,2010)

Added dwarf_set_reloc_application() and the default automatic application of EIf 'rela’ relocations to
DWARF sections (such rela sections appear irileg,fnot in @ecutables or shared objects, in general).
The dvarf_set _reloc_application() routine lets a consumer tufrth&f automatic application ofela’
relocations if desired (it is not clear wlnyone would really want to do thatutopossibly a consumer
could write its avn relocation application). An example application thatarses a set of DIEs was added

to the nev dwarfexample directory (not in this libdwarf directobyt in parallel to it). (July 10, 2009)

Added dvarf_get ARG _name() (and the FORMTAand so on) interface functions so applications can get
the string of the AG, Attribute, etc as needed. (June 2009)

Added dwarf_get ranges_a() andatfvloclist_from_e&pr_a() functions which add arguments allowing a
correct address_size when the address_size varies by compilation w@mitifg address_size is quite rare
as of May 2009). (May 2009)

Added dvarf_set_frame_sameale(), and darf_set frame_undefinedale() to complete the set of

frame-information functions needed to all@an gplication get all frame information returned correctly
(meaning that it can be correctly interpreted) for all ABIs. Documenteatfdget frame cfa_value().

Corrected spelling to dwarf_set_frame_rule_initialue(). (April2009).

Added support for various\BMARF3 features, Ut primarily a nav frame-information interface tailorable at
run-time to more than a single ABI. See atlvset frame_rule_initial_value(),
dwarf_set _frame_rule_table_size(), av set_frame_cfa alue(). Sealso dvarf_get fde_info_for_reg3()

and dwarf_get_fde_info_for_cfa g®&(). (April 2006)

Added support for B/ARF3 .debug_pubtypes section. Corrected various leaks (revising dealloc() calls,

rev 2.30, Sept 14, 2015 -3-

adding n& functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the ioes deallocation method documented for data returned by
dwarf_srclines() was incapable of freeing all the allocated storage (14 July 2005).

dwarf_netglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pomiereats.
This makes writing safe and correct library-using-code far eaBaerjustification for this approach, see
the chapter titled "Candy Machine Interfaces" in the book "Writing Solid Code" g Bleguire.

1.7 Items Removed

Dwarf_Type was remaed since types are no longer special.

dwarf_typeof() was remad snce types are no longer special.

Dwarf_Ellist was remeed snce element lists no longer are a special format.
Dwarf_Bounds was remved snce bounds ha been generalized.

dwarf_netdie() was replaced by édwf_net_cu_header() to reflect the real wayVBRF is oganized.
The dvarf_netdie() was only useful for getting to compilation unighmnings, so it does not seem harmful
to remave it in favar of a more direct function.

dwarf_childcnt() is remeed on gounds that no good use was apparent.

dwarf_prevline() and dvarf_netline() were remweed on grounds this is better left to a debugger to do.
Similarly, dwarf_dieline() was remeed.

dwarf_islstline() was remved as it was not meaningful for the reviseMIBRF line operations.

Any libdwarf implementation might well decide to support all the resddunctionality and to retain the
DWARF Version 1 meanings of that functionalityhis would be dficult because the original libcsf
draft specification used traditional C library interfaces which confuse ahees returned by successful
calls with exceptional conditions Bkfailures and 'no more data’ indications.

1.8 Revision History

July 2014 Added support for the .gdb_indeection and started support for the .dgbcu_index
and .debug_tu_indesections.

October 2011 DWARF4 support for reading .debug_types added.

March 93 Work on DWNARF2 SGI draft begins
June 94 The function returns are changed to return an error/success code only.
April 2006: Support for WARF3 consumer operations is close to completion.

November 2010: Added various wdunctions and impneed error checking.

2. Types Definitions

2.1 General Description

Thelibdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects dibdwarf. The types defined by typedefs containedlilodwarf.h all use the
convention of addingDwar f _ as a prefix and can be placed in three categories:

rev 2.30, Sept 14, 2015 -4 -

- Scalar types : The scalar types definedbdwarf.h are defined primarily for notational cagnience
and identiication. Dependingn the individual definition, theare interpreted as a value, a pointer
or as a flag.

- Aggregae types : Some values can not be represented by a single scalar typejuttiebe
represented by a collection of, or as a union of, scalar and/ogaiggtgoes.

- Opaque types : The complete definition of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opaque type to be used in another

guery or an nstance of a scalar or aggae type, which is the actual result.

2.2 Scalar Types
The following are the defined Bibdwarf.h:

typedef int Dwar f _Bool ;

typedef unsigned long | ong Dwarf O f;

typedef unsigned | ong | ong Dwarf_Unsi gned;

typedef unsi gned short Dwar f _Hal f;

typedef unsi gned char Dwar f _Smal | ;

typedef signed |long | ong Dwar f _Si gned;

typedef unsigned | ong | ong Dwarf_Addr;

typedef void *Dwarf_Ptr;

typedef void (*Dwarf_Handl er) (Dwarf_Error *error, Dwarf_Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the Jibmatryfor representing pc-
values/addresses within the target objélet. f Dwarf_Addr is for pc-alues within the target objedtef.
The sample scalar type assignmentsvabae for alibdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machin&@he types must bedefined appropriately for each
implementation of libdwarf. A description of these scalar types in the SGI/MIP@renment is gien in
Figure 1.

NAME SIZE ALIGNMENT PURPOSE
Dwarf_Bool 4 4 Boolean states
Dwarf_Of 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Sgned large integer
Dwarf_Addr 8 8 Program address

(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer

(host program)
Dwarf_Handler 4|8 4|8 Pointeto

error handler function

Figurel. Scalar Types

2.3 Aggregate Types

The following aggrgae types are dafed by libdwarf.h: Dwarf Loc, Dwarf_Locdesc,
Dwarf Bl ock, Dwarf_Frame_Qp. Dwarf Regtable. Dwarf_Regtabl e3. While most of

rev 2.30, Sept 14, 2015 -5-

I i bdwar f acts on or returns simple values or opaque pointer types, this small set of structures seems
useful.

2.3.1 Location Record

TheDwar f _Loc type identifies a single atom of a location description or a location expression.

typedef struct {

Dwar f _Smal | I r_atom
Dwar f _Unsi gned I r _nunber;
Dwar f _Unsi gned [r _nunber 2;
Dwar f _Unsi gned I r_offset;

} Dwarf _Loc;

Thel r _at omidentifies the atom corresponding to th&/ OP_* definition in dwarf.h and it represents
the operation to be performed in order to locate the item in question.

Thel r _nunber field is the operand to be used in the calculation specified by that omfield; not all
atoms use thisidld. Someatom operations imply signed numbers so it is necessary to cast this to a
Dwar f _Si gned type for those operations.

Thel r _nunber 2 field is the second operand specified byltheat omfield; onlyDW OP_BREGX has
this field. Someatom operations imply signed numbers so it may be necessary to cast this to a
Dwar f _Si gned type for those operations.

For aDW OP_i npl i ci t _val ue operator thd r _nunber 2 field is a pointer to the bytes of thalwe.
The field pointed to i$ r _numnber bytes long. There is no explicit terminatddo not attempt td r ee
the bytes which r _numnber 2 points at and do not alter those bytes. The pointer value renaidgil
the open Dwarf_Delug is closed. This is a rather ugly use of a host integer to hold a poffaerwill
normally hae o do a tast’ operation to use the value.

For aDW OP_GNU _const _t ype operator the r _numnber 2 field is a pointer to a block with an initial
unsigned byte giving the number of bytes following, followed immediately that number of @iust v
bytes. Theras no explicit terminator Do not attempt tdf r ee the bytes whicH r _nunber 2 points at
and do not alter those bytes. The pointer value remains valid till the opafi D&hug is closed. This is a
rather ugly use of a host integer to hold a poin¥eu will normally hae do a tast’ operation to use the
value.

Thelr _of fset field is the byte déet (within the block the location record came from) of the atom
specifed by thel r _at omfield. Thisis set on all atoms. This is useful for operatidig OP_SKI P and
DW OP_BRA.

2.3.2 Location Description

TheDwar f _Locdesc type represents an ordered listyfar f _Loc records used in the calculation to
locate an item. Note that in marases, the location can only be calculated at runtime of the associated
program.

rev 2.30, Sept 14, 2015 -6-

typedef struct {

Dwar f _Addr I d_I opc;
Dwar f _Addr I d_hi pc;
Dwar f _Unsi gned | d_cents;
Dwarf _Loc* I d_s;

} Dwarf Locdesc;

Thel d_I opc andl d_hi pc fields provide an address range for which this location descriptatids v
Both of these fields are set zero if the location descriptor is valid throughout the scope of the item it is
associated with. These addresses are virtual memory addressedsetstfiim-something. Theirtual
memory addresses do not account for dseement (none of the pcalues from libdwarf do that, it is up to
the consumer to do that).

Thel d_cent s field contains a count of the numbefar f _Loc entries pointed to by tHed_s field.

Thel d_s field points to an array @war f _Loc records.

2.3.3 Data Block

The Dwarf_Bl ock type is used to contain the value of an attribute whose form is either
DW FORM bl ock1, DW_FORM bl ock?2, DW_FORM bl ock4, DW FORM bl ocks8, or
DW FORM bl ock. Its intended use is to dedr the value for an attribute of wof these forms.

typedef struct {
Dwar f _Unsi gned bl | en;
Dwarf_ Ptr bl data;
} Dwarf _Bl ock;

Thebl _I en field contains the length in bytes of the data pointed to bylthdat a field.

The bl _dat a field contains a pointer to the uninterpreted data. Since wealxaarf _Ptr here one
must cop the pointer to some other type (typicallywamsi gned char *) so me can add increments to
index through the data. The data pointed tdiby dat a is not necessarily at gruseful alignment.

2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable foMBRF3
and for DNARF?2 is described belo This interface is deprecated. Use the interface MWABRF3 and
DWARF2. Sealso the section "Lw Levd Frame Operations" belo

The DNARF2Dwar f _Fr ame_Qp type is used to contain the data of a single instruction of an instruction-
sequence of le-level information from the section containing frame informatidthis is ordinarily used
by Internal-le#el Consumers trying to printverything in detail.

rev 2.30, Sept 14, 2015 -7-

typedef struct {
Dwarf _Small fp_base op;
Dwarf_Smal| fp_extended _op;
Dwar f _Hal f fp_register;
Dwarf _Si gned fp_offset;
Dwarf O fset fp_instr_offset;
} Dwarf_ Frane_ Op;

fp_base _op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tBal | Frane Instruction
Encodi ngs figure in thedwar f document. Ifhot used with the Op itis 0.

fp_offset is the address, delta, offset, or second register as defined irCahke Frane
I nstruction Encodi ngs figure in thedwar f document. Ifthis is anaddr ess then the walue
should be cast tbDwar f _Addr) before being used. In wmmplementation thisiéld *must* be as laye
as the larger of Dwarf_Signed and Dwarf_Addr for this to work propéfrtyot used with the op it is 0.

fp_instr_of fset is the byte offset (within the instruction stream of the frame instructions) of this
operation. lIsstarts at O for a gen frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate fofMARF2 and MIPS but not forlWARF3. Aseparate and preferred intré
usable for WVARF3 and for DVARF2 is described belo See also the section "o Levd Frame
Operations" belw.

TheDwar f _Regt abl e type is used to contain thegisterrestore information for all registers at aai

PC walue. Normallyused by detggers. Ifyou wish to default to this intexfe and to the use of
DW_FRAME_CFA_COL, specify --enable_oldframecol at libdwarf configure time. Or add a call
dwarf_set frame_cfa_value(dbg,DW_FRAME ACEEOL) after your dwarf_init() call, this call replaces
the default libdwarf-compile-time value with DW_FRAME_CFA_COL.

/* DW_REG_TABLE_SIZE must reflect the number of registers
*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h

*

#define DW_REG_ABLE_SIZE <iill in size here, 66 for MIPS/IRIX>
typedef struct {

struct {
Dwar f _Smal | dw of fset _rel evant;
Dwar f _Hal f dw_r egnum
Dwar f _Addr dw of f set;

} rul es[DW REG TABLE SI ZE] ;

} Dwarf_Regtabl e;

The array is indeed by regster number The field values for each indere described ne. For clarity we
describe the field values for indeules[M] (M being ag legd array element index).

dw_of f set _rel evant is non-zero to indicate théw of f set field is meaningful. If zero then the
dw_of f set is zero and should be ignored.

dw_r egnum is the register number applicabléf. dw _of f set _r el evant is zero, then this is the
register number of the register containing the value for registetfMw_of f set _r el evant is non-
zero, then this is the register number of tigaster to use as a base (M may b& FRAME_CFA_COL,
for example) and thdw_of f set value applies. The value of register M is therefore the valuegifter
dw_r egnum

rev 2.30, Sept 14, 2015 -8-

dw_of f set should be ignored dlw_of f set _rel evant is zero. If dw_of f set _rel evant is non-
zero, then the consumer code should add #hgevto the value of thegisterdw _r egnumto produce the
value.

2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2)

This interface is adequate foWARF3 and for DWWARF2 (and DVARF4). Itis new in libdwarf in April
2006. Sealso the section "lw Levd Frame Operations” belo

The DNARF2 Dwar f_Frame_QOp3 type is used to contain the data of a single instruction of an
instruction-sequence of welevel information from the section containing frame informatiorhis is
ordinarily used by Internaldel Consumers trying to printverything in detail.

typedef struct {

Dwar f _Smal | f p_base_op;
Dwar f _Smal | f p_ext ended_op;
Dwar f _Hal f fp_register;

/* Val ue may be signed, depends on op.

Any applicable data_alignment_factor has

not been applied, this is the raw offset. */
Dwarf _Unsigned fp_offset_or_block_|en;
Dwar f _Smal | *f p_expr_bl ock;

Dwarf_ O f fp_instr_offset;
} Dwarf_Frane_QOp3;

f p_base_op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tB8al | Franme Instruction
Encodi ngs figure in thedwar f document. Ifhot used with the Op it is 0.

fp_offset_or_bl ock_I en is the address, delta, offset, or second register as defined €akhe
Frame Instruction Encodi ngs figure in thedwar f document. Or (depending on the op, it may
be the length of the darf-expression block pointed to Byp_expr _bl ock. If this is anaddr ess then
the value should be cast f®war f _Addr) before being used. In gnmplementation this field *must*
be as large as the larger of Dwarf_Signed and Dwarf_Addr for this to work proffaniyt used with the
opitis 0.

fp_expr_bl ock (if applicable to the op) points to a drfrexpression block which is
fp_of fset _or_bl ock_I en bytes long.

fp_instr_of fset is the byte offset (within the instruction stream of the frame instructions) of this
operation. lIstarts at O for a gen frame descriptor.

2.3.7 Frame Regtable: DWARF 3

This interface is adequate forVMARF3 and for DVARF2. Itis newv in libdwarf as of April 2006.The
default configure of libdwarf inserts V_FRAME_CF_COL3 as the default @Fcolumn. Oradd a call
dwarf_set frame_cfa_value(dbg,DW_FRAME ACEEOL3) after your dwrf_init() call, this call replaces
the default libdwarf-compile-time value with DW_FRAME_CFA COL3.

TheDwar f _Regt abl e3 type is used to contain thegisterrestore information for all registers at aayi
PC alue. Normallyused by debuggers.

rev 2.30, Sept 14, 2015 -9-

-10-

typedef struct Dwarf_ Regtable Entry3 s {

Dwar f _Smal | dw of fset _rel evant;
Dwar f _Smal | dw val ue_type;
Dwar f _Hal f dw_r egnum

Dwar f _Unsi gned dw of fset _or_bl ock_|en;
Dwarf _Ptr dw bl ock_ptr;

}Dwar f _Regtabl e Entry3;

typedef struct Dwarf_ Regtabl e3 s {
struct Dwarf_ Regtable Entry3 s rt3 cfa rule;

Dwar f _Hal f rt3 reg_table_size;
struct Dwarf_ Regtable Entry3 s * rt3 rules;
} Dwarf Regtabl e3;

The array is indeed by regster number The field values for each indere described ne. For clarity we
describe the field alues for inde rulesfM] (M being ay legd array element inde.
(DW_FRAME_CHA_COL3 DW_FRAME_SAME_\AL, DW_FRAME_UNDEFINED_MAL are not lgd
array indees, nor is ap index < 0 a >= rt3_reg_table_size); The caller of routines using this struct must
create data space for rt3 reg_table size entries of struetfRegtable Entry3 s and arrange that
rt3_rules points to that space and that rt§ table size is set correctiyfhe caller need not (but may)
initialize the contents of the rt3_cfa rule or the rt3_rules arfég following applies to each rt3_rules rule
M:

dw regnum is the register number applicable. If dw regnum is
DW_FRAME_UNDEFINED_ ML, then the register | has undefinedlve. Ifdw _r egnumis
DW_FRAME_SAME_VAL, then the register | has the same value as in the previous frame.

If dw_r egnumis neither of these two, then the following apply:

dw val ue_t ype determines the meaning of the othetds. Itis one of WW_EXPR_OFFSET
(0), DW_EXPR_M\AL_OFFSET(1), DV_EXPR_EXPRESSION(2) or
DW_EXPR_VAL_EXPRESSION(3).

If dw val ue_type is DW_EXPR_OFFSET (0) then this is as ilVBRF2 and the d$et(N)
rule orthe register(R) rule of the\WARF3 and DVARF2 document applies. The value is either:
If dw_of f set _rel evant is non-zero, thedw _r egnumis efectively ignored tut
must be identical to W_FRAME_CFR_COL3 (and thedw of f set vaue applies.
The value of register M is therefore the value oAQ@H#us the value oflw_of f set .
The result of the calculation is the address in memory where the value of register M
resides. Thiss the offset(N) rule of the WARF2 and DVARF3 documents.

dw_of f set _rel evant is zero it indicates théw_of f set field is not meaningful.
The value of register M is the value currently imgiséer dw_r egnum (the \alue

DW_FRAME_CF_COL3 must not appeaonly real rgisters). Thigs the rgister(R)

rule of the DWARF3 spec.

If dw val ue_type is DW_EXPR_OFFSET (1) then this is the thal wfiset(N) rule of the
DWARF3 spec appliesThe calculation is identical to that of DW_EXPR_OFFSET (0) but the
value is interpreted as the value ofjister M (rather than the address where registerlue is
stored).

If dw_val ue_t ype is DW_EXPR_EXPRESSION (2) then this is the the expression(E) rule of
the DWVARF3 document.

dw_of fset _or _bl ock_| en is the length in bytes of the in-memory blopkinted

rev 2.30, Sept 14, 2015 -10-

-11 -

at by dw bl ock_ptr. dw bl ock_ptr is a DNARF epression. E&luate that
expression and the result is the address where the previous value of register M is found.

If dw value type is DW_EXPR_\AL EXPRESSION (3) then this is the the
val_expression(E) rule of theWARF3 spec.

dw _of fset _or _bl ock_| en is the length in bytes of the in-memory blopkinted
at by dw bl ock_ptr. dw bl ock_ptr is a DNARF epression. E&luate that
expression and the result is the previous value of register M.

The rulert3_cfa_rul e is the current value of the CFA. It is interpreted exactlg bRy
register M rule (as described just a&Bp except that dw regnum cannot be
CW_FRAME_CR_REG3 or DOW_FRAME_UNDEFINED_ML or DW_FRAME_SAME_VAL
but must be a real register number.

2.3.8 Macro Details Record
TheDwar f _Macr o_Det ai | s type gives information about a single entry in the .debug.macinfo section.

struct Dwarf_Macro Details_s {
Dwarf O f dnd_of f set;
Dwarf_Smal|l dnd_type;
Dwar f _Si gned dnd_l i neno;
Dwar f _Si gned dnd_fil ei ndex;
char * dnd_rmacr o;
1
typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;

dmd_of f set is the byte offset, within the .debug_macinfo section, of this macro information.

dmd_t ype is the type code of this macro info entry (or 0, the type code indicating that this is the end of
macro information entries for a compilation unifee DW MACI NFO defi ne, etc in the DNARF
document.

dmd_| i neno is the line number where this entry was found, or O if there is no applicable line number.

dmd_fil ei ndex is the file inde of the file involved. Thisis only guaranteed meaningful on a
DW MACI NFO start _file dnd_type. Setto -1 if unknown (see the functional interé for more
details).

dnd_macr o is the applicable stringFor a DW MACI NFO_def i ne this is the macro name andlwe.
For a DW MACI NFO_undef , or this is the macro nameror a DW MACI NFO vendor _ext this is the
vendor-defined stringalue. For otherdnd_t ypes this is 0.

2.4 Opaque Types

The opaque types declaredlibdwarf.h are used as descriptors for queries agaiVgARF information

stored in various debugging sections. Each time an instance of an opaque type is returned as a result of a
libdwarf operation Dwar f _Debug excepted), it should be freed, usidgar f _deal | oc() when it is

no longer of use (read the folNong documentation for details, as in at least one case there is a special
routine provided for deallocation anddwarf deal |l oc() is not directly called: see

dwarf _srclines()). Somefunctions return a number of instances of an opaque type in a block, by
means of a pointer to the block and a count of the number of opaque descriptors in the block: see the
function description for deallocation rules for such functions. The list of opaque typesdddf

libdwarf.h that are pertinent to the Consumer Librand their intended use is described helo

rev 2.30, Sept 14, 2015 -11-

-12 -

typedef struct Dwarf_ Debug s* Dwarf Debug;

An instance of théwar f _Debug type is created as a result of a successful callvarf _init(), or

dwarf _elf _init(),andis used as a descriptor for subsequent access td nabdar f functions on

that object. The storage pointed to by this descriptor should be not be freed, using the
dwar f _deal | oc() function. Insteadree it withdwarf _fi ni sh().

typedef struct Dwarf_Die s* Dwarf_Die;

An instance of ébwar f _Di e type is returned from a successful call to thear f _si bl i ngof (),

dwarf _child, or dwarf_of fdi e _b() function, and is used as a descriptor for queries about
information related to that DIE. The storage pointed to by this descriptor should be freed, using
dwar f _deal | oc() with the allocation typ®W DLA DI E when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances ofDwarf _Li ne type are returned from a successful call to twarf _srclines()

function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individually freed, usirdwarf_deal | oc() with the allocation type

DW DLA LI NE when no longer needed.

typedef struct Dwarf_d obal s* Dwarf_d obal;

Instances obDwar f _d obal type are returned from a successful call todhar f _get gl obal s()
function, and are used as descriptors for queries about global names (pubnames).

typedef struct Dwarf_Wak s* Dwarf_Weak;

Instances of Dwarf _Wak type are returned from a successful call to the SGlI-specif
dwar f _get weaks() function, and are used as descriptors for queries about weak naheestorage
pointed to by these descriptors should be viddially freed, usingdwarf deal | oc() with the
allocation type DW DLA WEAK CONTEXT (or DW DLA WEAK, an dder name, supported for
compatibility) when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf Func type are returned from a successful call to the SGlI-specif
dwarf _get funcs() function, and are used as descriptors for queries about static function names.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf_Type type are returned from a successful call to the SGlI-specif
dwarf _get types() function, and are used as descriptors for queries about user defined types.

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf _Var type are returned from a successful call to the SGlI-specif
dwar f _get vars() function, and are used as descriptors for queries about static variables.

typedef struct Dwarf_ Error_s* Dwarf Error;

This descriptor points to a structure that provides detailed information about errors detédtedwsr f .
Users typically provide a location fdri bdwar f to store this descriptor for the user to obtain more
information about the error The storage pointed to by this descriptor should be freed, using

rev 2.30, Sept 14, 2015 -12-

-13-

dwar f _deal | oc() with the allocation typ®W DLA ERRORwhen no longer needed.

typedef struct Dwarf_ Attribute s* Dwarf_ Attribute;

Instances obwar f _At t ri but e type are returned from a successful call todtharf _attrlist(),
ordwarf _attr () functions, and are used as descriptors for queries about attrédués.v Thestorage
pointed to by this descriptor should be individually freed, udiwgr f _deal | oc() with the allocation
type DW DLA_ATTRwhen no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of @war f _Abbr ev type is returned from a successful calldwar f _get abbrev(),
and is used as a descriptor for queries about albtimns in the .dalg_abbre section. Thestorage
pointed to by this descriptor should be freed, usitvgar f _deal | oc() with the allocation type
DW DLA ABBREV when no longer needed.

typedef struct Dwarf_Fde s* Dwarf_Fde;

Instances oDwar f _Fde type are returned from a successful call todinarf _get fde |ist(),
dwarf _get fde for_die(),ordwarf _get fde_at pc() functions, and are used as descriptors
for queries about frames descriptors.

typedef struct Dwarf_Cie s* Dwarf_GCie;

Instances oDwar f _Ci e type are returned from a successful call to dmearf _get fde list()
function, and are used as descriptors for queries about information that is commearaidrsenes.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances obwar f _Ar ange type are returned from successful calls todhar f _get aranges(),
ordwar f _get arange() functions, and are used as descriptors for queries about address fEmges.
storage pointed to by this descriptor should be individually freed, usiagf deal | oc() with the
allocation typeDW DLA ARANGE when no longer needed.

typedef struct Dwarf_ Gdbi ndex_s* Dwarf _Gdbi ndex;

Instances of Dwarf_ Gdbi ndex type are returned from successful «calls to the
dwar f _gdbi ndex_header () function and are used to extract information from a .gdbxisdetion.
This section is a gcc/gdb extension and is designed to alldehugger fast access to data in .dghinfo.
The storage pointed to by this descriptor should be freed using a calltd _gdbi ndex_free()

with a validDwar f _Gdbi ndex pointer as the argument.

typedef struct Dwarf_ Xu | ndex_ Header s* Dwarf_ Xu_ | ndex header;

Instances of Dwarf_Xu_| ndex_ Header s type are returned from successful calls to the
dwarf _get xu_i ndex_header () function and are used to xteact information from a
.debug_cu_indeor debug_tu_inde section. These sections are used to enphssible access to .aw
sections gthered into a .dwp object as part of the DebugFission project allowing separation of an
executable from most of its WARF debugging information. As of May 2015 these sections are accepted
into DWARF5 but the standard has not been relea3éé. storage pointed to by this descriptor should be
freed using a call tdwar f _xh_header free() with a \alid Dwar f _Xul ndexHeader pointer as

the argument.

rev 2.30, Sept 14, 2015 -13-

-14 -

3. UTF-8 strings

libdwarf is defned, at various points, to return string pointers or ty@nings into string areas you deé.
DWARF allows the use obW AT use_UTF8 (DWARF3 and | ater) DWATE UTF (DWARF4
and later) to specify that the strings returned are actually in UTF-8
format. What this means is that if UTF-8 is specfied on a particular
object it is up to callers that wish to print all the characters
properly to use |anguage-appropriate functions to convert the char * to
wi de characters and print the wide characters. Al ASCI| characters in

the strings will print properly whether printed as w de characters or
not. The methods to convert UTF-8 strings so they will print correctly
for all such strings is beyond the scope of this documnent.

If UTF-8 is not specified then one is probably safe in assuming the
strings are iso_8859-15 and normal C printf() will work fine..

In either case one should be wary of corrupted (accidentally or
intentionally) strings with ASCI1 control characters in the text. Such
can cause bad effects if sinply printed to a device (such as a
termnal).

4. Error Handling

The method for detection and disposition of error conditions that arise during accessugdirteb
information vialibdwarf is consistent across dibdwarf functions that are capable of producing an error
This section describes the method usedittwarf in notifying client programs of error conditions.

Most functions withinlibdwarf accept as an argument a pointer tbwar f _Er r or descriptor where a

Dwar f _Err or descriptor is stored if an error is detected by the functRoutines in the client program

that provide this gument can query tHawar f _Er r or descriptor to determine the nature of the error and
perform appropriate processing. The intent is that clients do the appropriate processing immediately on
encountering an error and then the client chNar f _deal | oc to free the descriptor.

In the rare case where the malloc arenaxlmested when trying to create a Dwarf_Error descriptor a
pointer to a statically allocated descriptor will be return€his static descriptor is mein December 2014.

A call todwar f _deal | oc() to free the statically allocated descriptor is harmless (it sets the aluer v
in the descriptor taDW_DLE_FAILSAFE_ERRAL). Thepossible conflation of errors when the arena is
exhausted (and a dwf_error descriptor is 8ed past the next reader call inyathread) is considered better
than havindibdwarf call abor t () (as earlietibdwarf did).

A client program can also specify a function to beoked upon detection of an error at the time the library

is initialized (seedwar f _i ni t ()). Whenalibdwarf routine detects an errdhis function is called with

two aguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(again seedwar f _i nit()). Thispointer argument can be used to relay information between the error
handler and other routines of the client prograinclient program can specify or change both the error
handling function and the pointer argument after initialization uslmgrf_set errhand() and

dwarf _seterrarg().

In the case wherBbdwarf functions are not provided a pointer tdaar f _Er r or descriptoy and no
error handling function was provided at initializatidipdwarf functions terminate x@cution by calling
abort (30 .

The following lists the processing steps taken upon detection of an error:

1. Checkthe error argument; if not aNULL pointer alocate and initialize ebwar f _Err or
descriptor with information describing the errptace this descriptor in the area pointed to by
error, and return a value indicating an error condition.

rev 2.30, Sept 14, 2015 -14 -

-15-

2. If anerrhand agument was provided tdwarf _i nit () at initialization, caller r hand()
passing it the error descriptor and the value of #werarg amgument provided to
dwarf _init(). If the error handling function returns, return alue indicating an error
condition.

3. Terminate programxecution by callingabort (3C) .

In all cases, it is clear from thelue returned from a function that an error occurredxatiging the
function, since DW_DLV_ERROR is returned.

As can be seen from the algogeps, the client program can provide an error handler at initialization, and
still provide aner r or argument tolibdwarf functions when it is not desired toveathe error handler
invoked.

If a libdwarf function is called with imalid arguments, the behavior is unibed. In particular,
supplying aNULL pointer to al i bdwar f function (xcept where explicitly permitted), or pointers to
invalid addresses or uninitialized data causes lneefbehavior; the return value in such cases is
undefned, and the function may fail tovioke the caller supplied error handler or to return a meaningful
error number Implementations also may aboxeeution for such cases.

Some errors are so inconsequential that it does not warrant rejecting an object or returning @&merror
example would be a frame length not being a multiple of an address-size (nglihiads the only such
inconsequential error). To make it possible for a client to report such errors the function
dwarf _get harm ess_error _|i st returns strings with errorxein them. This function may be
ignored if client code does not awmt to bother with such error reporting. See
DW DLE DEBUG FRAME LENGTH NOT_MJLTI PLE in the libdwarf source code.

4.1 Returned valuesin thefunctional interface

Values returned by i bdwar f functions to indicate success and errors are enumerated in Figlifee2.
DW DLV_NO _ENTRY case is useful for functions need to indicate that while thesen® data to return
there was no error eithefor example,dwar f _si bl i ngof () may returnDW DLV_NO_ENTRY to
indicate that that there was no sibling to return.

SYMBOLIC NAME VALUE MEANING
DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No gpplicable value

Figure 2. Error Indications
Each function in the interface that returns a value returns one of the integers invihégaive.

If DW DLV_ERROR s returned and a pointer tdDmar f _Er r or pointer is passed to the function, then a
Dwarf_Error handle is returned through the point&r ather pointer value in the intexée returns aalue.
After the Dwarf _Error is no longer of interest, a
dwar f _deal | oc(dbg, dw_err, DW DLA ERROR) on the error pointer is appropriate to freey an
space used by the error information.

If DW DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW DLV_(Xis returned, th®war f _Er r or pointer if supplied, is not touched, butynther values to

be returned through pointers are returned. In this case calls (depending racthfeirction returning the
error) todwar f _deal | oc() may be appropriate once the particular pointer returned is no longer of
interest.

rev 2.30, Sept 14, 2015 -15-

-16 -

Pointers passed to allovalues to be returned through them are uniformly the last pointers in each
argument list.

All the interface functions are defined from the point ofwief the writer-of-the-library (as is traditional
for UN*X library documentation), not from the point of wieof the user of the libraryThe caller might
code:

Dwarf _Line |ine;

Dwarf _Signed ret | off;

Dwarf_Error err;

int retval = dwarf_lineoff(line, & et |off, &err);

for the function defined as

int dwarf _|ineoff(Dwarf_Line Iine, Dnarf_Signed *return_Ilineoff,
Dwarf _Error* err);

and this document refers to the function as returning @hee\through *err or *return_linebbr uses the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

5. Memory M anagement

Several of the functions that comprisdadwarf return pointers (opaque descriptors) to structures that ha
been dynamically allocated by the libraryo ad in the management of dynamic memahe function
dwar f _deal | oc() is provided to free storage allocated as a result of a callibovearf function. This
section describes the strategy that should be taken by a client program in managing dynamic storage.

5.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a resultibfhearf Consumer Library call should be
assumed to point to read-only memoiihe results are undeéd forlibdwarf clients that attempt to write
to a region pointed to by a value returned typdwarf Consumer Library call.

5.2 Storage Deallocation

See the section "Returned values in the functional axtetf abwe, for the general rules where calls to
dwar f _deal | oc() is appropriate.

In some cases the pointers returned bdwarf call are pointers to data which is not freeable. The library
knows from the allocation type praed to it whether the space is freeable or not and will not free
inappropriately wherdwar f _deal | oc() is called. So it is vital thalwar f _deal | oc() be called
with the proper allocation type.

For most storage allocated byibdwarf, the client can free the storage for reuse by -calling
dwar f _deal | oc(), providing it with theDwar f _Debug descriptor specifying the object for which the
storage was allocated, a pointer to the area to be free-ed, and aneidtatf specifies what the pointer
points to (the allocation type)For example, to free @bwarf _Di e di e belonging the the object
represented byDwar f _Debug dbg, dlocated by a call todwarf _si blingof (), the call to
dwar f _deal | oc() would be:

dwar f _deal | oc(dbg, die, DWDLA DI E);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list
should be deallocated, foll@d by deallocation of the actual list itself. The following code fragment uses
an invocation ofdwarf _attrlist() as an example to illustrate a technique that can be used to free
storage from anjibdwarf routine that returns a list:

rev 2.30, Sept 14, 2015 -16 -

-17 -

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(sonmedie, &atlist,&tcnt, &error);
if (errv == DWDLV_XK) {

for (i =0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf deal | oc(dbg, atlist[i], DWDLA ATTR);

}
dwarf deal | oc(dbg, atlist, DWDLA LIST);

The Dwar f _Debug returned fromdwarf _init() ordwarf _elf _init() cannot be freed using
dwar f _deal | oc(). The functiondwar f fi ni sh() will deallocate all dynamic storage associated
with an instance of Bwar f _Debug type. Inparticular it will deallocate all dynamically allocated space
associated with thewar f _Debug descriptoyand finally male the descriptor alid.

An Dwar f _Error returned frondwarf _init() ordwarf_elf _init() in case of a failure cannot
be freed usinglwar f _deal | oc() . The only way to free thédwar f _Err or from either of those calls

is to usefree(3) directly. Every Dwarf Error must be freed bylwar f _deal | oc() except those
returned bydwar f _init () ordwarf _elf _init().

The codes that identify the storage pointed to in callsvar f _deal | oc() are described in figure 3.

rev 2.30, Sept 14, 2015 -17 -

-18 -

IDENTIFIER USED TO FREE
DW_DLA_STRING char*

DW_DLA_LOC Dwarf_Loc
DW_DLA_LOCDESC Dvarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute

DW_DLA _TYPE Dwarf_Type (notused)
DW_DLA_SUBSCR Dvarf_Subscr (not used)
DW_DLA_GLOBAL_CONTEXT Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST alist of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dvarf_Frame_Op
DW_DLA_CIE Dwarf_Cie

DW_DLA FDE Dwarf_Fde

DW_DLA _LOC BLOCK Dwarf_Loc Block
DW_DLA_FRAME_BLOCK Dwarf_Frame Block (not used
DW_DLA_FUNC_CONTEXT Dvarf_Func
DW_DLA_TYPENAME_CONTEXT Dwarf_Type
DW_DLA_VAR_CONTEXT Dwarf_Var
DW_DLA_WEAK_CONTEXT Dwarf_Weak
DW_DLA_PUBTYPES_CONTEXT Dwarf_Type

Figure 3. Allocation/Deallocation Identifiers

6. Functional Interface
This section describes the functionsitable in thelibdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the funstap@ration.

The following sections describe these functions.

6.1 Initialization Operations

These functions are concerned with preparing an obijecfor subsequent access by the functions in
libdwarf and with releasing allocated resources when access is complete.

6.1.1 dwarf_init()

rev 2.30, Sept 14, 2015 -18-

-19-

int dwarf _init(
int fd,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf_Ptr errarg,
Dwar f _Debug * dbg,
Dwar f _Error *error)

When it returnsDW DLV_OK, the functiondwar f i nit() returns throughdbg a Dwar f _Debug
descriptor that represents a handle for accessing debugging records associated with ileedegerigtor

fd. DWDLV_NO ENTRY is returned if the object does not contailV®RF debugging information.
DW DLV_ERRORs returned if an error occurredheaccess argument indicates what access is\ato

for the section.The DW DLC READ parameter is valid for read access (only read access is defined or
discussed in this documentlhe er r hand argument is a pointer to a function that will besdked
wheneer an eror is detected as a result ofibdwarf operation. Theer r ar g agument is passed as an
argument to thesr r hand function. Thefile descriptor associated with the agument must refer to an
ordinary file (i.e. not a pipe, socket, device, /proc engtg.), be opened with the at least as much
permission as specified by tl&cess argument, and cannot be closed or used as an argumeny to an
system calls by the client until aftéwar f _f i ni sh() is called. The seek position of thefassociated
with f d is undefined upon return dfvar f _init ().

With SGI IRIX, by default it is allowed that the apg ose() fd immediately after calling
dwarf _init(), butthatis nota portable approach (that it works is an accidental side effect oatte f
that SGI IRIX useELF_C READ MMAP in its hidden internal call tel f _begi n()). The portable
approach is to consider thad must be left open till after the correspondingadivfinish() call has
returned.

Sincedwar f i nit() uses the same error handling processing as ttiowarf functions (seecrror
Handling above), client programs will generally supply @nr or parameter to bypass the delt actions
during initialization unless the default actions are appropriate.

6.1.2 dwarf_ef_init()

int dwarf_elf_init(
EIf * elf _file_pointer,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,
Dwar f _Debug * dbg,
Dwarf _Error *error)

The functiondwar f _el f _i nit () is identical todwar f _i nit () except that an opeBl f * pointer

is passed instead of #efdescriptor In systems supportingLF object files this may be more space or
time-eficient than usinglwar f _i ni t (). The client is allowed to use th# f * pointer for its avn
purposes without restriction during the time thwar f _Debug is open, gcept that the client should not
el f _end() the pointer till afterdwar f _fi ni shis called.

6.1.3 dwarf_get_elf()

int dwarf_get el f(
Dwar f _Debug dbg,
Elf ** el f,
Dwarf Error *error)

When it return©W DLV_OK, the functiondwar f _get el f () returns through the pointet f theEl f

rev 2.30, Sept 14, 2015 -19-

-20-

* handle used to access the object represented bypwhef Debug descriptordbg. It returns
DwW DLV_ERROR 0N error.

Becausa nt dwarf i nit() opens an EIf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran gop should uselwar f _get el f and should calel f _end with the pointer returned
through theel f ** handle created hiynt dwarf _init().

This function is not meaningful for a system that does not use the EIf format for objects.

6.1.4 dwarf_set_tied_dbg()

int dwarf_set _tied_dbg(
Dwar f _Debug dbg,
Dwar f _Debug ti eddbg,
Dwarf _Error *error)

The functiondwar f _set ti ed_dbg() enables cross-object access MWARF data. If a WWARF5
Package object ha®W FORM addr x or DW FORM GNU_addr _i ndex in ad address attribute one
needs both the Package file and tkecatable to extract the actual address wdigtmr f _f or maddr () .
So one does a normdivarf _el f _init() ordwarf_init() on each object and then tie theotw
together with a call such as:

Dwar f _Debug dbg = O;
Dwar f _Debug ti eddbg
Dwarf_ Error error =
int res;

= 0;
0;

/* Do the dwarf_init() or dwarf_elf _init
calls to set
dbg, tieddbg at this point. Then: */
res = dwarf_set _tied_dbg(dbg,tieddbg, &rror);
if (res !'= DWDLV_OK) {
/* Sonet hi ng went w ong*/
}

When done with both dbg and tieddbg do the normal finishing operations on boyhoirien

It is possible to undo the tieing operation with

res = dwarf_set_tied_dbg(dbg, NULL, &rror);
if (res !'= DWDLV_OK) {

/* Sonet hi ng went w ong*/
}

It is not necessary to undo the tieing operation before finishing on the dbg and tieddbg.

6.1.5 dwarf_finish()

int dwarf _finish(
Dwar f _Debug dbg,
Dwarf Error *error)

The functiondwar f _fi ni sh() releases alLibdwarf internal resources associated with the descriptor
dbg, and invalidatesdbg. It returnsDW DLV_ERRORf there is an error during the finishing operatidt.

rev 2.30, Sept 14, 2015 -20-

-21-

returnsDW DLV _OK for a successful operation.

Becausa nt dwarf i nit () opens an EIf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran gop should uselwar f _get el f and should calel f _end with the pointer returned
through theel f ** handle created hiynt dwarf _init().

6.1.6 dwarf_set_stringcheck()

int dwarf_set _stringcheck(
i nt stringcheck)

The functioni nt dwarf_set _stringcheck() sets a global flag and returns theviwes value of
the global flag.

If the stringcheck global flag is zero (the aelt) libdwarf does string length validity checks (the checks do
slow libdwarf down very slightly). If the stringcheck global flag is non-zero libdwarf does not do string
length validity checks.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

6.1.7 dwarf_set_reloc_application()

int dwarf_set _reloc_application(
int apply)

The functioni nt dwarf_set _rel oc_application() sets a global flag and returns theyioes
value of the global flag.

If the reloc_application global flag is non-zero (the default) then the applicable .rela section fists)e e
will be processed and applied toydDWARF section when it is read in. If the reloc_application global flag
is zero no such relocation-application is attempted.

Not all machine types (elf header e_machine) or all relocations are supported, but thew velyction
types apply to BWARF debug sections.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

It seems unlikely anyone will need to call this function.

6.1.8 dwarf_record_cmdline_options()

int dwarf_record_cndline_options(
Dwar f _Cndl i ne_Options options)

The function int dwarf_record_cndline_options() copies a Dwrf Cmdline_Options
structure from consumer code to libdwarf.

The structure is defined In bdwar f . h.

The initial version of this structure has a singidfcheck_ver bose_nopde which, if non-zero, tells
libdwarf to print some detailed messages to stdout in case certain errors are detected.

The default for this value is FALSE (0) so the extra messagesfédneddfault.

rev 2.30, Sept 14, 2015 -21-

-22-

6.2 Section size operations

These operations are informagitut not normally needed.

6.2.1 dwarf get_section_max_offsets h()

int dwarf_get section_max_of fsets_ b(Dwarf_debug dbg,

Dwar f _Unsigned * /*debug info_size*/,
Dwar f _Unsi gned * /*debug abbrev_si ze*/,
Dwar f _Unsi gned /*debug_| i ne_si ze*/,
Dwar f _Unsi gned /*debug_| oc_si ze*/,

Dwar f _Unsi gned / *debug_ar anges_si ze*/,
Dwar f _Unsi gned / *debug_naci nfo_si ze*/,
Dwar f _Unsi gned / *debug_pubnanes_si ze*/,
Dwar f _Unsi gned /*debug_str_size*/,

Dwar f _Unsi gned /*debug_frane_size*/,
Dwar f _Unsi gned / *debug_ranges_si ze*/,
Dwar f _Unsi gned / *debug_pubt ypes_si ze*/,
Dwarf _Unsigned * /*debug types_size*/);

L T N A T

The functiondwar f _get section_nax_of fsets_b() an open Dwrf Dbg and reports on the
section sizes by pushing section siakues baclkhrough the pointers.

Created in October 2011.

6.2.2 dwarf_get_section_max_offsets()

int dwarf_get section_max_of f set s(Dwarf _debug dbg,
Dwar f _Unsigned * /*debug_info_size*/,
Dwar f _Unsigned * /*debug_abbrev_size*/,
Dwar f _Unsigned * /*debug_line_size*/,
Dwar f _Unsi gned /*debug_| oc_si ze*/,
Dwar f _Unsi gned / *debug_ar anges_si ze*/,
Dwar f _Unsi gned / *debug_naci nfo_si ze*/,
Dwar f _Unsi gned [*debug_pubnanes_si ze*/,
Dwar f _Unsi gned [*debug_str_size*/,
Dwar f _Unsi gned [*debug_frane_size*/,
Dwar f _Unsi gned [*debug_ranges_si ze*/,
Dwar f _Unsi gned * /*debug_pubtypes_size*/);

E o I I I

The function is the same abnarf _get _secti on_nmax_of f sets_b() except it is missing the
debug_types_si ze() amgument. Thouglobsolete it is still supported.

6.3 Printf Callbacks
This is nev in August 2013.

Thedwar f _print_Ilines() function is intended as a helper to programs ditvar f durp and shw

some line internal details in a way only the interals of liadwan she these details. But using printf
directly in libdwarf means the caller has limited control of where the output apggansav the 'printf

output is passed back to the caller through a callback function whose implementation is provided by the
caller.

Any code calling libdwarf can ignore the functions described in this section complHtiig functions are
ignored the messages (if any) from libdwarf will simply not appear anywhere.

The |ibdwarf.h header file defes struct Dwarf_ Printf_Callback _Info_s and

rev 2.30, Sept 14, 2015 -22-

-23-

dwarf _regi ster_printf_call back for those libdwarf callers wishing to implement the callback.
In this section we describe \wmne uses that inteae. Theapplicationsddwar f dunp anddwar f dunp2
are examples of kothese may be used.

6.3.1 dwarf_register_printf_callback

struct Dwarf Printf_Callback Info_s
dwarf _register_printf_call back(Dwarf_Debug dbg,
struct Dwarf_Printf_Call back_Info_s * newal ues);

The dwarf _register_printf_call back() function can only be called after the B Debug
instance has been initialized, the call makes no sense at other Tieefunction returns the currerdlue
of the structure.lf newval ues is non-null then the passed-ialues are used to initialize the liba
internal callback data (the values returned are the values befoneetireal ues are recorded).If
newal ues is null no change is made to the libdwarf internal callback data.

6.3.2 Dwarf_Printf_Callback Info s
struct Dwarf_ Printf_Callback Info_s {

void * dp_user_pointer;

dwarf _printf_call back function_type dp_fptr;

char * dp_buffer;

unsi gned int dp_buffer_Ien;

i nt dp_buffer_user_provided;
void * dp_reserved;

}s

First we describe the fields as applicable in settng up for a «call to
dwarf _register_printf_call back().

The feld dp_user _poi nt er is remembered by libdwarf and passed back incafl libdwarf makes to
the users allback function. It is otherwise ignored by libdwarf.

The fielddp_f pt r is either NULL or a pointer to a user-implemented function.

If the field dp_buf fer _user_provi ded is non-zero thenp_buf fer | en anddp_buf f er must
be set by the user and libdwarf will use thaffér without doing ap malloc of space. If theidld
dp_buffer_user_provided is zero then the inpuidids dp_buf fer | en anddp_buffer are
ignored by libdwarf and space is mallbes reeded.

The fielddp_r eser ved is ignored, it is reserved for future use.

When the structure is returned tdyarf regi ster_printf _cal | back() the values of theidlds
before thedwar f _regi ster_printf_cal |l back() call are returned.

6.3.3 dwarf_printf_callback_function_type

typedef void (* dwarf_printf_callback_function_type)(void * user_pointer,
const char * linecontent);

Any application using the callbacks needs to use the function
dwarf _register_printf_call back() and supply a function matching the abofunction

rev 2.30, Sept 14, 2015 -23-

-24 -

prototype from libdwarf.h.

6.3.4 Example of printf callback usein a C++ application using libdwarf

struct Dwarf_Printf_Callback _Info_s printfcall backdat a;
menset (&printfcal | backdat a, 0, si zeof (printfcal | backdata));
printfcal | backdata.dp_fptr = printf_callback_for_libdwarf;
dwarf _register_printf_call back(dbg, &rintfcal | backdat a) ;

Assumi ng the user inplenments sonething
like the follow ng function in her application:

voi d
printf_callback_for_libdwarf(void *userdata, const char *data)

{
}

It is crucial that the usex’allback function copies or prints the data immediat@lyce the user callback
function returns thdat a pointer may change or become stale without warning.

cout << dat a;

6.4 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries, whether fram anfieb
.delug_types, .dalg_info.dwo, or .delig_types.dw . Snce all such sections use similar formats, one set
of functions sufces.

6.4.1 dwarf_get_die_section_name()

int

dwarf_get_die_section_name(Dwarf_Debug dbg,
Dwarf_Bool is_info,

const char ** sec_name,
Dwarf_Error * error);

dwarf _get _di e_secti on_name() lets consumers access the object section name. This is useful for
applications wanting to print the name, but of course the object section name is not really a part of the
DWAREF information. Most applications will probably not call this functidhcan be called at grtime

after the Dwarf_Debug initialization is done.

The function dwar f _get di e_secti on_nane() operates on the either the .dgbinfo[.dwo]
section (ifi s_i nf o is non-zero) or .debug_types|[.dwo] sectiori §f i nf o is zero).

If the function succeedd,sec_nane is set to a pointer to a string with the object section name and the
function returndW DLV_COK. Do not free the string whose pointer is returnéar non-EIf objects it is
possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling
application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_EXTR

If there is an internal error detected the function retDkvsDLV _ERROR and sets th&er r or pointer.

rev 2.30, Sept 14, 2015 -24 -

-25-

6.4.2 dwarf_next_cu_header_d()

i nt dwarf_next _cu_header _d(
Dwar f _debug dbg,
Dwarf _Bool is_info,
Dwar f _Unsi gned *cu_header _I engt h,

Dwar f _Hal f *ver si on_st anp,
Dwar f _Unsi gned *abbrev_of fset,
Dwar f _Hal f *addr ess_si ze,
Dwar f _Hal f *of f set _si ze,
Dwar f _Hal f *ext ensi on_si ze,
Dwar f _Si g8 *si gnat ure,

Dwar f _Unsi gned *typeoffset
Dwar f _Unsi gned *next _cu_header,
Dwar f _Hal f *header _cu_type,
Dwar f _Error *error);

The function dwar f _next _cu_header_d() operates on the either the .dgbinfo section(if
i s_i nf o is non-zero) or .debug_types sectioni(§_i nf o is zero). It returnsDW DLV_ERROR if it
fails, andDW DLV_OK if it succeeds.

If it succeeds* next _cu_header is set to the offset in the .debug_info section of the next compilation-
unit header if it succeeds. On reading the last compilation-unit header in thg .oiéb section it contains
the size of the .dely_info or debug_types section. The next caldtar f _next cu_header _b()
returns DW DLV_NO _ENTRY without reading a compilation-unit or settingnext cu_header.
Subsequent calls war f _next _cu_header () repeat the cycle by reading the first compilation-unit
and so on.

The other values returned through pointers are #iages in the compilation-unit headelf any of
cu_header _| engt h, version_stanp, abbrev_offset, address_size, offset_size,
ext ensi on_si ze, si gnat ure, ort ypeof f set, iSNULL, the argument is ignored (meaning it is not
an error to provide BULL pointer for ag or dl of these arguments).

cu_header _I| engt h returns the length in bytes of the compilation unit header.

ver si on_st anp returns the section version, which would be (for .debug_info) 2 WARF2, 3 for
DWARF4, or 4 for DVARFA4.

abbrev_of f set returns the .debug_abbrsaction offset of the abbreviations for this compilation unit.
addr ess_si ze returns the size of an address in this compilation unit. Which is usually 4 or 8.

of f set _si ze returns the size in bytes of an offset for the compilation unit. Tisetdafize is 4 for 32bit
dwarf and 8 for 64bit darf. Thisis the ofset size in dwarf data, not the address size insidextoaitable
code. Theoffset size can be 4ven if embedded in a 64bit elf file (which is normal for 64bit elf), and can
be 8 @en in a 2bit elf file (which probably will neer be £en in practice).

Theext ensi on_si ze pointer is only releant if theof f set _si ze pointer returns 8. The value is not
normally useful bt is returned through the pointer for completeness. The pa@nteensi on_si ze

returns 0O if the CU is MIPS/IRIX non-standard 64bitadfv(MIPS/IRIX 64bit dwarf was created years
before DNARF3 deined 64bit dwarf) and returns 4 if the dwarf uses the standard 64bit extension (the 4 is
the size in bytes of the Gffff i n the initial length field which indicates the foling 8 bytes in the
.debug_info section are the real length). See WARF3 or DNVARF4 standard, section 7.4.

Thesi gnat ur e pointer is only releant if
the CU has a type signature, and if vafe the 8 byte type signature of the .debug_types CU header is
assigned through the pointer.

Thet ypeof f set pointer is only releant the CU has a type signature if relet the local offset within
the CU of the the type offset the .debug_types entry represents is assigned through the Tanter

rev 2.30, Sept 14, 2015 -25-

-26 -

t ypeof f set matters because afD AT type referencing the type unit may reference an inner type, such
as a C++ class in a C++ namespaa#, the type itself has the enclosing namespace in theigdsgipe
type_unit.

Theheader _cu_t ype pointer is applicable to alCU headers. The value returned through the pointer is
eitherDW UT_conpi | e DW UT _parti al DW UT_t ype and identifies the header type of this Cld.
DWARF4 a DW UT _t ype will be in . debug_t ypes, but in DWARF5 these compilation units are in

. debug_i nf o0 and the Debug Fissiardebug_i nf 0. dwo .

6.4.3 dwarf_next_cu_header_c()

i nt dwarf_next_cu_header c(
Dwar f _debug dbg,
Dwarf _Bool is_info,
Dwar f _Unsi gned *cu_header _I engt h,

Dwar f _Hal f *ver si on_st anp,
Dwar f _Unsi gned *abbrev_of fset,
Dwar f _Hal f *addr ess_si ze,
Dwar f _Hal f *of f set _si ze,
Dwar f _Hal f *ext ensi on_si ze,
Dwar f _Si g8 *si gnat ure,

Dwar f _Unsi gned *typeoffset
Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

The function dwar f _next _cu_header_c() operates on the either the .dgbinfo section(if
i s_i nf ois non-zero) or .debug_types section @f i nf o is zero).

It operates exactly l&kdwar f _next _cu_header _d() but is missing theheader _t ype field. This
is kept for compatibility All code using this should be changed todwsar f _next _cu_header _d()

6.4.4 dwarf_next_cu_header_b()

int dwarf_next cu_header b(
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_of fset,
Dwar f _Hal f *addr ess_si ze,
Dwar f _Hal f *of f set _si ze,
Dwar f _Hal f *ext ensi on_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

This is obsolete as of October 2011 though supported.

The functiondwar f _next cu_header b() operates on the .debug_info section. It operatastly
like dwar f _next cu_header c() butis missing thesi gnat ur e, andt ypeof f set fields. Thisis
kept for compatibility All code using this should be changed todwser f _next cu_header c()

6.4.5 dwarf_next_cu_header()

The following is the original form, missing thd f set _si ze, ext ensi on_si ze, si gnat ur e, and
typeof f set fields indwar f _next cu_header _c() . This is kept for compatibility All code using
this should be changed to ubsar f _next _cu_header _c()

rev 2.30, Sept 14, 2015 - 26 -

-27-

i nt dwarf_next cu_header (
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_of fset,
Dwar f _Hal f *address_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwarf _Error *error);

6.4.6 dwarf_siblingof_b()

i nt dwarf_siblingof_b(
Dwar f _Debug dbg,
Dwarf_Di e die,

Dwarf _Bool is_info,
Dwarf _Die *return_sib,
Dwarf _Error *error)

The functiondwar f _si bl i ngof _b() returnsDW DLV_ERROR and sets ther r or pointer on errar
If there is no sibling it return®W DLV_NO _ENTRY. When it succeedsjwar f _si bl i ngof _b()
returnsDW DLV_OK and setdr et ur n_si b to theDwar f _Di e descriptor of the sibling afi e.

If i s_i nf o is non-zero then theli e is assumed to refer to a .debug_info DIEi s_i nf o is zero then
the di e is assumed to refer to a .debug_types DNibte that the first call (the call that gets the
compilation-unit DIE in a compilation unit) passes in a NUWlilLe so having the caller passiis_i nf o

is essential. And ifli e is non-NULL it is still essential for the call to passiis_i nf o set properly to
reflect the section the DIE came from. The functibmar f _get di e_i nfotypes_flag() is of
interest as it returns the proper is_info value fromram-NULL di e pointer.

If di e is NULL, the Dwar f _Di e descriptor of the first die in the compilation-unit is returned. This die
has theDW TAG conpi |l e_unit,DW TAG partial _unit,or DW TAG type_unit tag.

Dwarf Die return_sib = 0;
Dwarf Error error = 0;
int res;
Dwarf Bool is_info = 1;
/* in_die mght be NULL or a valid Dwarf_Die */
res = dwarf_siblingof _b(dbg,in_die,is_info,&eturn_sib, &error);
if (res == DWDLV_OK) {
/* Use return_sib here. */
dwar f _deal | oc(dbg, return_sib, DWDLA D E);
/* return_sib is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_sib = 0;

6.4.7 dwarf_siblingof()

rev 2.30, Sept 14, 2015 - 27 -

-28 -

i nt dwarf_siblingof (
Dwar f _Debug dbg,
Dwarf _Die die,
Dwarf Die *return_sib,
Dwar f _Error *error)

i nt dwarf_siblingof() operates exactly the sameiast dwarf _si bl i ngof b(), butint
dwar f _si bl i ngof () refers only to .debug_info DIEs.

6.4.8 dwarf_child()

int dwarf_chil d(
Dwarf_Di e die,
Dwarf_Die *return_kid,
Dwarf _Error *error)

The functiondwar f _chi | d() returnsDW DLV_ERRCR and sets ther r or die on error If there is no
child it returnsDW DLV_NO _ENTRY. When it succeedsjwarf _chi |l d() returnsDW DLV_(K and
sets *return_kid to the Dwarf_Di e descriptor of the first child ofdi e. The function
dwar f _si bl i ngof () can be used with the returralue ofdwarf_chil d() to access the other
children ofdi e.

Dwarf Die return_kid = 0;
Dwarf Error error = 0;
int res;

res = dwarf_child(dbg,in_die, & eturn_kid, &error);
if (res == DWDLV_OK) {
/* Use return_kid here. */
dwar f _deal | oc(dbg, return_kid, DWDLA D E);
/* return_die is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_kid = 0;

6.4.9 dwarf_offdie b()

int dwarf_offdie b(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwarf _Bool is_info,
Dwarf Die *return_die,
Dwar f _Error *error)

The functiondwar f _of f di e_b() returnsDW DLV_ERROR and sets ther r or die on error When it
succeedsgwar f _of fdi e_b() returnsDW DLV_OK and setgr et urn_di e to the theDwarf _Di e
descriptor of the debugging information entryo&f set in the section containing detging information
entries i.e the .dely_info section. A return of DW DLV_NO _ENTRY means that thef f set in the
section is of a byte containing all 0 bits, indicating that there is no\aatioe code. Meaning thisiie
offset’ is not the offset of a real digyths instead an offset of a null die, a padding die, or of some random
zero byte: this should not be returned in normal use.

It is the uses responsibility to mad aure thatof f set is the start of a valid debugging information entry
The result of passing it anvidid offset could be chaos.

rev 2.30, Sept 14, 2015 -28 -

-29-

If i s_i nfo is non-zero theof f set must refer to a .debug_info sectiorfset. Ifi s_i nf o zero the
of f set must refer to a .debug_types sectiofsef Errorreturns or misleading values may result if the
i s_i nf o flag or theof f set value are incorrect.

Dwarf _Error error = 0;
Dwnvarf _Die return_die = 0;
int res;

int is_info = 1;

res = dwarf_offdie _b(dbg,die offset,is info,&eturn_die, &error);
if (res == DWDLV_OK) {
/* Use return_die here. */
dwarf deal | oc(dbg, return_die, DWDLA D E);
/* return_die is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_die = 0;

6.4.10 dwarf_offdig()

int dwarf_offdie(
Dwar f _Debug dbg,
Dwarf_ O f offset,
Dwarf _Die *return_die,
Dwarf _Error *error)

The functiondwar f _of f di e() is obsolete, usdwar f _of f di e_b() instead. Thédunction is still
supported in the libraryut only references the .debug_info section.

6.4.11 dwarf_validate die sibling()

int validate die_sibling(
Dwarf _Di e sibling,
Dwarf O f *of fset)

When used correctly in a depth-firsalle of a DIE tree this function validates thatyddW_AT _sibling
attribute gves the same offset as the direct treslkv Thatis the only purpose of this function.

The functiondwar f _val i date_di e_si bl i ng() returnsDW DLV_OXK if the last die processed in a
depth-frst DIE tree walk was the same offset as generated by a ebdltiof _si bl i ngof (). Meaning
that the DW_AT _sibling attribute value, ifygrwas correct.

If the conditions are not met theW\D DLV_ERROR is returned and of f set is set to the offset in the
.delug_info section of the last DIE processéfithe application prints the offset a knowledgeable user may
be able to figure out what the compiler did wrong.

6.5 Debugging Information Entry Query Operations

These queries return specific information aboutudging information entries or a descriptor that can be
used on subsequent queries whemega Dwar f _Di e descriptor Note that some operations are sgecif
to debugging information entries that are representedwaaf Di e descriptor of a specific type-or
example, not all debugging information entries contain an attribute having a name, so consexjahtly
to dwar f _di enanme() using aDwar f _Di e descriptor that does not Ve a rmme attribute will return

rev 2.30, Sept 14, 2015 -29-

-30-

DW DLV_NO ENTRY. This is not an errgii.e. calling a function that needs a specific attribute is not an
error for a die that does not contain that specific attribute.

There are s&ral methods that can be used to obtain the value of an attributevienaigi:

1. Calldwarf _hasattr() to determine if the debugging information entry has the atgilof
interest prior to issuing the query for information about the attribute.

2. Supplyanerror amgument, and check italue after the call to a query indicates an unsuccessful
return, to determine the nature of the problérheer r or argument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to hare a1 eror handling function iwmoked upon detection of an error (see
dwarf _init()).

4. Calldwarf _attrlist() and iterate through the returned list of attributes, dealing with each one
as appropriate.

6.5.1 dwarf_get_die_infotypes flag()
Dwar f _Bool dwarf_get die_infotypes _flag(Dwarf_Die die)

The functiondwar f _t ag() returns the section flag indicating which section the DIE originates fibm.
the returned value is non-zero the DIE originates from theiglehfo section. If the returned value is zero
the DIE originates from the .debug_types section.

6.5.2 dwarf_tag()

int dwarf_tag(
Dwarf _Die die,
Dwarf Hal f *tagval,
Dwarf Error *error)

The functiondwar f _t ag() returns thet ag of di e through the pointert agval if it succeeds.lIt
returnsDW DLV_OK if it succeeds. It returnBW DLV_ERROR on error.

6.5.3 dwarf_dieoffset()

i nt dwarf_di eof fset(
Dwarf_Di e die,
Dwarf O f * return_offset,
Dwarf _Error *error)

When it succeeds, the functiondwarf _dieoffset() returns DWDLV_OK and sets
*return_of f set to the position odi e in the section containing debugging information entries (the
return_of f set is a section-relate dfset). Inother words, it setset ur n_of f set to the offset of
the start of the debugging information entry describeddbg in the section containing dies i.e
.delug_info. ItreturnsDW DLV_ERROR on error.

6.5.4 dwarf_die CU_offset()

rev 2.30, Sept 14, 2015 -30-

-31-

int dwarf_di e CU of fset(
Dwarf _Die die,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _di e_CU of f set () is similar todwar f _di eof f set (), except that it puts the
offset of the DIE represented by tiwarf Di e di e, from the start of the compilation-unit that it
belongs to rather than the start of .debug_infor(teur n_of f set is a CU-relatre dfset).

6.5.5 dwarf_die offsets()

int dwarf_die_of fsets(
Dwarf_Di e die,
Dwarf O f *gl obal _off,
Dwarf O f *cu_off,
Dwarf _Error *error)

The function dwarf_die_offsets() is a combination of dwarf_dieoffset() and
dwarf _di e _cu_of fset () in that it returns both the global .debug_info offset and the CUwelati
offset of thedi e in a single call.

6.5.6 dwarf_ptr_CU_offset()

int dwarf_ptr_ CU of fset(
Dwar f _CU Cont ext cu_cont ext,
Dwarf Byte ptr di_ptr ,
Dwarf_O f *cu_of f)

Given a wlid CU context pointer and a pointer into that CU context, the function
dwarf ptr_CU of fset() returns OW_DLV_OK and setg cu_of f to the CU-relatie (ocal) ofset
in that CU.

6.5.7 dwarf_CU_dieoffset_given_die()

int dwarf_CU di eof fset_given_di e(
Dwarf_Di e given_di e,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _CU di eof f set _gi ven_di e() is similar todwarf _di e_CU of fset (),
except that it puts the global feét of the CU DIE wning gi ven_di e of .debug_info (the
return_of f set is a global section offset).

This is useful when processing a DIE tree and encountering an error or other surprise in a DIE, as the
return_of f set can be passed twar f _of f di e_b() to return a pointer to the CU die of the CU
owning thegi ven_di e passed tawar f _CU _di eof f set _gi ven_di e() . The consumer carxgact
information from the CU die and tlgg ven_di e (in the normal way) and print it.

An example (asnippet) of code using this function follows. It assumes thatdi e is a DIE in

.delug_info that, for some reason, you vba cecided needs CU context printed (assuming
print _di e_dat a does some reasonable printing).

rev 2.30, Sept 14, 2015 -31-

-32-

int res;

Dwarf_Off cudieof = 0;
Dwarf _Die cudie = 0;
intis_info=1; /*

print_die_data(dbg,in_die);
res = dwarf_CU_dieoffset wgn_die(in_die,&cudieoff,&error);
if(res '= DW_DLV_OK) {
printf("FAIL: dwarf_CU_dieoffset_gien_die did not work0);
exit(1);
}
res = dwarf_offdie_b(dbg,cudieoff,is_info,&cudie,&error);
if(res '= DW_DLV_OK) {
printf("FAIL: dwarf_offdie did not workO);
exit(1);
}
print_die_data(dbg,cudie);
dwarf_dealloc(dbg,cudie, DW_DLA DIE);

6.5.8 dwarf_die CU_offset_range()

int dwarf_di e _CU of fset_range(
Dwarf _Di e die,
Dwarf O f *cu_gl obal _of f set,
Dwarf O f *cu_l ength,
Dwarf _Error *error)

The functiondwar f _di e_CU of f set _range() returns the offset of the mning of the CU and the
length of the CU. The &fet and length are of the entire CU that this DIE is a part of. It is used by
dwarfdump (for @ample) to check the validity of fsets. Mostpplications will hae ro reason to call this
function.

6.5.9 dwarf_dienameg()

i nt dwarf _di enanme(
Dwarf _Die die,
char ** return_nane,
Dwar f _Error *error)

When it succeeds, the functidwar f _di enanme() returnsDW DLV_OK and setgr et ur n_nane to a
pointer to a null-terminated string of characters that represents the nameteattfili e. It returns
DW DLV_NO ENTRY if di e does not hae a rame attribite. It returnsDW DLV_ERROR if an error
occurred. Thestorage pointed to by a successful returdwr f _di enanme() should be freed using the
allocation typeDW DLA STRI NGwhen no longer of interest (sdear f _deal | oc()).

6.5.10 dwarf_die abbrev_code()
int dwarf_di e_abbrev_code(Dwarf_Di e die)

The function returns the abbreviation code of the DIBat is, it returns the abbreviation "index" into the
abbreviation table for the compilation unit of which the DIE is a pdtrcannot fail. No errors are possible.
The pointerdi e() must not be NULL.

rev 2.30, Sept 14, 2015 -32-

-33-

6.5.11 dwarf_die _abbrev_children_flag()

int dwarf_di e_abbrev_children_flag(Dwarf_Di e die,
Dwar f _Hal f *has_chi | d)

The function returns the has-children flag of thee passed in through thehas_chi | d passed in and
returnsDW DLV_OK on successA non-zero value of has_chi | d means thali e has children.

On failure it return©wW DLV_ERROR.

The function was deloped to let consumer code do better error reporting in some circumstances, it is not
generally needed.

6.5.12 dwarf_get version_of_dig()

int dwarf_get version_of die(Dwarf_Die die,
Dwarf Hal f *versi on,
Dwarf Hal f *of fset size)

The function returns the CU context version throdigier si on and the CU context offset-size through
*of f set _si ze and returnW DLV_OK on success.

In case of errqrthe only errors possiblevialve an nappropriate NULLdi e pointer so no Darf _Debug
pointer is &ailable. Thereforesetting a Dwarf Error would not be very meaningful (there is no
Dwarf_Debug to attach it to). The function returns DW_DLV_ERROR on error.

The values returned through the pointers are the valueargqwments to dwarf_get form_class() requires.

6.5.13 dwarf_attrlist()

int dwarf_attrlist(
Dwarf_Di e die,
Dwarf Attribute** attrbuf,
Dwar f _Si gned *attrcount,
Dwarf _Error *error)

When it returndW DLV_CK, the functiondwar f _attrli st () setsattrbuf to point to an array of
Dwar f _Attri but e descriptors corresponding to each of the atteb in die, and returns the number of
elements in the array througttt r count . DW DLV_NO _ENTRY is returned if the count is zero (no
att r buf is allocated in this casePDW DLV_ERROCR is returned on errorOn a siccessful return from
dwarf _attrlist(), each of theDwarf _Attri but e descriptors should be individually freed using
dwar f _deal | oc() with the allocation typ®W DLA ATTR, followed by free-ing the list pointed to by
*at trbuf using dwar f _deal | oc() with the allocation typeDW DLA LI ST, when no longer of
interest (seewar f _deal | oc()).

Freeing the attrlist:

rev 2.30, Sept 14, 2015 -33-

-34 -

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(sonedie, &atlist,&tcnt, &error);
if (errv == DWDLV_X) {

for (i =0; i < atcnt; ++i) {

/* use atlist[i] */

dwarf deal | oc(dbg, atlist[i], DWDLA ATTR);
}
dwar f _deal | oc(dbg, atlist, DWDLA LIST);

}
6.5.14 dwarf_hasattr()

int dwarf_hasattr(
Dwarf_Di e die,
Dwarf Hal f attr,
Dwarf _Bool *return_bool,
Dwarf _Error *error)

When it succeeds, the functiolwar f _hasattr () returnsDW DLV_OK and sets r et ur n_bool to
non-zero if di e has the attributat t r andzero otherwise. Ifit fails, it returnsDW DLV _ERROR.

6.5.15 dwarf_attr()

int dwarf_attr(
Dwarf _Die die,
Dwarf Hal f attr,
Dwarf Attribute *return_attr,
Dwar f _Error *error)

When it returns DW DLV_OK, the function dwarf _attr() sets *return_attr to the
Dwar f _Attri but e descriptor ofdi e having the attrilmte at t r. It returnsDW DLV_NO_ENTRY if
att r is not contained idi e. It returnsDW DLV_ERRORf an error occurred.

6.5.16 dwarf_lowpc()

int dwarf _| owpc(
Dwarf_Die di e,
Dwar f _Addr * return_I| owpc,
Dwarf _Error * error)

The functiondwar f _| owpc() returnsDW DLV_OK and sets‘r et ur n_| owpc to the lav program
counter value associated with tthiee descriptor ifdi e represents a debugging information entry with the
DW AT _| ow_pc attribute. ItreturnsDW DLV_NO_ENTRY if di e does not hae this attrilute. Itreturns
DwW DLV_ERRCRIf an error occurred.

6.5.17 dwarf_highpc_b()

rev 2.30, Sept 14, 2015 -34-

-35-

i nt dwarf _hi ghpc_b(

Dwarf _Die di e,
Dwar f _Addr * return_hi ghpc,
Dwarf Hal f * return_fornt/,

enum Dwarf _Form C ass * return_class*/,
Dwar f _Error *error)

The functiondwar f _hi ghpc_b() returnsDW DLV_OK and sets‘r et ur n_hi ghpc to the value of
the DW AT _hi gh_pc attribute. Italso setg et urn_f or mto the FORM of the attrilte. Italso sets
ret urn_cl ass to the form class of the attribute.

If the form classreturned iDW FORM CLASS ADDRESS ther et ur n_hi ghpc is an actual pc address

(1 higher than the address of the last pc in the address range).. If the form class returned is
DW FORM CLASS CONSTANT ther et ur n_hi ghpc is an offset from the value of the the DdElow

PC address (seeVIARF4 section 2.17.2 Contiguous Address Range).

It returnsDW DLV_NO _ENTRY if di e does not hee the DW AT _hi gh_pc attribute.

It returnsDW DLV_ERRORf an error occurred.

6.5.18 dwarf_highpc()

i nt dwarf _hi ghpc(
Dwarf_Di e die,
Dwar f _Addr * return_highpc,
Dwarf _Error *error)

The functiondwar f _hi ghpc() returnsDW DLV_OK and sets‘r et ur n_hi ghpc the high program
counter value associated with tthee descriptor ifdi e represents a debugging information entry with the
DW AT_high_pc attribute and the form isDW FORM addr (meaning the form is of class
address).

This function is useless for@N AT_hi gh_pc which is encoded as a constant (which was first possible
in DWARF4).

It returnsDW DLV_NO _ENTRY if di e does not hee this attribute.

It returnsDW DLV _ERROCRIf an error occurred or if the form is not of class address.

6.5.19 dwarf_bytesize()
Dwar f _Si gned dwarf byt esi ze(

Dwarf_Di e di e,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _byt esi ze() returnsDW DLV_OK and setsr et urn_si ze to the number
of bytes needed to contain an instance of the gggrelebugging information entry representedibe. It
returnsDW DLV_NO _ENTRY if di e does not contain the byte size atttdbDW AT byte_ si ze. It
returnsDW DLV_ERRORIf an error occurred.

6.5.20 dwarf_bitsize()

rev 2.30, Sept 14, 2015 -35-

-36-

int dwarf_bitsize(
Dwarf _Die die,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedslwar f _bi t si ze() returnsDW DLV_OK and set$r et ur n_si ze to the number of
bits occupied by the bit field value that is an attribute of thengiie. It returnsDW DLV_NO _ENTRY if
di e does not contain the bit size attrib DW AT _bit _si ze. It returnsDW DLV_ERROR if an error
occurred.

6.5.21 dwarf_bitoffset()

i nt dwarf_bitoffset(
Dwarf_Die die,
Dwarf _Unsigned *return_size,
Dwarf _Error *error)

When it succeedsiwar f _bi t of f set () returnsDW DLV_OK and seté r et ur n_si ze to the number
of bits to the left of the most significant bit of the bit fiellwe. Thishit offset is not necessarily the net bit
offset within the structure or class , sirfid@&/ AT_dat a_nmenber _| ocat i on may give a lyte offset to
this DI E and the bit offset returned through the pointer does not include the bits in the fogte df
returnsDW DLV_NO_ENTRY if di e does not contain the bit offset attrte DW AT _bit _of fset. It
returnsDW DLV_ERRORIf an error occurred.

6.5.22 dwarf_srclang()

i nt dwarf _srcl ang(
Dwarf _Die die,
Dwarf _Unsigned *return_|ang,
Dwar f _Error *error)

When it succeedsgwar f _srcl ang() returnsDW DLV _OK and sets*return_|l ang to a code
indicating the source language of the compilation unit represented by the desdriptort returns
DW DLV_NO ENTRY if di e does not represent a souride flebugging information entry (i.e. contain the
attributeDW AT | anguage). It returnsDW DLV_ERRORIf an error occurred.

6.5.23 dwarf_arrayorder()

int dwarf_arrayorder(
Dwarf_Di e die,
Dwar f _Unsigned *return_order,
Dwarf _Error *error)

When it succeedgiwar f _arrayorder () returnsDW DLV_OK and sets*r et ur n_order a oode
indicating the ordering of the array represented by the descdptor It returnsDW DLV_NO_ENTRY if
di e does not contain the array order atitdDW AT _or der i ng. It returnsDW DLV_ERRCRIf an error
occurred.

6.6 Attribute Queries

Based on the attributes form, these operations are concerned with returning uninterpretivel ddtidh
Since it is not abays obvious from the returnalue of these functions if an error occurred, one should
always supply anerror parameter or ha aranged to hee an eror handling function iwmoked (see
dwar f _i nit())to determine the validity of the returned value and the natureyoéraors that may hae
occurred.

rev 2.30, Sept 14, 2015 - 36 -

-37-

A Dwarf_ Attribute descriptor describes an attribute of a specific die. Thus,
Dwar f _Attri but e descriptor is implicitly associated with a specific die.

6.6.1 dwarf_hasform()

i nt dwarf_hasforn(
Dwarf Attribute attr,
Dwarf_ Hal f form
Dwarf _Bool *return_hasform
Dwarf _Error *error)

The functiondwar f _hasf or m() returnsDW DLV_OK and andouts anon-zero

value in the*r et ur n_hasf or m boolean if the attribute represented by thearf_ Attri bute
descriptorat t r has the attribute formhor m If the attribute does not ¥ that form zero is put into
*return_hasform DW DLV_ERRORIs returned on error.

6.6.2 dwarf_whatform()

i nt dwarf_what forn(
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwar f _Error *error)

When it succeedsiwar f _what f or n{) returnsDW DLV_COK and setg r et ur n_f or mto the attrilnte
form code of the attribute represented by thearf Attri bute descriptorattr. It returns
DW DLV_ERRCR on error.

An attribute using DW_FORM _indirectfettively has two forms. Thisfunction returns the ‘final’ form

each

for DW FORM i ndi r ect , not theDW FORM i ndi r ect itself. This function is what most applications

will want to call.

6.6.3 dwarf_whatfor m_direct()

i nt dwarf_whatformdirect(
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwarf _Error *error)

When it succeedgjwar f _what f orm di rect () returnsDW DLV_CK and sets‘r et urn_f or mto
the attrilute form code of the attribute represented by Daar f _Att ri but e descriptorattr. It
returns DW DLV_ERRCR on error An dtribute usingDW FORM i ndi r ect effectvely has two forms.
This returns the form ’directly’ in the initial fornield. Thatis, it returns the "initial’ form of the attribute.

So when the formidld isDW FORM i ndi r ect this call returns th®W FORM i ndi r ect form, which
is sometimes useful for dump utilities.

It is confusing that the _direct() function returns DW_FORM _indirect if an indirect fornvolrad. Just

think of this as returning the initial form the first form value seen for the attribute, which is alsoathe f

form unless the initial form iBW FORM i ndi r ect .

6.6.4 dwarf whatattr()

rev 2.30, Sept 14, 2015 -37-

-38-

int dwarf_whatattr(
Dwarf Attribute attr,
Dwar f _Hal f *return_attr,
Dwar f _Error *error)

When it succeedsiwar f _whatattr () returnsDW DLV_OK and setgret urn_attr to the attrilute
code represented by tbear f _Attri but e descriptorat t r. It returns DW DLV_ERROR on error.

6.6.5 dwarf_formref()

int dwarf _fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwarf _Error *error)

When it succeedgjwar f _f ornref () returnsDW DLV_CK and sets'r et ur n_of f set to the CU-
relatve dfset represented by the descripaort r if the form of the attribute belongs to tREFERENCE
class. attr must be a CU-local reference, not forrbW FORM ref addr and not
DW FORM sec_of f set . Itis an eror for the form to not belong to tHREFERENCE class. Itreturns
DW DLV_ERROR 0N error.

Beginning November 2010: All DW DLV_ERROR returns set*r et urn_of f set. Most errors set
*return_of fset to zero, lnt for error DW DLE ATTR FORM OFFSET_BAD the function sets
*return_of f set to the irvalid offset (which allows the caller to print a more detailed error message).

See alsawar f _gl obal _f or nr ef below.

6.6.6 dwarf _global _formref()

i nt dwarf _gl obal fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwar f _Error *error)

When it succeedsiwar f _gl obal _fornref () returnsDW DLV_OK and setgret urn_of f set to
the section-relate dfset represented by the descriptdrt r if the form of the attribte belongs to the
REFERENCE or other section-references classes.

attr can be am legd REFERENCE class form plus DWFORM ref addr or
DW FORM sec_of fset. It is an eror for the form to not belong to one of the reference claskes.
returnsDW DLV_ERRORon error See alsadwar f _f or nr ef above.

The caller must determine which section thefsetf returned applies to. The function
dwarf _get form class() is usefulto determine the applicable section.

The function cowerts CU relatve dfsets from forms such as DW_FORM _ref4 into global section offsets.

6.6.7 dwarf_convert_to_global_offset()

int dwarf_convert_to_gl obal _offset(
Dwarf Attribute attr,
Dwarf O f of f set,
Dwarf O f *return_of fset,
Dwarf _Error *error)

When it succeeds,dwarf _convert_to_gl obal _offset() returns DWDLV_OK and sets

rev 2.30, Sept 14, 2015 -38-

-39-

*return_of f set to the section-relate dfset represented by the cu-ralatdfsetof f set if the form
of the attribute belongs to tHREFERENCE class. att r must be a CU-local reference \IARF class
REFERENCE) or forrDW FORM r ef _addr and theat t r must be directly relent for the calculated
*ret urn_of f set to mean anything.

The function return®W DLV_ERROR on error.

The function is not strictly necessary but may be a@uance for attribute printing in case of error.

6.6.8 dwarf_formaddr ()

i nt dwarf _fornmaddr(
Dwarf Attribute attr,
Dwar f _Addr * return_addr,
Dwarf _Error *error)

When it succeedsiwar f _f or maddr () returnsDW DLV_OK and set$r et ur n_addr to the address
represented by the descriptdrt r if the form of the attribte belongs to thADDRESS class. ltis an error
for the form to not belong to this class. It retubM DLV_ERRCR on error.

One possible error that can arise (in a advebject ile or a .dwp package file) is
DW DLE M SSI NG _NEEDED DEBUG ADDR SECTI ON. Such an error means that thewo or dwp
file is missing the debug_addr section. Wheropening a .dw object file or a .dwp package file one
should also open the correspondingoaitable and uselwarf _set ti ed_dbg() to associate the
objects before calling dwarf_formaddr().

H 3 "dwarf_get _debug_addr_index()"

i nt dwarf_get debug_addr _i ndex(
Dwarf Attribute attr,
Dwarf _Unsigned * return_index,
Dwarf _Error *error)

dwar f _get _debug_addr _i ndex() is only valid on attrites with form
DW FORM GNU_addr _i ndex or DW FORM addr x.

The function makes it possible to print the indi®m a dwarf dumper program.

When it succeeds, dwarf _get debug_addr i ndex() returns DWDLV_OK and sets
*r et ur n_i ndex to the attributes index (into the. debug_addr section).

It returnsDW DLV_ERROR on error.

6.6.9 dwarf_get_debug_str_index()

int dwarf_get debug str_i ndex(
Dwarf Attribute attr,
Dwar f _Unsigned * return_index,
Dwar f _Error * error);

rev 2.30, Sept 14, 2015 -39-

-40 -

For an atribute with form DW FORM st r x or DW FORM GNU_st r _i ndex this function retriges the
index (which refers to a .debug_str_offsets section in this .dwo).

If successful, the functiodwar f _get debug_str_i ndex() returnsDW DLV_OK and returns the
index through the et ur n_i ndex() pointer.

If the passed in attribute does nowvéahis form or there is no valid compilation unit context for the
attribute the function returidw DLV_ERROR.

DW DLV_NO_ENTRY is not returned.

6.6.10 dwarf_formflag()

int dwarf_fornflag(
Dwarf Attribute attr,
Dwarf Bool * return_bool,
Dwarf _Error *error)

When it succeedsiwar f _fornfl ag() returnsDW DLV_OK and sets‘r et ur n_bool to the (one
unsigned byte) flagalue. Ary non-zero value means trué zero value means false.

Before 29 Neember 2012 this wuld only return 1 or zero through the pointeut that was alays a
strange thing to do. TheWARF specification has&hbys been clear that gmon-zero value means true.
The function should report the value found truthfugiyd naw it does.

It returnsDW DLV_ERRORon error or if theat t r does not hee form flag.

6.6.11 dwarf_formudata()

i nt dwarf _fornudata(
Dwarf Attribute attr,
Dwarf _Unsigned * return_uval ue,
Dwar f _Error * error)

The function dwarf fornmudata() returns DW DLV _OK and sets*return_uval ue to the
Dwar f _Unsi gned vaue of the attribute represented by the descrigtdrr if the form of the attribte
belongs to theCONSTANT class. Itis an error for the form to not belong to this class.returns
DwW DLV_ERROR 0N error.

Never returnsDW DLV_NO_ENTRY.

For DWARF2 and WARF3, DW FORM dat a4 and DW FORM dat a8 are possibly clas€ONSTANT,
and for DNVARF4 and later theare definitely classCONSTANT.

6.6.12 dwarf_formsdata()

i nt dwarf_fornsdat a(
Dwarf Attribute attr,
Dwarf _Signed * return_sval ue,
Dwarf _Error *error)

The function dwarf _formsdata() returns DWDLV_OK and sets*return_sval ue to the
Dwar f _Si gned vaue of the attribute represented by the descriptarr if the form of the attribte
belongs to th&CONSTANT class. Itis an error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size dile f _Si gned type, its value is signxéended. It
returnsDW DLV_ERROR on error.

rev 2.30, Sept 14, 2015 -40 -

-41 -

Never returnsDW DLV_NO_ENTRY.

For DWARF2 and WARF3, DW FORM dat a4 and DW FORM dat a8 are possibly clas€ONSTANT,
and for DVARF4 and later theare definitely classCONSTANT.

6.6.13 dwarf_formblock()

i nt dwarf_fornbl ock(
Dwarf Attribute attr,
Dwarf Bl ock ** return_bl ock,
Dwarf _Error * error)

The functiondwar f _f or nbl ock() returnsDW DLV_OK and setsr et ur n_bl ock to a pointer to a
Dwar f _Bl ock structure containing the value of the attribute represented by the desatiptorif the
form of the attribute belongs to tlB: OCK class. ltis an error for the form to not belong to this claghe
storage pointed to by a successful returnlwér f _f or nbl ock() should be freed using the allocation
type DW DLA BLOCK, when no longer of interest (seelwarf _dealloc()). It returns
DW DLV_ERROR 0N error.

6.6.14 dwarf_formstring()

int dwarf_fornstring(
Dwarf Attribute attr,
char ** return_string,
Dwar f _Error *error)

The functiondwar f _f or nstri ng() returnsDW DLV_OK and set$ret urn_stri ng to a pointer to
a rull-terminated string containinghe value of the attribute represented by the desciaptor if the form
of the attrilute belongs to th&TRI NG class. Itis an error for the form to not belong to this clasée
storage pointed to by a successful returdwér f _fornstring() should not be freed. The pointer
points into existing BWARF memory and the pointer becomes staldlith after a call to
dwarf _finish. dwarf_fornstring() returnsDW DLV_ERRCRon error.

6.6.15 dwarf_formsig8()

int dwarf _fornsig8(
Dwarf Attribute attr,
Dwarf_Sig8 * return_sig8,
Dwarf _Error * error)

The function dwar f _fornsi g8() returns DWDLV_OK and copies the 8 byte signature to a
Dwar f _Si g8 structure provided by the caller if the form of the attdh is of form
DW FORM r ef _si g8 (a member of theREFERENCE class). Itis an error for the form to be whing

but DW FORM r ef _si g8. It returnsDW DLV_ERROR on error.

This form is used to refer to a type unit.

6.6.16 dwarf_formsig8()

rev 2.30, Sept 14, 2015 -41 -

-42 -

i nt dwarf _fornexprloc(
Dwarf Attribute attr,
Dwarf _Unsigned * return_exprlen,
Dwarf Ptr * bl ock _ptr,
Dwar f _Error * error)

The functiondwar f _f or mexpr | oc() returnsDW DLV_OK and sets the twvalues thru the pointers to
the length and bytes of theWD FORM_eprloc entry if the form of the attile is of form
DW FORM exper | oc. It is an eror for the form to be anythingubDW FORM expr | oc. It returns
DwW DLV_ERROR 0N error.

On success the value set throughrtleé¢ ur n_expr | en pointer is the length of the locatiorpgession.
On success the value set through Heock ptr pointer is a pointer to the bytes of the location
expression itself.

6.6.17 dwarf_get_form_class()

enum Dwarf _Form Cl ass dwarf_get _formcl ass(
Dwarf _Hal f dwersi on,
Dwarf Hal f attrnum
Dwarf_ Hal f of fset_si ze,
Dwarf_Hal f form

The function is just for the caanience of libdvarf clients that might wish to categorize the FORM of a
particular attrilite. TheDWARF specification diides FORMSs into classes in Chapter 7 and this function
figures out the correct class for a form.

Thedwer si on passed in shall be the dwarf version of the compilation wuobhiad (2 for DVARF2, 3
for DWARF3, 4 for DNVARF 4). The at t r numpassed in shall be the atutle number of the attrithe
involved (for kample,DW AT_nane). Theof f set _si ze passed in shall be the length of an offset in
the current compilation unit (4 for 32bit dwarf or 8 for 64bitadf)y Thef or mpassed in shall be the
attribute form number If f or mDW FORM i ndi r ect is passed ildW FORM CLASS UNKNON will

be returned as this form has no defined 'class’.

When it returndDW FORM_CLASS UNKNOWN the function is simply saying it could not determine the
correct class gen the arguments presented. Some user-defined attributes mighthlsaproblem.

The functiondwar f _get _versi on_of _di e() may be helpful in filling out guments for a call to
dwarf _get _formclass().

6.6.18 dwarf_loclist_n()

int dwarf _loclist_n(
Dwarf Attribute attr,
Dwar f _Locdesc ***1| | buf,
Dwarf _Signed *listlen,
Dwar f _Error *error)

The functiondwar f _| ocl i st_n() sets*I | buf to point to an array obwar f _Locdesc pointers
corresponding to each of the locatiotpeessions in a location list, and skts st | en to the number of
elements in the array and retu\& DLV_CK if the attribute is appropriate.

This is the preferred function for asf_Locdesc as it is the interface allowing access to an entire loclist.
(use ofdwarf | oclist_n() is suggested as the better inded, thoughdwar f _| ocl i st () is still
supported.)

If the attribute is a reference to a location list (DW_FORM_data4 or DW_FORM_data8) the location list
entries are used to fill in all the fields of thear f _Locdesc(s) returned.

rev 2.30, Sept 14, 2015 -42 -

-43 -

If the attribute is a location description (DW_FORM_block2 or DW_FORM_block4) then some of the
Dwar f _Locdesc vaues of the singl®war f _Locdesc record are set to 'sensible’ but arbitrasjues.
Specifically Id_lopc is set to 0 and Id_hipc is set to all-bits-on. Ahdst | en is set to 1.

If the attribute is a reference to a locatiorpmession (OV_FORM_loceper) then some of the
Dwar f _Locdesc vaues of the singl®war f _Locdesc record are set to 'sensible’ but arbitrasfues.
Specifically Id_lopc is set to 0 and Id_hipc is set to all-bits-on. Ahdst | en is set to 1.

It returnsDW DLV_ERROR on error.

dwarf loclist _n() works on DWAT |ocation, DWAT data_nenber | ocation,
DW AT vtable el em | ocation, DWAT string | ength, DWAT use |ocation, and
DW AT return_addr attributes.

If the attribute is DW AT dat a_nenber | ocati on the walue may be of class CONSNT.
dwarf | oclist_n() isunable to read class CONSNT, so you need to first determine the class using
dwarf _get formclass() and if it is class CONSANT call dwarf fornmsdata() or
dwar f _fornudat a() to get the constant value (you may need to call bothVésRF4 does not dafe
the signedness of the constant value).

Storage allocated by a successful callear f _| ocl i st_n() should be deallocated when no longer of
interest (seawar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thied_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HyeDLA LOC BLOCK.
and thel | buf [] space pointed to should be deallocated with allocation@ygéLA LOCDESC. This
should be followed by deallocation of thebuf using the allocation typeW DLA LI ST.

Dwar f _Si gned | cnt;
Dwar f _Locdesc **I | buf;
int Ires;

Ires = dwarf _loclist_n(soneattr, & |buf,& cnt &error);
if (lres == DWDLV_K) {
for (i =0; i <lcnt; ++i) {
/* use Ilbuf[i] */

dwarf _deal | oc(dbg, Ilbuf[i]->d s, DWDLA LOC BLOCK);
dwarf _deal | oc(dbg, |1 buf[i], DWDLA LOCDESC);

}
dwarf deal | oc(dbg, |Ibuf, DWDLA LIST);

6.6.19 dwarf_loclist()

int dwarf_loclist(
Dwarf Attribute attr,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The functiondwar f _| ocl i st () sets*| | buf to point to aDwar f _Locdesc pointer for the single
location expression it can return. It sétsi stlen to 1. and returndW DLV_X if the attribute is
appropriate.

It is less flexible thardwar f _| ocl i st _n() in thatdwarf _| ocli st () can handle a maximum of
one location gpression, not a full location list. If a location-list is present it returns only the first location-
list entry location description. Ushwar f _| ocl i st _n() instead.

It returns DWDLV_ERROR on error dwarf_loclist() works on DWAT | ocation,

rev 2.30, Sept 14, 2015 -43 -

-44 -

DW AT dat a_nenber | ocati on, DW AT vtabl e _el em | ocati on,
DW AT string_ | ength, DWAT use_| ocati on,andDW AT return_addr attributes.

Storage allocated by a successful caldwgarf | ocli st () should be deallocated when no longer of
interest (sealwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thied_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HyeDLA LOC BLOCK.
This should be followed by deallocation of thebuf using the allocation typeW DLA LOCDESC.

Dwar f _Si gned | cnt;
Dwar f _Locdesc *I I buf;
int Ires;

Ires = dwarf _loclist(soneattr, & |buf, & cnt, &error);
if (lres == DWDLV_X) {
/* lcnt is always 1, (and has al ways been 1) */ */

/* Use || buf here. */

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

uf->ld s, DWDLA LOC BLOCK);

IIb
[I buf, DWDLA LOCDESC);

/* Earlier version.

* for (i =0; i <lcnt; ++i) {

* /* use Ilbuf[i] */

* /* Deallocate Dwarf_Loc block of Ilbuf[i] */

* dwarf _deal | oc(dbg, Ilbuf[i].ld_s, DWDLA LOC BLOCK);
* }

* dwar f _deal | oc(dbg, |Ibuf, DWDLA LOCDESC);

*/

}

6.6.20 dwarf_loclist_from_expr()

int dwarf_loclist_fromexpr(
Dwarf _Ptr bytes_in,
Dwar f _Unsi gned bytes_I en,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

Usedwar f | oclist_from expr_b() instead. Thigunction is obsolete.

The functiondwar f _| ocl i st _from expr () sets*| | buf to point to abwar f _Locdesc pointer

for the single location expression which is pointed td byt es_i n (whose length ibyt es_I en). It
sets*listlen to 1. and return&W DLV_X if decoding is successful. Some sources of bytes of
expressions are davf expressions in frame operations elilDW CFA def cf a_expressi on,

DW CFA expressi on, and DW CFA val _expressi on.

Any address_size data in the location expression is assumed to be the same size asltlaediefss_size
for the object being read (normally 4 or 8).

It returnsDW DLV_ERROR on error.

Storage allocated by a successful callefir f _| ocl i st _from expr () should be deallocated when
no longer of interest (sedwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by the

rev 2.30, Sept 14, 2015 -44 -

-45 -

| d_s field of eachDwarf Locdesc structure should be deallocated with the allocation type
DW DLA LOC BLOCK. This should be followed by deallocation of thebuf using the allocation type
DW DLA LOCDESC.

Dwar f _Si gned | cnt;

Dwar f _Locdesc *I I buf;

int Ires;

/* Exanple with an enpty buffer here. */
Dwarf_Ptr data = "";

Dwar f _Unsi gned len = O;

Ires = dwarf _loclist _fromexpr(data,len, & |buf,& cnt, &error);
if (lres == DWDLV_K) {
/* lcnt is always 1 */

/* Use || buf here.*/

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

Il buf->d s, DWDLA LOC BLOCK);
|1 buf, DWDLA LOCDESC):

}
6.6.21 dwarf_loclist_from_expr_b()

int dwarf_loclist_fromexpr_a(
Dwarf _Ptr bytes_in,
Dwar f _Unsi gned bytes_I en,
Dwarf _Hal f addr_si ze,
Dwarf_ Hal f of fset_si ze,
Dwarf _Hal f versi on_st anp,
Dwarf _Locdesc **1| buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The function dwarf | oclist_fromexpr_b() is identical to
dwarf | oclist_fromexpr_a() in every way except that the caller passes an additiomainaent
ver si on_st anp containing the ersion stamp (2 for WARF2, etc) of the CU using this location
expression and an additional argument of the offset size of the CU using this locgiess®n. The
DW_OP_GNU_implicit_pointer operation requires this version and offset information to be correctly
processed.

The addr _si ze argument (from 27April2009) is needed to correctly interpret frame information as
different compilation units can ha dfferent address sizeDWARF4 adds address_size to the CIE header.

6.6.22 dwarf_loclist_from_expr_a()

int dwarf_loclist _fromexpr_a(
Dwarf Ptr bytes_in,
Dwar f _Unsi gned bytes | en,
Dwarf _Hal f addr_si ze,
Dwarf _Locdesc **I 1| buf,
Dwarf _Signed *listlen,
Dwarf Error *error)

Usedwar f | oclist _from expr_b() instead. Thigunction is obsolete.

The functiondwar f _| ocl i st_from expr_a() is identical todwarf | oclist_from expr ()

rev 2.30, Sept 14, 2015 -45 -

- 46 -

in every way except that the caller passes the additiogainaentaddr _si ze containing the address size
(normally 4 or 8) applying this location expression.

The addr _si ze agument (added 27April2009) is needed to correctly interpret frame information as
different compilation units can ha dfferent address size®DWARF4 adds address_size to the CIE header.

6.7 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging information entry
objects to their corresponding source lines, and providing a mechanism for obtaining information about line
number entries. Although, the intacke talks of "lines" what is really meant is "statements”. In case there

is more than one statement on the same line, there will be at least one descriptor per statement, all with the
same line numberlf column number is also being represented thiél have the column numbers of the

start of the statements also represented.

There can also be more than onedBwlLine per statementFor example, if a file is preprocessed by a
language translatpthis could result in translator output shing 2 or more sets of line numbers per
translated line of output.

6.7.1 Get A Set of Lines

The function returns information abouteey source line for a particular compilation-unifThe
compilation-unit is specified by the corresponding die.

6.7.1.1 dwarf_srclines()

int dwarf_srclines(
Dwarf _Die die,
Dwarf _Line **|inebuf,
Dwarf _Si gned *linecount,
Dwar f _Error *error)

The functiondwar f _srcl i nes() places all line number descriptors for a single compilation unit into a
single block, setsl i nebuf to point to that block, setd i necount to the number of descriptors in this
block and return©W DLV_OK. The compilation-unit is indicated by theven di e which must be a
compilation-unit die. It returnBW DLV_ERROR on error On successful return, line number information
should be freed usindwar f _srcl i nes_deal | oc() when no longer of interest.

Dwar f _Si gned cnt;
Dwarf _Line *linebuf;
int sres;

sres = dwarf_srclines(sonedie, & inebuf,&nt, &error);
if (sres == DWDLV_X) {
for (i =0; i <cnt; ++i) {
/* use linebuf[i] */
}

dwarf _srclines_deal | oc(dbg, |inebuf, cnt);

The following dealloc code (the only documented method before July 2005) atitbwbut does not
completely free all data allocatedhe dwar f _srcl i nes_deal | oc() routine was created tixfthe
problem of incomplete deallocation.

rev 2.30, Sept 14, 2015 -46 -

-47 -

Dwar f _Si gned cnt;
Dwarf _Line *linebuf;
int sres;

sres = dwarf_srclines(sonedie, & inebuf,&nt, &error);
if (sres == DWDLV_K) {
for (i =0; i <cnt; ++i) {
/* use linebuf[i] */
dwarf _deal | oc(dbg, linebuf[i], DWDLA LINE);
}
dwarf _deal | oc(dbg, |inebuf, DWDLA LIST);

6.7.2 Get the set of Source File Names

The function returns the names of the source files theg mntributed to the compilation-unit represented
by the gven DIE. Onlythe source files named in the statement program prologue are returned.

int dwarf_srcfiles(
Dwarf_Di e die,
char ***srcfil es,
Dwar f _Si gned *srccount,
Dwarf _Error *error)

When it succeeddwar f _srcfil es() returnsDW DLV_CK and puts the number of sourded named

in the statement program prologue indicated by thengii e into *srccount . Source files defined in

the statement program are ignored. Theemwidi e should hae the tagDW TAG conpil e_unit,

DW TAG partial _unit, or DWTAG type_unit The location pointed to bgrcfil es is set to
point to a list of pointers to null-terminated strings that name the sadlase ®na successful return from
this function, each of the strings returned should beithgally freed usinglwar f _deal | oc() with the
allocation typeDW DLA_STRI NGwhen no longer of interesiThis should be followed by free-ing the list
using dwar f _deal | oc() with the allocation typeDW DLA LI ST. It returnsDW DLV_ERROR on
error. It returnsDW DLV_NO_ENTRY if there is no corresponding statement program (i.e., if there is no
line information).

Dwar f _Si gned cnt;
char **srcfil es;
int res;

res = dwarf_srcfil es(sonedie, &srcfiles,&nt &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use srcfiles[i] */
dwarf _deal | oc(dbg, srcfiles[i], DWDLA STRING;

}
dwar f _deal | oc(dbg, srcfiles, DWDLA LIST);

}
6.7.3 Get information about a Single Table Line

The following functions can be used on thear f _Li ne descriptors returned tgwar f _srcl i nes()
to obtain information about the source lines.

rev 2.30, Sept 14, 2015 -47 -

-48 -

6.7.3.1 dwarf_linebeginstatement()

int dwarf _|inebegi nstatenent(
Dwar f _Li ne |ine,
Dwar f _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i nebegi nst at enent () returnsDW DLV_OK and sets*r et urn_bool to
non-zero (if | i ne represents a line number entry that is marked as beginning a stateorers)o ((if

i ne represents a line number entry that is not marked as beginning a statement). It returns
DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

6.7.3.2 dwarf_lineendsequence()

int dwarf_|ineendsequence(
Dwarf _Line |ine,
Dwar f _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i neendsequence() returnsDW DLV_CK and set$r et ur n_bool non-zero

(in which casd i ne represents a line number entry that is radrlas ending a text sequenceyap (in

which casd i ne represents a line number entry that is not marked as ending a text sequehice).
number entry that is marked as ending>a sequence is an entry with an address one beyond the highest
address used by the current sequence of line table entries (that is, the table entry is a
DW_LNE_end_sequence entry (see thARF specification)).

The function dwar f _| i neendsequence() returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

6.7.3.3 dwarf_lineno()

int dwarf _l|ineno(
Dwar f _Li ne line,
Dwar f _Unsigned * returned_Ilineno,
Dwar f _Error * error)

The functiondwarf _| i neno() returnsDW DLV_OK and sets*return_l i neno to the source
statement line number corresponding to the descriptore. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO _ENTRY.

6.7.3.4 dwarf_line_srcfileno()

int dwarf_line_srcfileno(
Dwar f _Li ne l'ine,
Dwarf _Unsi gned * returned_fileno,
Dwar f _Error * error)

The functiondwar f _|i ne_srcfil eno() returnsDW DLV_OK and set$r et urned_fi |l eno to the
source statement line number corresponding to the desdripta nurber . When the number returned
through*r et ur ned_fi | eno is zero it means thelé name is unknown (see theNBRF2/3 line table
specifcation). Wherthe number returned throudgh et ur ned_f i | eno is non-zero it is a file number:
subtract 1 from this file number to get an irdieto the array of strings returned tyar f _srcfil es()
(verify the resulting indeis in range for the array of strings before indexing into the array of strifigs.
file number may xxeed the size of the array of strings returneddlsarf _srcfil es() because
dwarf _srcfil es() does not return files names defined with thé&/ DLE_defi ne_fi | e operator.
The function dwarf _|ine_srcfil eno() returns DWDLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

rev 2.30, Sept 14, 2015 -48 -

-49 -

6.7.3.5 dwarf_lineaddr()

int dwarf _|ineaddr(
Dwar f _Li ne l'ine,
Dwar f _Addr *return_Ilineaddr,
Dwarf _Error *error)

The functiondwar f _I i neaddr () returnsDW DLV_CK and set$r et ur n_I i neaddr to the address
associated with the descriptdri ne. It returns DW DLV_ERROR on error It neve returns
DW DLV_NO _ENTRY.

6.7.3.6 dwarf_lineoff()

int dwarf _lineoff(
Dwarf _Line |ine,
Dwar f _Si gned * return_lineoff,
Dwarf _Error *error)

The functiondwar f _| i neof f () returnsDW DLV_(K and setsret urn_I i neof f to the column
number at which the statement representeldibye begins.

It setsret urn_l i neof f to zero if the column number of the statement is not represented (meaning the
producer library call was gén zero as the column numberXero is the correct value meaning "left edge"
as defined in the WARF2/3/4 specication (section 6.2.2).

Before December 2011 zero was not returned throughr #teur n_I i neof f pointer -1 was returned
through the pointerThe reason for this oddity is unclebost in history But there is no good reason for -1.

The type ofreturn_l i neof f is a pointer-to-signed, but there is no good reason for the value to be
signed, the WARF specification does not deal withgaive mlumn numbers.However, changing the
declaration would cause compilation errors for little benefit, so the pointer-to-signed is left unchanged.

On error it return®W DLV_ERROR. It neve returnsDW DLV_NO_ENTRY.

6.7.3.7 dwarf_linesrc()

int dwarf _linesrc(
Dwarf_Line |ine,
char ** return_linesrc,
Dwarf _Error *error)

The functiondwar f _| i nesrc() returnsDW DLV_CK and set$r et urn_I i nesrc to a pointer to a
null-terminated string of characters that represents the name of the sleumbdrel i ne occurs. It
returnsDW DLV_ERROR on error.

If the applicableife name in the line table Statement Program Prolog does not start with a '/’ character the
string in DW AT_conp_di r (if applicable and present) or the applicable directory name from the line
Statement Program Prolog is prepended to the file name in the line table Statement Program Prog to mak
a full path.

The storage pointed to by a successful returndegarf |inesrc() should be freed using
dwar f _deal | oc() with the allocation typeDW DLA STRI NG when no longer of interest. It v
returnsDW DLV_NO _ENTRY.

6.7.3.8 dwarf_lineblock()

rev 2.30, Sept 14, 2015 -49 -

-50-

int dwarf _|inebl ock(
Dwarf _Line |ine,
Dwar f _Bool *return_bool,
Dwar f _Error *error)

The functiondwar f _| i nebl ock() returnsDW DLV_OK and sets‘return_| i nesrc to non-zero
(i.e. true)(if the line is madd as beginning a basic block) or zero (i.e. false) (if the line is marked as not
beginning a basic block). It returi®V DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY.

6.7.3.9 dwarf_is addr_set()

int dwarf_|ine_is_addr_set(
Dwarf _Line |ine,
Dwar f _Bool *return_bool,
Dwarf Error *error)

The functiondwar f _| i ne_i s_addr _set () returnsDW DLV_OK and setsr et ur n_bool to non-
zero (i.e. true)(if the line is marked as being\W D NE_set address operation) or zero (i.e. false) (if the
line is marked as not being a DW_LNE_set_address operation). It réMfi3 V ERROR on error It
never returnsDW DLV_NO_ENTRY.

This is intended to alle consumers to do a more useful job printing and analyzW#\RF data, it is not
strictly necessary.

6.7.3.10 dwarf_prologue_end_etc()

int dwarf_prol ogue_end _etc(Dwarf_Line |ine,
Dwar f _Bool * pr ol ogue_end,
Dwar f _Bool * epi | ogue_begi n,
Dwar f _Unsigned * isa,
Dwar f _Unsi gned * discrim nator,
Dwarf Error * error)

The functiondwar f _pr ol ogue_end_etc() returnsDW DLV_OK and sets the returned fields to
values currently setWhile it is pretty safe to assume that thea anddi scri ni nat or values returned
are very small integers, there is no restriction in the standard. It réMit V _ERROR on error It neve
returnsDW DLV_NO_ENTRY.

This function is n& in December 2011.

6.8 Global Name Space Oper ations

These operations operate on the .debug_pubnames section of the debugging information.

6.8.1 Debugger Interface Operations

6.8.1.1 dwarf_get_globals()

i nt dwarf_get gl obal s(
Dwar f _Debug dbg,
Dwar f _d obal **gl obal s,
Dwarf _Signed * return_count,
Dwarf _Error *error)

rev 2.30, Sept 14, 2015 -50 -

-51 -

The functiondwar f _get gl obal s() returnsDW DLV_OK and set$ r et ur n_count to the count of
pubnames represented in the section containing pubnames i.ag_.pdebnames. lalso stores at
*gl obal s, a pointer to a list ofbwar f _d obal descriptors, one for each of the pubnames in the
.delug_pubnames sectioflhe returned results are for the entire section. It retbWi<DLV ERROR on
error. It returnsDW DLV_NO_ENTRY if the .debug_pubnames section does not exist.

On a successful return frodwar f _get gl obal s(), theDwar f _Q obal descriptors should be freed
usingdwar f _gl obal s_deal | oc(). dwarf _gl obal s_deal | oc() is nev as of dily 15, 2005 and
is the preferred approach to freeing this memory..

Global names referxelusively to names and &fets in the .debug_info section. See section 6.1.1 "Lookup
by Name" in the dwarf standard.

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf _get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use globs[i] */
}
dwarf gl obal s_deal | oc(dbg, globs, cnt);

The following code is deprecated as of July 15, 2005 as it does not freeahtefeemory This approach
still works as well as it ver did. On a successful return fromdwar f _get gl obal s(), the
Dwar f _d obal descriptors should be individually freed usihgar f _deal | oc() with the allocation
type DW DLA GLOBAL_CONTEXT, (or DW DLA GLOBAL, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation ¢ DLA LI ST when the descriptors
are no longer of interest.

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf _get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use globs[i] */
dwarf _deal | oc(dbg, globs[i], DWDLA G.OBAL_CONTEXT);

}
dwar f _deal | oc(dbg, gl obs, DWDLA LIST);

6.8.1.2 dwarf_globname()

rev 2.30, Sept 14, 2015 -51-

-52-

i nt dwarf _gl obnane(
Dwar f _d obal gl obal,
char ** return_nane,
Dwar f _Error *error)

The functiondwar f _gl obnane() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the pubname represented bywaind G obal descriptor,gl obal .

It returnsDW DLV_ERROR on error On a successful return from this function, the string should be freed
usingdwar f _deal | oc(), with the allocation typedW DLA STRI NG when no longer of interestit
never returnsDW DLV_NO_ENTRY.

6.8.1.3 dwarf_global_die_offset()

int dwarf_gl obal die_offset(
Dwar f _d obal gl obal,
Dwar f _Of f *return_of fset,
Dwarf Error *error)

The functiondwar f _gl obal _di e_of f set () returnsDW DLV_CK and setsr et urn_of f set to

the offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the pubname that is
described by th®war f _G obal descriptorgl ob. It returnsDW DLV_ERROR on error It neve returns

DW DLV_NO _ENTRY.

6.8.1.4 dwarf_global_cu_offset()

int dwarf_gl obal _cu_of fset(
Dwar f _d obal gl obal,
Dwar f O f *return_of fset,
Dwarf _Error *error)

The functiondwar f _gl obal _cu_of f set () returnsDW DLV_OK and setg r et ur n_of f set to the

offset in the section containing DIESs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the pubname described by Earf G obal descriptor, gl obal . It returns

DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

6.8.1.5 dwarf_get_cu_die offset_given_cu_header_offset()

int dwarf_get cu_die_offset_given_cu_header_offset_ b(
Dwar f _Debug dbg,
Dwarf O f i n_cu_header offset,
Dwarf Bool is_info,
Dwarf O f * out_cu_di e offset,
Dwarf _Error *error)

The functiondwar f _get _cu_di e_of f set _gi ven_cu_header _of f set () returnsDW DLV_CK
and sets*out _cu_die_offset to the ofset of the compilation-unit DIE gén the ofset
i n_cu_header _of f set of a compilation-unit headeit returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO _ENTRY.

If i s_info is non-zero thé n_cu_header _of f set must refer to a .deilgy_info section det. If
i s_i nfo zero thei n_cu_header _of f set must refer to a .debug_types sectiofsetf Chaognay
result if thei s_i nf o flag is incorrect.

This efectively turns a compilation-unit-header offset into a compilation-unit DIE offset (by adding the
size of the applicable CU header)This function is also sometimes useful with the
dwarf_weak cu_offset(), dwarf_func_cu_offset(), dwarf_type_cu_offset(), and

int dwarf_var_cu_of fset () functions, though for those functions the data is only inugeinfo

rev 2.30, Sept 14, 2015 -52-

-53-

by definition.

6.8.1.6 dwarf_get_cu_die offset_given_cu_header_offset()

int dwarf_get cu_die offset given_cu_header_offset(
Dwar f _Debug dbg,
Dwar f _Of f i n_cu_header _of fset,
Dwarf O f * out_cu_die_offset,
Dwarf Error *error)

This function is superseded lyvar f _get cu_di e_of f set _gi ven_cu_header _offset b(),
a function which is still supported thought it refers only to the .debug_info section.

dwarf _get cu_di e_offset _given_cu_header of fset() added Re 1.45, June, 2001.

This function is declared as 'optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if ¢hgian of libdwarf linked into an application has this
function.

6.8.1.7 dwarf_global_name_offsets()

i nt dwarf_gl obal name_of f set s(
Dwar f _d obal gl obal,
char **return_nane,
Dwarf O f *di e offset,
Dwarf O f *cu_offset,
Dwarf _Error *error)

The functiondwar f _gl obal _nanme_of f set s() returnsDW DLV_CK and set$r et ur n_nane to a
pointer to a null-terminated string thaveg the name of the pubname described byD¥var f _d obal
descriptorgl obal . It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. It aso
returns in the locations pointed to 8iye_of f set , and cu_of f set , the offsets of the DIE representing
the pubname, and the DIE representing the compilation-unit containing the pubname vebspéuii a
successful return frordwar f _gl obal _nane_of f set s() the storage pointed to byet ur n_nane
should be freed usindgwar f _deal | oc(), with the allocation typ®W DLA STRI NG when no longer
of interest.

6.9 DWARF3 Type Names Operations
Section ".debug_pubtypes" isimen DWARF3.

These functions operate on the .debug_pubtypes section of the debugging inforniBtien.
.delug_pubtypes section contains the names of file-scopedefeed types, the offsets of tt@ Es that
represent the definitions of those types, and tfeetsf of the compilation-units that contain theird8bns
of those types.

6.9.1 Debugger Interface Operations

6.9.1.1 dwarf_get_pubtypes()

rev 2.30, Sept 14, 2015 -53-

-54 -

int dwarf_get pubtypes(
Dwar f _Debug dbg,
Dwarf _Type **types,
Dwar f _Si gned *typecount,
Dwarf Error *error)

The functiondwar f _get pubt ypes() returnsDW DLV_CK and sets't ypecount to the count of
user-defhed type names represented in the section containing-defieed type names, i.e.
.delug_pubtypes. lalso stores dtt ypes, a pinter to a list obwar f _Type descriptors, one for each of

the userdefined type names in the .debug_pubtypes section. The returned results are for the entire section.
It returnsDW DLV_NOCOUNT on error It returnsDW DLV_NO _ENTRY if the .debug_pubtypes section

does not exist.

On a successful return frodwar f _get pubt ypes(), theDwar f _Type descriptors should be freed
using dwarf_types_deal | oc(). dwarf _types_deal | oc() is used for both
dwarf _get pubtypes() anddwarf_get types() asthe data types are the same.

Global type names refex@usively to names and offsets in the .dgbinfo section. See section 6.1.1
"Lookup by Name" in the dwarf standard.

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf _get pubtypes(dbg, &types, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++) {
/* use types[i] */
}
dwarf types_deal | oc(dbg, types, cnt);

6.9.1.2 dwarf_pubtypename()

i nt dwarf _pubtypename(
Dwar f _Type type,
char **return_nane,
Dwarf Error *error)

The functiondwar f _pubt ypenane() returnsDwW DLV_OK and set$ r et ur n_narme to a pointer to a
null-terminated string that names the vdefned type represented by tBear f _Type descriptort ype.
It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a siccessful return from
this function, the string should be freed usidgwarf deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

6.9.1.3 dwarf_pubtype die_offset()

i nt dwarf_pubtype_di e_of fset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _pubt ype_di e_of f set () returnsDW DLV_OK and set$r et ur n_of f set to

rev 2.30, Sept 14, 2015 -54 -

-55-

the offset in the section containing DIEs, i.e. .debug_info, of the DIE representing tulefusst type that
is described by thBwar f _Type descriptort ype. It returnsDW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

6.9.1.4 dwarf_pubtype _cu_offset()

i nt dwarf_pubtype cu_of fset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _pubt ype_cu_of f set () returnsDW DLV_OK and setsr et urn_of f set to

the ofset in the section containing DIES, i.e. .debug_info, of the compilation-unit header of the
compilation-unit that contains the us#fined type described by thHavar f _Type descriptort ype. It
returnsDW DLV_ERRORon error It neve returnsDW DLV_NO_ENTRY.

6.9.1.5 dwarf_pubtype_name_offsets()

i nt dwarf_pubtype_nanme_of f set s(
Dwar f _Type type,
char ** returned_nane,
Dwarf O f * die offset,
Dwarf O f * cu_offset,
Dwarf _Error *error)

The functiondwar f _pubt ype_nane_of f set s() returnsDW DLV_CK and set$r et ur ned_narne

to a pointer to a null-terminated string thavegi the name of the useleined type described by the
Dwar f _Type descriptort ype. It also returns in the locations pointed to bye_of f set, and
cu_of f set, the offsets of the DIE representing the tdeined type, and the DIE representing the
compilation-unit containing the usdefined type, respeastdly. It returnsDW DLV_ERROR on error It
never returns DW DLV_NO _ENTRY. On a siccessful return from
dwar f _pubt ype_nane_of f set s() the storage pointed to hyet ur ned_nane should be freed
usingdwar f _deal | oc() , with the allocation typ®W DLA STRI NGwhen no longer of interest.

6.10 User Defined Static Variable Names Operations
This section is SGI specific and is not part of standaMARF version 2.

These functions operate on the uagbarnames section of the dejging information. The
.debug_wrnames section contains the names of file-scope static variables, the offsetioEshibat
represent the deitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

6.11 Weak Name Space Operations
These operations operate on the .debug_weaknames section of the debugging information.

These operations are SGI specific, not part of standaiRF.

6.11.1 Debugger Interface Operations

rev 2.30, Sept 14, 2015 -55-

-56 -

6.11.1.1 dwarf_get_weaks()

i nt dwarf_get weaks(
Dwar f _Debug dbg,
Dwar f _Weak **weaks,
Dwar f _Si gned *weak_count,
Dwarf _Error *error)

The functiondwar f _get weaks() returnsDW DLV_OK and set$weak count to the count of weak
names represented in the section containing weak names i.eug_delaknames. Itreturns
DW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if the section does nokist. It also stores in
*weaks, a pointer to a list ofDwar f _Weak descriptors, one for each of the weak names in the
.debug_weaknames section. The returned results are for the entire section.

On a successful return from this function, tBearf_Weak descriptors should be freed using
dwar f _weaks_deal | oc() when the data is no longer of interestwar f _weaks_deal | oc()is
new as of dily 15, 2005.

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;
int res;

res = dwarf_get weaks(dbg, &weaks, &cnt, &error);
if (res == DWDLV_CK) {

for (i =0; i <ecnt; ++i) {
/* use weaks[i] */
}

dwar f _weaks_deal | oc(dbg, weaks, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did. Ona auccessful return frordwar f _get _weaks() theDwar f _Weak
descriptors should be individually freed usindwarf _deal | oc() with the allocation type
DW DLA WEAK_CONTEXT, (or DW DLA WEAK, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;
int res;

res = dwarf_get weaks(dbg, &weaks, &cnt, &error);
if (res == DWDLV_CK) {

for (i =0; i <cnt; ++i) {
/* use weaks[i] */
dwar f _deal | oc(dbg, weaks[i], DWDLA WEAK CONTEXT);

}
dwar f _deal | oc(dbg, weaks, DWDLA LI ST);

rev 2.30, Sept 14, 2015 - 56 -

-57-

6.11.1.2 dwarf_weakname()

i nt dwarf_weaknane(
Dwar f _Weak weak,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _weaknane() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the weak name represented bwdiné \Weak descriptorweak. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a siccessful return from
this function, the string should be freed usidgwarf deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

int dwarf_weak di e_of fset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _weak_di e_of f set () returnsDW DLV_OK and setgr et urn_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the weak name that is
described by thé&war f _Weak descriptorweak. It returnsDW DLV_ERRCR on error It neve returns

DW DLV_NO _ENTRY.

6.11.1.3 dwarf_weak_cu_offset()

int dwarf_weak cu_offset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _weak _cu_of f set () returnsDW DLV_OK and sets‘r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the weak name described by Earf \Weak descriptor, weak. It returns

DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

6.11.1.4 dwarf_weak_name_offsets()

i nt dwarf_weak name_of f set s(
Dwar f _Weak weak,
char ** weak nane,
Dwarf O f *die_ offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The functiondwar f _weak name_of f set s() returns DW DLV_OK and sets*weak nane to a

pointer to a null-terminated string thaveg the name of the weak name described byDiher f _\Veak
descriptorweak. It also returns in the locations pointed to tiye_ of f set, and cu_of f set, the

offsets of the DIE representing the weakname, and the DIE representing the compilation-unit containing the
weakname, respeedly. It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On

a wccessful return fromdwar f _weak name_of f set s() the storage pointed to byweak nane

should be freed usindwar f _deal | oc(), with the allocation typ@®W DLA STRI NG when no longer

of interest.

6.12 Static Function Names Operations

This section is SGI specific and is not part of standaM\RF version 2.

rev 2.30, Sept 14, 2015 -57 -

-58 -

These function operate on the .debug funcnames section of theggdeh information. The
.delug_funcnames section contains the names of static functioimedléh the object, the offsets of the
Dl Es that represent the definitions of the corresponding functions, and féetsobf the start of the
compilation-units that contain the definitions of those functions.

6.12.1 Debugger Interface Operations

6.12.1.1 dwarf_get_funcs()

int dwarf_get funcs(
Dwar f _Debug dbg,
Dwar f _Func **funcs,
Dwar f _Si gned *func_count,
Dwarf _Error *error)

The functiondwar f _get _funcs() returnsDW DLV_OK and set$ f unc_count to the count of static
function names represented in the section containing static function names, ug. faetnames. llso
stores, at f uncs, a inter to a list oDwar f _Func descriptors, one for each of the static functions in
the .debug_funcnames section. The returned results are for the entire séctturnsDW DLV_ERRCOR

on error It returnsDW DLV_NO_ENTRY if the .debug_funcnames section does not exist.

On a successful return frodwar f _get _funcs(), theDwar f _Func descriptors should be freed using
dwarf _funcs_deal l oc(). dwarf _funcs_deal | oc() is nev as of dily 15, 2005.

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

fres = dwarf_get funcs(dbg, & uncs, &cnt, &error);
if (fres == DWDLV_OXK) {

for (i =0; i <ecnt; ++) {
/* use funcs[i] */
}

dwarf _funcs_deal | oc(dbg, funcs, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did. Ona auccessful return frodwar f _get _funcs(), theDwar f _Func
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA FUNC_CONTEXT, (or DW DLA FUNC, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA_ LI ST when the descriptors are no
longer of interest.

rev 2.30, Sept 14, 2015 -58 -

-59-

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

fres = dwarf_get funcs(dbg, &funcs, &error);
if (fres == DWDLV_X) {

for (i =0; i <cnt; ++i) {
/* use funcs[i] */
dwar f _deal | oc(dbg, funcs[i], DWDLA FUNC CONTEXT);

}
dwar f _deal | oc(dbg, funcs, DWDLA LIST);

6.12.1.2 dwarf_funcname()

i nt dwarf _funcnanme(
Dwar f _Func func,
char ** return_nane,
Dwarf Error *error)

The functiondwar f _f uncnanme() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the static function represented byéing _Func descriptorf unc. It
returnsDW DLV_ERRCR on error It neve returnsDW DLV_NO _ENTRY. On a siccessful return from
this function, the string should be freed usidgwarf deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

6.12.1.3 dwarf_func_die_offset()

int dwarf_func_di e_of fset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _func_di e_of f set (), returnsDW DLV_OK and set$ r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the static function that is
described by th®war f _Func descriptor,f unc. It returnsDW DLV_ERRCR on error It neve returns

DW DLV_NO_ENTRY.

6.12.1.4 dwarf_func_cu_offset()

int dwarf_func_cu_offset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _func_cu_of f set () returnsDW DLV_OK and sets‘r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the static function described by Bharf Func descriptor,f unc. It returns

DW DLV_ERROR 0N error It neve returnsDW DLV_NO_ENTRY.

6.12.1.5 dwarf_func_name offsets()

rev 2.30, Sept 14, 2015 -59 -

-60 -

int dwarf_func_name_of fset s(
Dwar f _Func func,
char **func_nane,
Dwarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwarf _func_name_of fsets() returns DW DLV_OK and sets*f unc_nane to a
pointer to a null-terminated string thaveg the name of the static function described byDhar f _Func
descriptorf unc. It aso returns in the locations pointed to tiye of f set, and cu_of f set, the

offsets of the DIE representing the static function, and the DIE representing the compilation-unit containing
the static function, respeedly. It returns DW DLV _ERROR on error It neve returns

DW DLV_NO ENTRY. On a siuccessful return frondwarf func_nane_of f set s() the storage
pointed to by func_nane should be freed usinglwarf deal | oc(), with the allocation type

DW DLA STRI NGwhen no longer of interest.

6.13 User Defined Type Names Oper ations

Section "debug_typenames" is SGI sgedind is not part of standardNVARF version 2.(However, an
identical section is part of\BARF version 3 named ".debug_pubtypes", dear f _get _pubt ypes()
above.)

These functions operate on the ughtypenames section of the debugging informatidrhe
.delug_typenames section contains the names of file-scopeleerd types, the ésets of theDl Es that
represent the definitions of those types, and tfeetsf of the compilation-units that contain theirdgbns
of those types.

6.13.1 Debugger Interface Operations

6.13.1.1 dwarf_get_types()

int dwarf_get types(
Dwar f _Debug dbg,
Dwarf _Type **types,
Dwar f _Si gned *typecount,
Dwarf Error *error)

The functiondwar f _get types() returnsDW DLV_OK and setst ypecount to the count of user
defined type names represented in the section containingdefeed type names, i.e. .dalp typenames.

It also stores att ypes, a minter to a list oDwar f _Type descriptors, one for each of the udefined
type names in the .debug_typenames sectidme returned results are for the entire section. It returns
DW DLV_NOCOUNT on error It returnsDW DLV_NO _ENTRY if the .debug_typenames section does not
exist.

On a successful return frodwar f _get _types(), theDwar f _Type descriptors should be freed using
dwarf _types _dealloc(). dwarf_types_deal | oc() is nev as of dily 15, 2005 and frees all
memory allocated bgiwar f _get types().

rev 2.30, Sept 14, 2015 - 60 -

-61-

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get types(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++) {
/* use types[i] */
}
dwarf types_deal | oc(dbg, types, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did. Ona auccessful return fromdwar f _get _types(), theDwarf _Type
descriptors should be individually freed usindwarf deal | oc() with the allocation type
DW DLA TYPENAME CONTEXT, (or DW DLA TYPENAME, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation t@é DLA LI ST when the descriptors
are no longer of interest.

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get types(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++) {
/* use types[i] */
dwarf _deal | oc(dbg, types[i], DWDLA TYPENAME CONTEXT);

}
dwarf deal | oc(dbg, types, DWDLA LIST);

6.13.1.2 dwarf_typename()

i nt dwarf _typenane(
Dwar f _Type type,
char **return_nane,
Dwarf Error *error)

The functiondwar f _t ypenanme() returnsDW DLV_COK and sets*r et ur n_nane to a pointer to a
null-terminated string that names the vdefned type represented by tBear f _Type descriptort ype.
It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a siccessful return from
this function, the string should be freed usidgwarf deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

6.13.1.3 dwarf_type die_offset()

rev 2.30, Sept 14, 2015 -61-

-62 -

int dwarf _type die offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _t ype_di e_of fset () returnsDW DLV_OK and set$r et urn_of f set to the
offset in the section containing DIES, i.e. .dgbinfo, of the DIE representing the usiefined type that is
described by thé&war f _Type descriptort ype. It returnsDW DLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

6.13.1.4 dwarf_type cu_offset()

int dwarf_type_cu_offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _type_cu_of fset () returnsDW DLV_OK and sets‘r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the usdefined type described by thewar f _Type descriptor,t ype. It returns

DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

6.13.1.5 dwarf_type name offsets()

int dwarf_type_name_of f set s(
Dwar f _Type type,
char ** returned_nane,
Dwarf O f * die_ offset,
Dwarf O f * cu_offset,
Dwarf _Error *error)

The functiondwar f _t ype_name_of f set s() returnsDW DLV_OK and sets$ r et ur ned_nane to a
pointer to a null-terminated string thatves the name of the useefined type described by the
Dwar f _Type descriptort ype. It also returns in the locations pointed to bye_of f set, and
cu_of f set, the ofsets of the DIE representing the udeiined type, and the DIE representing the
compilation-unit containing the usdefined type, respeatdly. It returnsDW DLV_ERROR on error It
never returnsDW DLV _NO_ENTRY. On a successful return frodwar f _t ype_nane_of f set s() the
storage pointed to byet ur ned_narme should be freed usindwar f _deal | oc() , with the allocation
typeDW DLA_STRI NGwhen no longer of interest.

6.14 User Defined Static Variable Names Operations
This section is SGI specific and is not part of standaMABRF version 2.

These functions operate on the uagbarnames section of the debugging informatioiihe
.debug_wrnames section contains the names of file-scope static variables, the offsetioEshibat
represent the definitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

6.14.1 Debugger Interface Operations

rev 2.30, Sept 14, 2015 -62 -

-63-

6.14.1.1 dwarf_get_vars()

int dwarf_get vars(
Dwar f _Debug dbg,
Dwarf _Var **vars,
Dwar f _Si gned *var _count,
Dwarf _Error *error)

The functiondwar f _get _vars() returnsDW DLV_OK and sets*var _count to the count of ife-

scope static variable names represented in the section containing file-scope static variable names, i.e.
.debug_warnames. lalso stores, dtvar s, a pinter to a list obwar f _Var descriptors, one for each of

the file-scope static variable names in the udebarnames section. The returned results are for the entire
section. ItreturnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if the .delug_varnames

section does not exist.

The following is nev as d July 15, 2005. On a successful return framarf _get vars(), the
Dwar f _Var descriptors should be freed usithgar f _vars_deal | oc() .

Dwar f _Si gned cnt;
Dwar f _Var *vars;
int res;

res = dwarf_get vars(dbg, &vars, &nt &error);
if (res == DWDLV_CK) {

for (i =0; i <ecnt; ++i) {
/* use vars[i] */
}

dwarf _vars_deal | oc(dbg, vars, cnt);

The following code is deprecated as of July 15, 2005 as it does not freeahtefeemory This approach
still works as well as itver did. Ona successful return frondwar f _get vars(), the Dwarf_Var
descriptors should be individually freed usindwarf _deal | oc() with the allocation type
DW DLA VAR _CONTEXT, (or DW DLA VAR, an dder name, supported for compatibility) folled by the
deallocation of the list itself with the allocation type@/ DLA_ LI ST when the descriptors are no longer of
interest.

Dwar f _Si gned cnt;
Dwar f _Var *vars;
int res;

res = dwarf_get vars(dbg, &vars, &nt &error);
if (res == DWDLV_CK) {

for (i =0; i <ecnt; ++i) {
/* use vars[i] */
dwar f _deal | oc(dbg, vars[i], DWDLA VAR CONTEXT);

}
dwar f _deal | oc(dbg, vars, DWDLA LIST);

rev 2.30, Sept 14, 2015 -63-

-64 -

6.14.1.2 dwarf_varname()

i nt dwarf_varnanme(
Dwar f _Var var,
char ** ret urned_nane,
Dwarf _Error *error)

The functiondwar f _var nane() returnsDW DLV_COK and setsr et ur ned_namne to a pointer to a
null-terminated string that names the file-scope static variable representediwattfe Var descriptor,
var . It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a siccessful return
from this function, the string should be freed usihgarf deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

6.14.1.3 dwarf_var_die offset()

int dwarf_var_die_offset(
Dwar f _Var var,
Dwarf O f *returned of fset,
Dwarf _Error *error)

The functiondwar f _var _di e_of f set () returnsDW DLV_COK and set$ r et ur ned_of f set to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the file-scopeasittie v
that is described by thBwar f _Var descriptor,var. It returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO_ENTRY.

6.14.1.4 dwarf_var_cu_offset()

int dwarf_var_cu_of fset(
Dwarf_Var var,
Dwarf O f *returned of fset,
Dwarf _Error *error)

The functiondwar f _var _cu_of f set () returnsDW DLV_COK and setsr et ur ned_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains thdlé-scope static variable described by twar f _Var descriptoryvar . It returns

DW DLV_ERRORoOnN error It neve returnsDW DLV_NO_ENTRY.

6.14.1.5 dwarf_var_name_offsets()

i nt dwarf_var_name_of f set s(
Dwarf_Var var,
char **returned_narme,
Dwarf_ O f *di e_offset,
Dwarf_ O f *cu_of fset,
Dwarf _Error *error)

The functiondwar f _var _nanme_of f set s() returnsDW DLV_CK and setsr et urned_nane to a
pointer to a null-terminated string thatveg the name of the file-scope statiariable described by the
Dwar f _Var descriptorvar. It aso returns in the locations pointed to loy e_of f set, and
cu_of f set , the offsets of the DIE representing tile-5cope static variable, and the DIE representing the
compilation-unit containing the file-scope static variable, resyebgti It returns DW DLV_ERROR on
error, It neve returns DW DLV_NO ENTRY. On a successful return from
dwar f _var_nane_of f set s() the storage pointed to hyet ur ned_nane should be freed using
dwar f _deal | oc() , with the allocation typ®W DLA STRI NGwhen no longer of interest.

rev 2.30, Sept 14, 2015 -64 -

-65-

6.15 Macro Information Operations

6.15.1 General Macro Operations
6.15.1.1 dwarf_find_macro_value_start()
char *dwarf_find nacro_value_start(char * macro_string);

Given a macro string in the standard form defined in th&/ARF document ("name <space> value" or
"name(args)<spacealue") this returns a pointer to the first byte of the maatae: Itdoes not alter the
string pointed to by macro_string or goilie string: it returns a pointer into the string whose addrass w
passed in.

6.15.2 Debugger Interface Macro Operations

Macro information is accessed from the ughnfo section via the W AT _macro_info attribute (whose
value is an offset into .debug_macinfo).

No Functions yet defined.

6.15.3 Low Level Macro Information Operations

6.15.3.1 dwarf_get_macro_details()

int dwarf_get macro_detail s(Dwarf_Debug /*dbg*/,

Dwar f _Of f macr o_of f set,
Dwar f _Unsi gned maxi mum count ,
Dwar f _Si gned * entry_count,
Dwarf _Macro_Details ** details,

Dwarf Error * err);

dwarf _get _macro_detail s() returnsDW DLV_OK and setsentry_count to the number of
det ai | s records returned through tldet ai | s pointer The data returned througtiet ai | s should

be freed by a call tdwar f _deal | oc() with the allocation typ®W DLA STRI NG. If DW DLV_Kis

returned, theent ry_count will be at least 1, since a compilation unit with macro informatiohrm

macros will hae & least one macro data byte of 0.

dwarf _get macro_detail s() beagins at tharacr o_of f set offset you supply and ends at the end
of a compilation unit or atmaxi num count detail records (whicher comes frst). If
maxi mum _count is 0, it is treated as if it were the maximum possible unsigned integer.

dwarf _get _macro_detail s() attempts to sednd_fil ei ndex to the correct file in eery
det ai |l s record. If it is unable to do so (or wheee the current ife index is unknown, it sets
dnmd_fil ei ndex to -1.

dwarf _get macro_detail s() returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY
if there is no more macro information at tmatcr o_of f set . If macr o_of f set is passed in as 0, a
DW DLV_NO_ENTRY return means there is no macro information.

rev 2.30, Sept 14, 2015 - 65 -

-66 -

Dwar f _Unsi gned max = O;
Dwarf O f cur_off = 0;
Dwar f _Si gned count = O;

Dwarf _Macro_Details *nmaclist;
int errv;

/* Loop through all the conpilation units nacro info.
This is not guaranteed to work because DWARF does not
guarantee every byte in the section is neaningful:
there can be garbage between the macro info
for CUs. But this loop will usually work.

*/

while((errv = dwarf_get nacro_detail s(dbg, cur_off, nmax,

&count, &racl i st, &rror))== DWDLV_K) {
for (i =0; i < count; ++i) {

/* use maclist[i] */
}
cur_off = maclist[count-1].dnmd_offset + 1;
dwarf _deal | oc(dbg, maclist, DWDLA STRI NG ;

6.16 Low Level Frame Operations

These functions provide information about stack frames to be used to perform stack Trhees.
information is an abstraction of a table with s/ nger instruction and a column per register and a column
for the canonical frame address £CRvhich corresponds to the notion of a frame pointer), as well as a
column for the return address.

From 1993-2006 the interface we’ll here refer to 8$ARF2 made the G¥be a ®lumn in the matrix, bt
left DW_FRAME_UNDEFINED_ ML, and DN_FRAME_SAME_\AL out of the matrix (giving them
high numbers). As of the\BARF3 interfaces introduced in this document in April 2006, there arg**tw
interfaces (the original set and annget). Seeral frame functions ark transparently for either set, we will
focus on the ones that are not equally suitable no

The original DVARF2 interface set still exists (dwi_get fde_info_for_reg(),
dwarf_get_fde_info_for_cfa_g€), and dwarf get fde_info_for_all igs()) and works adequately for
MIPS/IRIX DWARF2 and ABI/ISA sets that are figfently similar to MIPS. These functions not a good
choice for non-MIPS architectures nor wereytlregood design for MIPS eitherlt’'s better to switch
entirely to the ne functions mentioned in the next paragrafthis DWNARF2 interface set assumes and
uses W_FRAME_CI_COL and that is assumed when litatfvis configured with --enable-oldframecol

A new DWARF3 interface set of davf get fde info_for_ig3(), dwarf get fde_info_for_cfa_reg3(),
dwarf_get_fde_info_for_all_gs3(), dwarf _set frame_rule table size() adwset frame_cfa_value(),
dwarf_set_frame_samealue(), dvarf_set_frame_undefinedale(), and
dwarf_set_frame_rule_initialale() is more flexible and will work for mgmore architectures. It is also
entirely suitable for use with \BARF2 and DVARF4. Thesetting of the 'frame & wlumn number’
defaults to DW_FRAME_CFA_COL3 and it can be set at runtime with dwarf_set_frame_cfa_value().

Mixing use of the DVARF2 interface set with use of thewn®WARF3 interface set on a single open
Dwarf_Debug instance is a mistakDonot do it.

We will pretend, from here on unless otherwise specified, thaV_ BRAME_CFA COL3,
DW_FRAME_UNDEFINED_ ML, and DN_FRAME_SAME_\AL are the synthetic column numbers.
These columns may be user-chosen by calls of arfdwet frame_cfa_value()

rev 2.30, Sept 14, 2015 - 66 -

-67 -

dwarf_set_frame_undefined_value(), and dwarf_set_frame_same_value() velspecti

Each cell in the table contains one of the following:

1. Aregister + offset(a)(b)

2. Aregister(c)(d)

3. Amarker (DW_FRAME_UNDEFINED_VAL) meaningegister value undefined

4. Amarker (DW_FRAME_SAME_VAL) meaningegister value same asin caller

(a old DNARF2 interface) Whenthe column is &W_FRAME_CFA_COL.: the register number is a real
hardware r@ister not a reference to W _FRAME_CFRA_COL, not DW_FRAME_UNDEFINED_ VAL,

and not V_FRAME_SAME_\AL. The CFA rule wvalue should be the stack pointer plus offset 0 when no
other value mags senseA value of DN_FRAME_SAME_\AL would be semi-logical, but since the £F

is not a real mgister not really correct. A value of DN_FRAME_UNDEFINED ML would imply the
CFA is undefned --this seems to be a useless notion, as thei€B means to finding real gisters, so
those real registers should be markedd FRAME_UNDEFINED ML, and the CA column content
(whatever regster it specifies) becomes unreferenced by anything.

(a nev April 2006 DNARF2/3 interface): The @G¥is separately accessible and not part of the talflee

'rule number’ for the Ck is a rumber outside the table. So theACE a marker not a register number
See W _FRAME_CHA COL3 in libdwarf.h and derf get fde info _for cfa g8() and

dwarf_set frame_rule_cfa_value().

(b) When the column is not W FRAME_CFA _COL3, the tegister' will and must be
DW_FRAME_CFA_COL3(COL), implying that to get theénfal location for the column one must add the
offset here plus the DW_FRAME_CFA_ COL3 rule value.

(c) When the column is_FRAME_CFA_COL3, then therkgister’ number is (must be) a real hasthe
register . (This paragraph does not apply to the April 2006w nenterface). If it were
DW_FRAME_UNDEFINED_ ML or DW_FRAME_SAME \AL it would be a markr, not a reister
number.

(d) When the column is notW® _FRAME_CFA_COL3, the register may be a hardwargister It will not
be DW_FRAME_CFA_COL3.

There is no 'column’ for W _FRAME_UNDEFINED ML or DW_FRAME_SAME_M\AL. Nor for
DW_FRAME_CFA_COL3.

Figure 3 is machine dependent and represents MIPS CPgistere assignments. The
DW_FRAME_CFA_COL define in dwarf.h is historical and really belongs in libdwarf.h, not dwarf.h.

rev 2.30, Sept 14, 2015 - 67 -

-68 -

NAME

value PURPOSE

DW_FRAME_CH_COL
DW_FRAME_REG1
DW_FRAME_REG2

DW_FRAME_REG30
DW_FRAME_REG31
DW_FRAME_FREGO
DW_FRAME_FREG1
DW_FRAME_FREG30
DW_FRAME_FREG31
DW_FRAME_RA_COL

DW_FRAME_SAME_\AL

DW_FRAME_UNDEFINED \AL

1034 reister val undefined
1035 register same as in caller

0 column used for CFA

1 integer register 1

2 integer register 2
olvious names and values here

30 integer register 30

31 integer register 31

32 floating point register O

33 floating point register 1
olvious names and values here

62 floating point register 30

63 floating point register 31

64 column recording ra

Figure4. Frame Information Rule Assignments MIPS

The following table shows SGI/MIPS specific special calues: these values mean that the cell has the
value undefined or same value respectiely, rather than containing r@gister or register+offset. It assumes
DW_FRAME_CFA_COL is a table rule, which is not readily accomplished vaneensible for some

architectures.

NAME

value PURPOSE

DW_FRAME_SAME_\AL

DW_FRAME_CR_COL

DW_FRAME_UNDEFINED_\AL

1034 meansindefined value.

1035 means 'same value’' as

Not a column or register valye

caller had. Not a column or
register value

0 means register zero is
usurped by the GFcolumn.

Figure5. Frame Information Special Valuesyaarchitecture

The following table shows more general special celu@s. Theseaues mean that the cell gister-
number refers to thefa-register or undefined-value or same-value respectrely, rather than referring to a
register in the table. The generality arises from making\D FRAME_CFA_COL3 be outside the set of

registers and making theaciule accessible from outside the rule-table.

NAME value PURPOSE
DW_FRAME_UNDEFINED_ ML 1034 meansindefined
value. Not a column or register value
DW_FRAME_SAME_\AL 1035 means 'same value' as
caller had. Not a column or
register value
DW_FRAME_CFA_COL3 1436 means 'ch regster’
is referred to, not a real registeot
a wlumn, but the & (the ch does hae
avalue, but in the BVJARF3 libdwarf interface
it does not hee a teal register number’).
rev 2.30, Sept 14, 2015 - 68 -

-69-

6.16.0.1 dwarf_get_fde list()

int dwarf_get fde |ist(
Dwar f _Debug dbg,
Dwarf _Cie **cie_data,
Dwar f _Si gned *ci e_el ement _count,
Dwarf _Fde **fde_data,
Dwar f _Si gned *fde_el ement _count,
Dwarf _Error *error);

dwarf _get fde_list() stores a pointer to a list &var f _Ci e descriptors irf ci e_dat a, and the
count of the number of descriptors*ini e_el ement _count . There is a descriptor for each CIE in the
.delug_frame sectionSimilarly, it stores a pointer to a list dwar f _Fde descriptors irf f de_dat a,
and the count of the number of descriptorsfide_el enent _count . There is one descriptor per FDE
in the .debug_frame sectionlwar f _get fde |ist() returnsDW DLV_ERRCR on error It returns
DW DLV_NO_ENTRY if it cannot find frame entries. It returii3v DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf _fde cie_list_deall oc(). This dealloc approach iswes of dily 15, 2005.

Dwar f _Si gned cnt;
Dwarf_Cie *cie_data,;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get _fde_list(dbg, &i e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_OK) {
dwarf _fde cie_list_dealloc(dbg, cie _data, cie_count,
fde_dat a, fde_count);

The following code is deprecated as of July 15, 2005 as it does not freeahtefeemory This approach
still works as well as itwer did.

rev 2.30, Sept 14, 2015 - 69 -

-70 -

Dwar f _Si gned cnt;
Dwarf_Cie *cie_data,;
Dwar f _Si gned ci e_count;
Dwarf _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get fde_ |ist(dbg, &i e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_X) {

for (i =0; i <cie_count; ++i) {
/* use cie[i] */
dwarf deal | oc(dbg, cie data[i], DWDLA CIE);

}
for (i =0; i < fde_count; ++i) {

/* use fde[i] */

dwarf _deal | oc(dbg, fde data[i], DWDLA FDE);
}

dwarf _deal | oc(dbg, cie_data, DWDLA LIST);
dwarf _deal | oc(dbg, fde _data, DWDLA LIST);

6.16.0.2 dwarf_get_fde list_eh()

int dwarf_get fde list_eh(
Dwar f _Debug dbg,
Dwarf _Cie **cie_data,
Dwar f _Si gned *ci e_el ement _count,
Dwarf _Fde **fde_data,
Dwar f _Si gned *fde_el ement _count,
Dwarf _Error *error);

dwarf _get fde_ list_eh() is identical to dwarf_get fde list() except that
dwarf _get fde_l|ist_eh() reads the GNU gcc section named .eh_frame (C++ exception handling
information).

dwarf _get fde_ |ist_eh() stores a pointer to a list &war f _C e descriptors in*ci e_dat a,
and the count of the number of descriptorg @ e_el ement _count . There is a descriptor for each
CIE in the .debug_frame sectioigimilarly, it stores a pointer to a list dwar f _Fde descriptors in
*f de_dat a, and the count of the number of descriptors*inde_el ement _count. There is one
descriptor per FDE in the .debug_frame sectidnar f _get _fde_list() returnsDW DLV_ERROR

on error It returns DW DLV_NO _ENTRY if it cannot find exception handling entries. It returns
DW DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf _fde cie_list_deall oc(). This dealloc approach iswes of dily 15, 2005.

rev 2.30, Sept 14, 2015 -70-

-71-

Dwar f _Si gned cnt;
Dwarf_Cie *cie_data,;
Dwar f _Si gned ci e_count;
Dwarf _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get fde_ |ist(dbg, &i e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_X) {
dwarf fde cie |list_dealloc(dbg, cie data, cie_count,
fde_data, fde_count);

6.16.0.3 dwarf_get_cie of _fde()

int dwarf_get cie_ of fde(Dwarf_Fde fde,
Dwarf _Cie *cie_returned,
Dwarf _Error *error);

dwarf _get cie_of fde() stores &warf _Ci e into the Dwarf _Ci e thatci e_r et ur ned points
at.

If one has called dwarf_get fde list and does not wish to dwarf_dealloc() all thediradli FDEs
immediately one must alsowid dwarf_dealloc-ing the CIEs for those FDEs not immediately dedlloc’
Faling to obsere this restriction will cause the FDE(s) not dealtbtd become indid: an FDE contains

(hidden in it) a CIE pointer which will be bevaiid (stale, pointing to freed memory) if the CIE is
deallocd. Theinvalid CIE pointer internal to the FDE cannot be detected \agidnby libdwarf. If one

later passes an FDE with a stale internal CIE pointer to one of the routines taking an FDE as input the result
will be failure of the call (returning @W_DLV_ERROR) at best and it is possible a coredump or worse will
happen (eentually).

dwarf _get cie_of fde() returnsDW DLV_OXKif it is successful (it will be unless fde is the NULL
pointer). ItreturnsDW DLV_ERRCRif the fde is ivalid (NULL).

EachDwar f _Fde descriptor describes information about the frame for a particular subroutine or function.

int dwarf_get fde_ for_dieis SGI/MIPS specific.

6.16.0.4 dwarf_get_fde for_die()

int dwarf_get fde for_die(
Dwar f _Debug dbg,
Dwarf _Di e die,
Dwarf Fde * return_fde,
Dwarf _Error *error)

When it succeedgiwarf _get fde_for_die() returnsDW DLV_K and setsret urn_f de to a

Dwar f _Fde descriptor representing frame information for thevegi die. It looks for the
DW AT_M PS_f de attribute in the gren di e. If it finds it, is uses the value of the attribute as tifeebf
in the .debug_frame section where the FDHjite If there is noDW AT _M PS fde it returns

DW DLV_NO _ENTRY. If there is an error it returi@V DLV_ERROR.

rev 2.30, Sept 14, 2015 -71-

-72-

6.16.0.5 dwarf_get_fde range()

int dwarf_get _fde_range(
Dwar f _Fde fde,
Dwar f _Addr *| ow_pc,
Dwar f _Unsi gned *func_| engt h,
Dwarf _Ptr *fde_bytes,
Dwar f _Unsi gned *fde_byte_I| ength,
Dwarf O f *cie_offset,
Dwar f _Si gned *ci e_i ndex,
Dwarf O f *fde_offset,
Dwarf _Error *error);

On successiwar f _get _fde_range() returnsDW DLV_OK.
The location pointed to byow _pc is set to the v pc value for this function.

The location pointed to bfyunc_| engt h is set to the length of the function in bytekhis is essentially
the length of the text section for the function.

The location pointed to bfyde_byt es is set to the address where the FDEihe in the .dehg_frame
section.

The location pointed to by de _byte | ength is set to the length in bytes of the portion of
.debug_frame for this FDE. This is the same as the value returrthebloy _get _f de_r ange.

The location pointed to byi e_of f set is set to the offset in the .debug_frame section of the CIE used by
this FDE.

The location pointed to byi e_i ndex is set to the indeof the CIE used by this FDE. The indis the
index of the CIE in the list pointed to hyi e_dat a as set by the functiodwar f _get fde_list().
However, if the functiondwar f _get fde_for _di e() was used to obtain the gén f de, this inde
may not be correct.

The location pointed to bfyde_of f set is set to the déet of the start of this FDE in the .dgp frame
section.

dwarf _get fde_range() returnsDwW DLV_ERROR on error.

6.16.0.6 dwarf_get_cie_info()

int dwarf_get cie_info(

Dwarf _Ci e cie,
Dwar f _Unsi gned *bytes_in_cie,
Dwar f _Smal | *version,

char **augment er,

Dwar f _Unsi gned *code_al i gnnent _factor,
Dwar f _Si gned *data_al i gnnment _fact or,
Dwar f _Hal f *return_address_register_rule,
Dwarf Ptr *initial _instructions,

Dwarf _Unsigned *initial_instructions_I|ength,
Dwar f _Error *error);

dwar f _get _ci e_i nfo() is primarily for Internal-leel Interface consumers. If successful, it returns
DW DLV_K and setg byt es_i n_ci e to the number of bytes in the portion of the frames section for
the CIE represented by thevgn Dwar f _Ci e descriptorci e. The other fields are directly taken from the

rev 2.30, Sept 14, 2015 -72-

-73-

cie and returned, via the pointers to the callereturnsDwW DLV_ERROR on error.

6.16.0.7 dwarf_get_cie index()

int dwarf_get cie_index(
Dwarf _Cie cie,
Dwar f _Si gned *ci e_i ndex,
Dwarf _Error *error);

On success,dwarf _get cie_i ndex() returns DWDLV_OK. On eror this function returns
DW DLV_ERRCR.

The location pointed to byi e_i ndex is set to the indeof the CIE of this FDE. The indes the index
of the CIE in the list pointed to lyi e_dat a as set by the functiodwar f _get _fde_list().

So one must he wseddwarf _get _fde list() ordwarf_get fde |ist_eh() togeta cie list
before this is meaningful.

This function is occasionally useful, but is little used.

6.16.0.8 dwarf_get_fde instr_bytes()

int dwarf_get fde_instr_bytes(
Dwar f _Fde fde,
Dwarf Ptr *outinstrs,
Dwar f _Unsi gned *outl en,
Dwarf _Error *error);

dwarf _get fde_instr_bytes() returnsDW DLV_CK and set$out i nstrs to a pointer to a set
of bytes which are the actual frame instructions for this fde. It alsd eetsl en to the length, in bytes,
of the frame instructions. It returidN DLV_ERROR on error It neve returnsDW DLV _NO_ENTRY.
The intent is to allw low-level consumers lik a dvarf-dumper to print the bytes in somashion. The
memory pointed to bgut i nst r s must not be changed and there is nothing to free.

6.16.0.9 dwarf_get_fde info_for_reg()

This interface is suitable for WWARF2 kit is not sufcient for DNARF3. See int
dwarf _get fde_info_for_reg3.

int dwarf_get fde_info_for_reg(
Dwar f _Fde fde,
Dwarf _Hal f tabl e _col um,
Dwar f _Addr pc_requested,
Dwar f _Si gned *of fset _rel evant,
Dwar f _Si gned *regi ster_num
Dwar f _Si gned *of f set,
Dwar f _Addr *row_pc,
Dwarf _Error *error);

dwarf _get fde_info_for_reg() returnsDW DLV_CK and sets*of f set _rel evant to non-

zero if the offset is relent for the rev specified by pc_requested and column specified by

t abl e_col um, for the FDE spedid byf de. The intent is to return the rule for thevgn pc value and
register The location pointed to biyegi st er _numis set to the registeralue for the rule. The location
pointed to byof fset is set to the offset value for the rule. If offset is not vaié for this rule,

*of f set _rel evant is set to zero. Since more than one pc value wilehraws with identical entries,

the user may want to kmothe earliest pc value after which the rules for all the columns remained
unchanged. Recdlhat in the virtual table that the frame information represents there may be one or more

rev 2.30, Sept 14, 2015 -73-

-74 -

table rows with identical data (each such table &b a dfferent pc alue). Gven apc_request ed

which refers to a pc in such a group of identicatsothe location pointed to lyow pc is set to the
lowest pc value within the group ofientical ravs. The wlue put in*regi ster _numary of the
DW FRAME_* table columns values specifiedlinbdwar f . h ordwar f . h.

dwarf _get fde_ info_for_regreturnsDW DLV _ERRORIf there is an error.
It is usable with eithedwar f _get fde_n() ordwarf_get fde at pc().

dwarf _get fde info for_reg() is tailored to MIPS, please use
dwarf _get fde_ info_for_reg3() instead for all architectures.

6.16.0.10 dwarf_get_fde info_for_all_regs()

int dwarf_get fde info for_all_regs(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwar f _Regt abl e *reg_t abl e,
Dwar f _Addr *row_pc,
Dwarf _Error *error);

dwarf _get fde_info_for_all _regs() returnsDW DLV_OK and setgr eg_t abl e for the rav
specified bypc_r equest ed for the FDE specified bf/de.

The intent is to return the rules for decoding all the registeran gipc \alue. r eg_t abl e is an array of
rules, one for each register specifieddwar f. h. The rule for each mister contains three items -
dw_r egnumwhich denotes the register value for that rdig, of f set which denotes the offset value for
that rule anddw_of f set _r el evant which is set to zero if offset is not resat for that rule. See
dwarf _get fde_info_for_reg() fora description of ow pc.

dwarf _get fde_info_for_all _regs returnsDW DLV_ERRORIf there is an error.

i nt dwarf _get fde_ info for_all _regs is tailored to SGI/MIPS, please use
dwarf_get_fde_info_for_all_regs3() instead for all architectures.

6.16.0.11 dwarf_set_frame rule table size()

This allows consumers to set the size of the (internal to &bijivwule table when using theed3’ interfaces
(these interfaces are strongly preferredrdhe older feg’ interfaces). ltshould be at least as large as the
number of real mgsters in the ABI which is to be read in for theatfvget fde info_for g3() or
dwarf_get_fde_info_for_all_regs3() functions to work properly.

The frame rule table size must be less than the enavklues WV _FRAME_UNDEFINED_ VAL,
DW_FRAME_SAME_ \AL, DW_FRAME_CHRA_COL3 (dwarf_set_frame_rule_undefined_value()
dwarf_set _frame_samealue() dvarf_set frame_cfaalue() efectively set these markers so the frame
rule table size can actually beyavelue r@ardless of the macroalues in libdwarf.h as long as the table
size does notwerlap these markers).

Dwar f _Hal f
dwarf _set frame_rul e_tabl e_size(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_table_size() sets the &lue val ue as the size of libdarf-internal
rules tables ofibg.

rev 2.30, Sept 14, 2015 -74 -

-75-

The function returns the previous value of the rules table size setting (taken frdbgtetucture).

6.16.0.12 dwarf_set_frame_rule_initial_value()

This allows consumers to set the initial value fovsadn the frame tables. By default it is taken from
libdwarf.h and is W_FRAME_REG_INITIAL_\ALUE (which itself is either
DW_FRAME_SAME_\AL or DW_FRAME_UNDEFINED \L). The MIPS/IRIX default is
DW_FRAME_SAME_\AL. Consumercode should set this appropriately and for ynachitectures (bt
probably not MIPS) W_FRAME_UNDEFINED_MAL is an appropriate settingNote: an earlier spelling

of dwarf_set_frame_rule_inital alue() is still supported as an interface, but please change to usevthe ne
correctly spelled name.

Dwar f _Hal f
dwarf _set frame_rule_initial_val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_initial _val ue() setsthe alueval ue as the initial value for thidbg
when initializing rules tables.

The function returns the previous value of initial value (taken frondltigestructure).

6.16.0.13 dwarf_set_frame cfa value()

This allows consumers to set the number of thA @fgster for rows in the frame tables. By default it is
taken from libdwarf.h and i®W FRAME_CFA _COL. Consumer code should set this appropriately and for
nearly all architectureBW FRANME_CFA_COL3 is an appropriate setting.

Dwar f _Hal f
dwarf _set _frame_rul e_cfa_val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_cfa_val ue() sets the alueval ue as the number of the a&fregister
rule’ for thisdbg when initializing rules tables.

The function returns the previous value of the pseudo-register (taken fralingtstructure).

6.16.0.14 dwarf_set_frame_same value()

This allows consumers to set the number of the pseudo-register WheICHA same_alue is the
operation. Bydefault it is taken from libdwarf.h and BW FRAME_SAME_VAL. Consumer code should
set this appropriatelghough for man architecturedDW FRAME_SAME_VAL is an appropriate setting.

Dwar f _Hal f
dwarf _set frame_rul e_sanme_val ue(Dwar f_Debug dbg,
Dwar f _Hal f val ue);

dwarf _set frame_rul e_sane_val ue() sets the &lueval ue as the number of the register that
is the pseudo-register set by the DW_CFA_same_value frame operation.

The function returns the previous value of the pseudster (talen from thedbg structure).

6.16.0.15 dwarf_set_frame_undefined_value()

This allows consumers to set the number of the pseudo-register
when DN_CFA_undefined_a&lue is the operation. By default it is taken from libdwarf.h and is

rev 2.30, Sept 14, 2015 -75-

-76 -

DW FRAME _UNDEFI NED_VAL. Consumer code should set this appropriatdyough for man
architecture®wW FRAME _UNDEFI NED VAL is an appropriate setting.

Dwar f _Hal f
dwarf _set frame_rul e_undefi ned_val ue(Dwarf _Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_undefi ned_val ue() sets the alue val ue as the number of the
register that is the pseudo-register set by the DW_CFA_undefined_value frame operation.

The function returns the previous value of the pseudstar (talen from thedbg structure).

6.16.0.16 dwarf_set_default_address size()

This allows consumers to set aaldf address size. When one has an object where the default address_size
does not match the frame address size where there is ng_dieflo aailable to get a frame-speif
address-size, this function is usefutor example, if an EIf64 object has a .debug_frame whose real
address_size is 4 (32 bits). This a very rare situation.

Dwar f _Smal |
dwarf _set default _address_si ze(Dwarf _Debug dbg,
Dwarf _Smal | val ue);

dwarf _set default_address_si ze() sets the alueval ue as the default address size for this
activation of the readerbut only if val ue is greater than zero (otherwise the default address size is not
changed).

The function returns the previous value of the default address size (taken frdbgth&ucture).

6.16.0.17 dwarf_get_fde info_for_reg3()

This interfaice is suitable for WARF3 and DVARF2. Itreturns the values for a particular reajister
(Not for the CIA regster, see dvarf_get_fde_info_for_cfa_g3() belav). If the application is going to
retrieve the value for more than awet abl e_col umm values at thispc_r equest ed (by calling this
function multiple times) it is much morefigient to call dvarf_get fde_info_for_all_gs3() (in spite of the
additional setup that requires of the caller).

int dwarf_get fde_info_for_reg3(
Dwar f _Fde fde,
Dwarf Hal f tabl e col um,
Dwar f _Addr pc_requested,
Dwarf _Smal | *val ue_t ype,
Dwar f _Si gned *of fset_rel evant,
Dwar f _Si gned *regi ster_num
Dwar f _Si gned *of fset_or_bl ock_| en,
Dwar f _Ptr *bl ock_ptr,
Dwar f _Addr *row_pc,
Dwarf _Error *error);

dwarf _get fde_info_for_reg3() returnsDW DLV_OK on success. It setsval ue_t ype to
one of DW_EXPR_OFFSET (0), W_EXPR_\L_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_MAL_EXPRESSION(3). Ortall, t abl e_col unm must be set to the register number of a
real rgjister Not the ch ‘register’ or DN_FRAME_SAME_MALUE or
DW_FRAME_UNDEFINED_VALUE.

rev 2.30, Sept 14, 2015 - 76 -

-77 -

if *val ue_t ype has the value DW_EXPR_OFFSET (0) then:

It sets*of f set _rel evant to non-zero if the offset is relant for the rov specified by
pc_request ed and column specified blyabl e _col um or, for the FDE specified bf/de.
In this casethe *regi ster _numwill be set to W_FRAME_CFRA COL3 (. This is an
offset(N) rule as specified in the VIARF3/2 documents. Adding the alue of
*of f set _or bl ock_| en to the value of the G¥xregster gives the address of a location
holding the previous value of registesibl e _col umm.

If offset is not relgant for this rule,* of f set rel evant is set to zero.*r egi st er _num
will be set to the number of the reagfiiger holding the value of thteabl e _col um register.
This is the register(R) rule as specified WBRF3/2 documents.

The intent is to return the rule for thevgn pc value and rgister The location pointed to by

regi st er _numis set to the register value for the rule. The location pointed tif bget is

set to the offset value for the rul&ince more than one pc value willearows with identical

entries, the user mayant to knav the earliest pc value after which the rules for all the columns
remained unchanged. Recall that in the virtual table that the frame information represents there
may be one or more tablews with identical data (each such tablevrat a dfferent pc alue).

Given apc_request ed which refers to a pc in such a group of identical rows, the location
pointed to byr ow_pc is set to the lowest pc value within the group of identical rows.

If *val ue_t ype has the value DW_EXPR_VAL_OFFSET (1) then:
This will be a wal ofiset(N) rule as specified in the VBARF3/2 documents so
*of fset _relevant will be non zero. The calculation is identical to the
DW_EXPR_OFFSET (0) calculation withtof f set _rel evant non-zero, ht the \alue
resulting is the actualabl e_col unm value (rather than the address where thkie may be
found).

If *val ue_t ype has the value DW_EXPR_EXPRESSION (1) then:
*of fset _or bl ock_I en is set to the length in bytes of a block of memory withVeAIRF
expression in the block* bl ock_ptr is set to point at the block of memoryhe consumer
code shouldevduate the block as a\MARF-expression. The result is the address where the
previous value of the register may be found. This iSMABF3/2 expression(E) rule.

If *val ue_t ype has the value DW_EXPR_VAL_EXPRESSION (1) then:
The calculation is»actly as for DW_EXPR_EXPRESSION (1) but the result of thNeARF-
expression ealuation is the value of thet abl e_col umm (not the address of theble). This
is a DNARF3/2 val_expression(E) rule.

dwarf get fde_ info_for_reg returnsDW DLV_ERRORIf there is an error and if there is an error
only theer r or pointer is set, none of the other output arguments are touched.

It is usable with eithedwar f _get fde_n() ordwarf_get fde_ at pc().

6.16.0.18 dwarf_get_fde info_for_cfa reg3()

rev 2.30, Sept 14, 2015 -77 -

-78 -

int dwarf_get fde info for_cfa reg3(Dwarf_Fde fde,

Dwar f _Addr pc_requested,

Dwarf _Smal | * val ue_type,

Dwar f _Si gned* of fset _rel evant,
Dwar f _Si gned* regi ster_num
Dwar f _Si gned* of fset _or_bl ock_|en,
Dwarf _Ptr * bl ock_ptr ,
Dwar f _Addr * row_pc_out,

Dwarf Error * error)

This is identical todwar f _get _fde_info _for_reg3() except the returnedalues are for the @G
rule. Soregister numberr egi st er _numwill be set to a real gister not one of the pseudogisters
(which are usually W_FRAME_CHRA _COL3, DV_FRAME_SAME_ MALUE, or
DW_FRAME_UNDEFINED_VALUE).

6.16.0.19 dwarf_get_fde info_for_all_regs3()

int dwarf_get fde_ info for_all_regs3(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwar f _Regt abl e3 *reg_t abl e,
Dwar f _Addr *row_pc,
Dwarf Error *error)

dwarf _get fde_ info for_all _regs3() returnsDW DLV _CK and sets*reg_t abl e for the
row specifed by pc_r equest ed for the FDE specified by de. The intent is to return the rules for
decoding all the registers,vgh a pc walue. r eg_t abl e is an array of rules, the array size spedifby
the caller plus a rule for the C& Therule for the cé returned in*r eg_t abl e defines the CA value

at pc_requested The rule for each register contairsveral values that enable the consumer to
determine the previousalue of the register (see the earlier documentation ofrDWRegtable3).
dwarf _get fde_info _for_reg3() and the Dwarf Retable3 documentation am for a
description of the values for eactwro

dwarf _get fde_ info_for_all _regs3returnsDW DLV_ERRORIf there is an error.

It is up to the caller to allocate spaceforeg_t abl e and initialize it properly.

6.16.0.20 dwarf_get_fde n()

i nt dwarf _get fde_n(
Dwarf Fde *fde_dat a,
Dwar f _Unsi gned fde_i ndex,
Dwar f _Fde *returned fde
Dwarf _Error *error)

dwarf _get fde_n() returnsDW DLV_OK and setg et ur ned_f de to theDwar f _Fde descriptor
whose inde isf de_i ndex in the table oDwar f _Fde descriptors pointed to Hyde_dat a. The inde
starts with 0. The table pointed to by fde_data is required to contain at least oné &méryable has no
entries at all the error checks may refer to uninitialized memBsturnsDW DLV_NO_ENTRY if the
index does not exist in the table Bivar f _Fde descriptors. ReturrBW DLV_ERRORif there is an error
This function cannot be used unless the blocwdr f _Fde descriptors has been created by a call to
dwarf _get _fde list().

rev 2.30, Sept 14, 2015 -78 -

-79-

6.16.0.21 dwarf_get_fde at_pc()

i nt dwarf _get fde_at pc(
Dwar f _Fde *fde_dat a,
Dwar f _Addr pc_of interest,
Dwarf _Fde *returned_fde,
Dwar f _Addr *1 opc,
Dwar f _Addr *hi pc,

Dwarf _Error *error)

dwarf _get fde_at pc() returns DWDLV_OK and setsreturned fde to a Dwarf_Fde
descriptor for a function which contains the pc value specifigoicbyf _i nt er est . In addition, it sets
the locations pointed to Hyopc andhi pc to the lav address and the high addressered by this FDE,
respectiely. The table pointed to by fde_data is required to contain at least oneletttg/table has no
entries at all the error checks may refer to uninitialized memiomgturnsDW DLV_ERROR on error It
returnsDW DLV_NO_ENTRY if pc_of _i nt er est is not in ay of the FDEs represented by the block of
Dwar f _Fde descriptors pointed to bfyde_dat a. This function cannot be used unless the block of
Dwar f _Fde descriptors has been created by a calvar f _get _fde list().

6.16.0.22 dwarf_expand_frame_instructions()

int dwarf_expand_franme_instructions(
Dwarf _Cie cie,
Dwarf Ptr instruction,
Dwar f _Unsigned i _| ength,
Dwarf _Frame_Op **returned_op_list,
Dwar f _Si gned * returned_op_count,
Dwarf _Error *error);

dwar f _expand_frame_i nstructions() is a High-level interface function which expands a frame
instruction byte stream into an array Bfvar f _Fr ane_Qp structures. @ indicate success, it returns
DW DLV_OK. The address where the byte stream begins is specifieddtyr uct i on, and the length of

the byte stream is specified by | engt h. The location pointed to byet ur ned_op_| i st is set to

point to a table ofr et urned_op_count pointers toDwar f _Frane_Op which contain the frame
instructions in the byte stream. It returnBW DLV_ERROR on error It neve returns

DW DLV_NO ENTRY. After a successful return, the array of structures should be freed using
dwar f _deal | oc() with the allocation typeDW DLA FRAVE_BLOCK (when thg are no longer of
interest).

Not all CIEs hae the same address-size, so it is crucial that a CIE pointer to thedr@lfadde passed in.

Dwar f _Si gned cnt;
Dwar f _Frame_Op *frameops;
Dwarf Ptr instruction;
Dwar f _Unsi gned | en;

int res;

res = expand_frame_instructions(dbg,instruction,len, &f raneops, &nt, &error);
if (res == DWDLV_CK) {
for (i =0; i <cnt; ++i) {
/* use frameops[i] */
}
dwar f _deal | oc(dbg, franeops, DWDLA FRAME BLOCK);

rev 2.30, Sept 14, 2015 -79-

-80-

6.16.0.23 dwarf_get_fde_exception_info()

int dwarf_get fde_exception_info(
Dwar f _Fde fde,
Dwarf _Signed * offset _into_exception_tables,
Dwarf Error * error);

dwarf _get fde_exception_info() is an IRIX specific function which returns an exception table
signed ofset through of fset into_exception_tables. The function neer returns

DW DLV_NO _ENTRY. If DW DLV_NO ENTRY is NULL the function returndwW DLV_ERROR. For
non-IRIX objects the offset returned willvedys be zero.For non-C++ objects the offset returned will
always be zero.The meaning of the offset and the content of the tables is not defined in this document.
The applicable CIE augmentation string (seevabdetermines whether the value returned has meaning.

6.17 Location Expression Evaluation

An "interpreter" which ealuates a location expression is required ig dabugger There is no intedce
defined here at this time.

One problem with defining an interface is that operations are machine dependgrdepbad on the
interpretation of register numbers and the methods of getting values from the environment the expression is
applied to.

It would be desirable to specify an interface.

6.17.1 Location List Internal-level I nterface

6.17.1.1 dwarf_get_loclist_entry()

int dwarf_get loclist_entry(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Addr *hi pc_of f set,
Dwar f _Addr *1 opc_of fset,
Dwarf _Ptr *data,
Dwar f _Unsi gned *entry_I en,
Dwar f _Unsi gned *next_entry,
Dwarf Error *error)

The function reads a location list entry startingfat set and returns through pointers (when successful)
the high pahi pc_of f set, low pc| opc_of f set, a pointer to the location description datat a, the
length of the location description dagat ry_| en, and the offset of the next location description entry
next_entry.

This function will usually werk correctly (meaning with most objects) but will not work correctly (and can
crash an application calling it) if either some location list applies to a compilation unit with an address_size
different from the werall address_size of the object file being read or if the .debug_loc section being read
has random padding bytes between loclists. Neither of these characteristics necessarily represents a bug in
the compiler/linler toolset that produced the object file being read. TWARF standard allows both
characteristics.

dwarf _dwarf_get | oclist_entry() returnsDW DLV_OK if successful.DW DLV_NO_ENTRY is
returned when the fifet passed in is beyond the end of the .debug_loc section (expected if you start at
offset zero and proceed through all the entri&)/ DLV_ERRORs returned on error.

rev 2.30, Sept 14, 2015 -80-

-81-

Thehi pc_of fset, low pc| opc_of f set are offsets from the beginning of the current procedure, not
genuine pc values.

/* Looping through the dwarf | oc section finding loclists:
an exanple. */

int res;

Dwar f _Unsi gned next _entry;

Dwar f _unsi gned of f set =0;

Dwar f _Addr hi pc_off;

Dwar f _Addr | opc_off;

Dwarf _Ptr dat a;

Dwar f _Unsi gned entry_ | en;

Dwar f _Unsi gned next _entry;

Dwarf _Error err;

for(;:) {
res = dwarf_get | oclist_entry(dbg, newof fset, &i pc_of f,
& owpc_off, &data, &entry_ len, &ext _entry, &err);
if (res == DWDLV_OK) {
/* Avalid entry. */
newof f set = next _entry;
conti nue;
} else if (res ==DW DLV_NO ENTRY) {
/* Done! */
br eak;
} else {
/* Error!l */
br eak;

6.18 Abbreviations access

These are Internalel I nterface functions. Debuggers can ignore this.

6.18.1 dwarf_get_abbrev()

int dwarf_get abbrev(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Abbr ev *returned_abbrev,
Dwar f _Unsi gned *I engt h,
Dwar f _Unsigned *attr_count,
Dwarf Error *error)

The function dwarf _get abbrev() returns DW DLV_OK and sets*returned_abbrev to
Dwar f _Abbr ev descriptor for an abbreviation atfsdt *of f set in the abbreviations section (i.e
.debug_abbrg on success. The user is responsible for making sure that a valid abbreviation begins at
of f set in the abbreviations section. The location pointed td &ggt h is set to the length in bytes of

the abbreviation in the abbreviations section. The location pointed @t by count is set to the

rev 2.30, Sept 14, 2015 -81-

-82-

number of attributes in the ablitation. Anabbreiation entry with a length of 1 is the 0 byte of the last
abbreviation entry of a compilation unitdwar f _get _abbr ev() returnsDW DLV_ERROR on error If

the call succeeds, the storage pointed to *hyet ur ned_abbrev should be freed, using
dwar f _deal | oc() with the allocation typ®W DLA ABBREV when no longer needed.

6.18.2 dwarf_get_abbrev_tag()

i nt dwarf_get abbrev_tag(
Dwar f _abbrev abbrev,
Dwarf_Half *return_tag,
Dwarf _Error *error);

If successfuldwar f _get _abbrev_t ag() returnsDW DLV_OK and setgr et ur n_t ag to thetag of
the given abreviation. ItreturnsDW DLV _ERRORon error It neve returnsDW DLV_NO_ENTRY.

6.18.3 dwarf_get_abbrev_code()

int dwarf_get abbrev_code(

Dwar f _abbrev abbrev,
Dwarf _Unsigned *return_code,
Dwar f _Error *error);

If successful,dwarf _get abbrev_code() returnsDW DLV_CK and sets‘r et ur n_code to the
abbreviation code of the gen ébbreviation. It returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

6.18.4 dwarf_get_abbrev_children_flag()

int dwarf_get abbrev_chil dren_fl ag(
Dwar f _Abbrev abbrev,
Dwarf _Signed *returned_flag,
Dwarf _Error *error)

The function dwarf_get abbrev_children_flag() returns DWDLV _OK and sets
returned_flag to DWchildren_no (if the given abbreviation indicates that a die with that
abbreviation has no children) dW chi | dr en_yes (if the given abreviation indicates that a die with
that abbreviation has a child). It retuid@/ DLV_ERROR on error.

6.18.5 dwarf_get_abbrev_entry()

int dwarf_get abbrev_entry(
Dwar f _Abbrev abbrev,
Dwar f _Si gned i ndex,
Dwar f _Hal f *attr_num
Dwarf _Signed *form
Dwarf O f *offset,
Dwarf Error *error)

If successful,dwarf_get abbrev_entry() returns DW DLV _CK and sets*attr_num to the
attribute code of the attritie whose indeis ecifed byi ndex in the gven abbreviation. Theindex
starts at 0. The location pointed to bgr mis set to the form of the attrike. Thelocation pointed to by

of fset is set to the byte offset of the attribute in the abbreviations section. It returns
DW DLV_NO_ENTRY if the index specified is outside the range of attributes in this albten. Itreturns

rev 2.30, Sept 14, 2015 -82-

-83-

DwW DLV_ERROR 0N error.

6.19 String Section Operations

The .debug_str section contains only strind@ehuggers need wer use this interface: it is only for
debugging problems with the string section itself.

6.19.1 dwarf_get_str()

int dwarf_get str(
Dwar f _Debug dbg,
Dwarf O f of f set,
char **string,
Dwarf _Signed *returned_str_|en,
Dwarf _Error *error)

The functiondwar f _get _str () returnsDW DLV_OK and setsr et urned_str _| en to the length

of the string, not counting the null terminagtthat begins at the offset specified by f set in the
.delug_str section. The location pointed todtyr i ng is set to a pointer to this string. The next string in
the .debug_str section begins at the/jmesof f set + 1 +*returned_str _| en. A zero-length string

is NOT the end of the section. If there is no .debug_str sedidhPLY_NO ENTRY is returned. If there

is an errorDW DLV_ERROR is returned. If we are at the end of the section (thatfifset is one past
the end of the sectioW DLV_NO _ENTRY is returned. If thef f set is some other too-large value then
DW DLV_ERRORIs returned.

6.20 Address Range Operations

These functions provide information about address ranges. Address ranges map rangehie$ po the
corresponding compilation-unit die thatvecs the address range.

6.20.1 dwarf_get_aranges()

i nt dwarf_get _aranges(
Dwar f _Debug dbg,
Dwar f _Arange **aranges,
Dwarf_Si gned * returned_arange_count,
Dwarf _Error *error)

The functiondwar f _get _aranges() returnsDW DLV_CK and setsr et ur ned_ar ange_count

to the count of the number of address ranges in theigdebanges section (for all compilation unit#).
sets* ar anges to point to a block obwar f _Ar ange descriptors, one for each address range. It returns
DW DLV_ERRCRon error It returnsDW DLV_NO_ENTRY if there is no .debug_aranges section.

rev 2.30, Sept 14, 2015 -83-

-84 -

Dwar f _Si gned cnt;
Dwar f _Arange *arang;
int res;

res = dwarf _get aranges(dbg, &arang, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++) {
/* use arang[i] */
dwarf _deal | oc(dbg, arang[i], DWDLA ARANGE);

}
dwar f _deal | oc(dbg, arang, DWDLA LI ST);

6.20.2 dwarf_get_arange()

i nt dwarf_get _arange(
Dwar f _Arange *ar anges,
Dwar f _Unsi gned ar ange_count,
Dwar f _Addr address,
Dwar f _Arange *returned_arange,
Dwarf _Error *error);

The functiondwar f _get _ar ange() takes as input a pointer to a block Bfiar f _Ar ange pointers,
and a count of the number of descriptors in the bldtkhen searches for the descriptor thatecs the
given addr ess. Ifitfinds one, it returnBW DLV_OK and set$ r et ur ned_ar ange to the descriptor
It returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if there is no .delog_aranges entry
covering that address.

6.20.3 dwarf_get_cu_die offset()

int dwarf_get cu_die_ offset(
Dwar f _Arange ar ange,
Dwar f O f *returned_cu_di e offset,
Dwarf _Error *error);

The functiondwarf _get cu_di e_of fset () takes aDwar f _Arange descriptor as input, and if
successful returnBW DLV_OK and set$r et urned_cu_di e_of f set to the ofset in the .delg_info
section of the compilation-unit DIE for the compilation-unit represented by tlea gildress rangelt
returnsDW DLV_ERROR on error.

6.20.4 dwarf_get_arange cu_header_offset()

i nt dwarf_get _arange_cu_header _of fset (
Dwar f _Arange ar ange,
Dwarf O f *returned _cu_header offset,
Dwarf _Error *error)

The functiondwar f _get _arange_cu_header _of f set () takes aDwar f _Ar ange descriptor as
input, and if successful returV DLV_CK and set$r et ur ned_cu_header _of f set to the ofset
in the .delng_info section of the compilation-unit header for the compilation-unit represented byehe gi

rev 2.30, Sept 14, 2015 -84 -

-85-

address range. It returB®V DLV_ERRORon error.
This function added Rel.45, June, 2001.

This function is declared as 'optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if ¢hgian of libdwarf linked into an application has this
function.

6.20.5 dwarf_get_arange info()

i nt dwarf_get arange_i nfo(
Dwar f _Arange ar ange,
Dwarf _Addr *start,
Dwar f _Unsi gned *I engt h,
Dwarf O f *cu_die_offset,
Dwarf _Error *error)

The functiondwar f _get _arange_i nf o() returnsDW DLV_CK and stores the startinglue of the
address range in the location pointed tesbwr t , the length of the address range in the location pointed
to byl engt h, and the offset in the .debug_info section of the compilation-unit DIE for the compilation-
unit represented by the address range. It relbWiLV ERROR on error.

6.21 General Low Level Operations

This function is low-lgel and intended for use only by programs such as dwarf-dumpers.

6.21.1 dwarf_get_address size()

int dwarf_get address_si ze(Dwarf_Debug dbg,
Dwarf Hal f *addr_si ze,
Dwarf _Error *error)

The function dwarf _get address_si ze() returns DW DLV _OK on success and sets the
*addr _si ze to the size in bytes of an addres$s.case of errgit returnsDW DLV _ERROR and does not
set*addr _si ze.

The address size returned is thverall address size, which can be misleading fiedént compilation units
have dfferent address sizedMarny ABIs hare mly a single address size peteeutable, but dfering
address sizes are becoming more common.

Usedwar f _get di e_address_si ze() instead whener possible.

6.21.2 dwarf_get die address size()

int dwarf_get die address_size(Dwnarf_Di e die,
Dwarf Hal f *addr_si ze,
Dwar f _Error *error)

The functiondwarf _get die_address_size() returns DW DLV_OK on success and sets the
*addr _si ze to the size in bytes of an addres$s.case of errgit returnsDW DLV_ERROR and does not
set*addr _si ze.

The address size returned is the address size of the compilation unit owrdng the

rev 2.30, Sept 14, 2015 -85-

-86 -

This is the preferred way to get address size whebmhef Di e is known.

6.22 Ranges Operations (.debug_ranges)

These functions provide information about the address ranges indicatedWyAd _r anges attribute
(the ranges are recorded in the debug_ranges section) of a DIE. Each call of
dwarf _get _ranges_a() or dwarf_get _ranges() returns a an array of Dasf_Ranges structs,
each of which represents a single ranges enftiye struct is defined i i bdwar f . h.

6.22.1 dwarf_get_ranges()

This is the original call and it will work fine when all compilation unitséhtoe same address_siz€here
is nodi e argument to this original version of the function. Other arguments (and deallocation) match the
use ofdwar f _get ranges_a() (described next).

6.22.2 dwarf_get_ranges a()

int dwarf_get _ranges_a(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwarf _Die die,
Dwar f _Ranges **ranges,
Dwarf _Signed * returned_ranges_count,
Dwarf _Unsigned * returned_byte_count,
Dwarf _Error *error)

The functiondwar f _get _ranges_a() returnsDW DLV_CK and set$ r et ur ned_r anges_count
to the count of the number of address ranges in the group of ranges in the .debug_ranges sds#ibn at of
of f set (which ends with a pair of zeros of poingze). Thisfunction is nev as of 27 April 2009.

The of f set argument should be the value ofDEV AT_r anges attribute of a Debgging Information
Entry.

The di e agument should be the value ofDmar f _Di e pointer of aDwar f _Di e with the attrilute
containing this range setfeét. Becauseach compilation unit has its own address_size field thismaent
is necessary to to correctly read ranges. (Mxatigables hee the same address_size irery compilation
unit, but some ABIs alle multiple address sized in arxegutable). Ifa NULL pointer is passed in
libdwarf assumes a single address_size is appropriate for all ranges records.

The call setsranges to point to a block oDwar f _Ranges structs, one for each address range.
returns DW DLV_ERROR on error It returnsDW DLV_NO _ENTRY if there is no . debug_r anges
section or ifof f set is past the end of thedebug_r anges section.

If the *r et ur ned_byt e_count pointer is passed as non-NULL the number of bytes that the returned
ranges were taken from is returned through the pointer Xomple if the returned_ranges_count is 2 and
the pointer-size is 4, then returned_byte count will be 8). Ifthet ur ned_byt e_count pointer is
passed as NULL the parameter is ignorddhe *r et ur ned_byt e_count is only of use to certain
dumper applications, most applications will not use it.

rev 2.30, Sept 14, 2015 - 86 -

-87-

Dwar f _Si gned cnt;
Dwar f _Ranges *ranges;
Dwar f _Unsi gned byt es;
int res;
res = dwarf_get ranges_a(dbg, of f, di eptr, &ranges, &nt, &ytes, &error);
if (res == DWDLV_OK) {
Dwar f _Signed i ;
for(i =0; i <cnt; ++) {
Dwar f _Ranges *cur = ranges+i;
/* Use cur. */
}

dwar f _ranges_deal | oc(dbg, ranges, cnt);

6.22.3 dwarf_ranges_dealloc()

i nt dwarf_ranges_deal | oc(

Dwar f _Debug dbg,

Dwar f _Ranges *ranges,

Dwar f _Si gned range_count,

);
The functiondwar f _r anges_deal | oc() takes as input a pointer to a blockdfar f _Ranges array
and the number of structures in the block. It frees all the data in the array of structures.

6.23 Gdb Index operations

These functions get access to the fast lookup tables defined by gdb and gcc and storegtlin thadex
section. Thesection is of siicient complexity that a number of function interfaces are neeffed.
additional information see "https://sounaee.org/gdb/onlinedocs/gdb/Index-Section-Format.html#Index-
Section-Format".

6.23.1 dwarf_gdbindex_header ()

int dwarf_gdbindex_header(Dwarf_Debug dbg,
Dwarf_Gdbind& * gdbindexptr,
Dwarf_Unsigned * version,
Dwarf_Unsigned * cu_list_offset,
Dwarf_Unsigned * types_cu_list_offset,
Dwarf_Unsigned * address_area_offset,
Dwarf_Unsigned * symbol_table_offset,
Dwarf_Unsigned * constant_pool_offset,
Dwarf_Unsigned * section_size,
Dwarf_Unsigned * unused_reserved,
const char ** section_name,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_header () takes as input a pointer to a @wW_Delug structure and
returns fields through various pointers.

If the function returns @W/_DLV_NO_ENTRY there is no .gdb_indesection and none of the return-
pointer argument values are set.

If the function returns B/_DLV_ERRORer r or is set to indicate the specific errbut no other return-

rev 2.30, Sept 14, 2015 - 87 -

-88 -

pointer arguments are touched.

If successful, the function returnsAD DLV_OK and other values are sethe other values are set as
follows:

The feld *gdbi ndexpt r is set to an opaque pointer to a litadfv internal structure used as aguanent
to other .gdbindefunctions belar.

The remaining fields are set to values that are mostly of interest to a pretty-printer appliSagothe
detailed layout specification for space. Thevalues returned are recorded in the &fvGdbind& opaque
structure for the other gdbindéunctions documented b&lo

The field *ver si on is set to the version of the gdb ind®ader (2)..

The field *cu_| i st _of f set is set to the offset (in the .gdb_ind&ction) of the cu-list.

The field *t ypes_cu_I| i st_of f set is set to the offset (in the .gdb_indsction) of the types-list.
The field *addr ess_ar ea_of f set is set to the offset (in the .gdb_ind&ction) of the address area.
The field *synbol _t abl e_of f set is set to the offset (in the .gdb_ind&ction) of the symbol table.

The feld *constant _pool _of fset is set to the offset (in the .gdb_indsection) of the constant
pool.

The field *sect i on_si ze is set to the length of the .gdb_inxdsction.
The field *unused_r eserved is set to zero.

The feld *secti on_nane is set to the EIf object file section name (.gdb_ix)déf a non-EIf object fle
has such a section the value set might be NULL or might point to an empty string (NUL terminated), so
code to account for NULL or empty.

The field *er r or is not set.

Here we she a use of the set of cu_list functions (using all the functions in one example makes it rather
too long).

rev 2.30, Sept 14, 2015 -88 -

-89 -

Dwar f _Gdbi ndex gi ndexptr;

Dwar f _Unsi gned version = 0;

Dwarf _Unsigned cu_list_offset = 0;

Dwar f _Unsi gned types cu list _offset = 0;

Dwar f _Unsi gned address_area_offset = 0;

Dwar f _Unsi gned synbol table offset = 0;

Dwar f _Unsi gned constant_pool offset = 0;

Dwar f _Unsi gned section_size = 0;

Dwar f _Unsi gned reserved = O;

Dwarf _Error error = 0;

const char ** section_name = 0;

int res;

res = dwarf _gdbi ndex_header (dbg, &gi ndexptr,
&version, &u_list_offset, & ypes cu_list_offset,
&address_area_of fset, &ynbol tabl e offset,
&const ant _pool offset, §ion_size,
&r eserved, &ecti on_nane, &error);

if (res == DWDLV_NO ENTRY) {

return;

} else if (res == DWDLV_ERROR) {
return;

}

{

/* do sonething with the data */
Dwar f _Unsi gned | ength = 0;
Dwar f _Unsi gned typesl ength = 0;
res = dwarf _gdbi ndex_cu_list_array(gi ndexptr,
&l ength, &error);
/* Exanpl e actions. */
if (res == DWDLV_OK) {
for(Dwarf_Unsigned i = 0; i < length; ++i) {
Dwar f _Unsi gned cuof fset = 0;
Dwar f _Unsi gned cul ength = 0;
res = dwarf _gdbi ndex_culist_entry(gi ndexptr,
i, &uof f set, &cul engt h, &error);
if (res == DWDLV_OK) {
/* Do sonething with cuoffset, culength */
}

}
}
res = dwarf _gdbi ndex_types _cu_list_array(gi ndexptr,
& ypesl engt h, &rror);
if (res == DWDLV_OK) {
for(Dwarf_Unsigned i = 0; i < typeslength; ++i) {
Dwar f _Unsi gned cuof fset = 0;
Dwar f _Unsi gned cul ength = 0;
res = dwarf _gdbi ndex_types_culist_entry(gi ndexptr,
i, &uof f set, &cul engt h, &error);
if (res == DWDLV_OK) {
/* Do sonething with cuoffset, culength */
}

}

}
dwar f _gdbi ndex_free(gi ndexptr);

rev 2.30, Sept 14, 2015 -89 -

-90-

6.23.2 dwarf_gdbindex_culist_array()

int dwarf_gdbindex_culist_array(Dwarf_Gdbindgdbindexptr,
Dwarf_Unsigned 1ist_length,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cul i st _array() takes as input valid Dwarf_Gdbindpointer.

While currently only W _DLV_OK is returned one should test forWDDLV_NO_ENTRY and
DW_DLV_ERROR and do something sensible if either is returned.

If successful, the function returndAD DLV_OK and returns the number of entries in tbalist through
thd i st _| engt h pointer.

6.23.3 dwarf_gdbindex_culist_entry()

int dwarf_gdbindex_culist_entry(Dwarf_Gdbindgdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * cu_offset,
Dwarf_Unsigned * cu_length,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cul i st _entry() takes as input valid Darf _Gdbinde pointer and
an inde into the culist arrayValid indexes ae 0 through i st | ength - 1.

If it returns DN_DLV_NO_ENTRY there is a coding errorf it returns WW_DLV_ERROR there is an
error of some kind and the error is indicated by the vale returned throughrtbe pointer.

On success it returnsVD DLV_OK and returns theu_of f set (the section global &fet of the CU in
.debug_info)) andu_| engt h (the length of the CU in .debug_info) values through the pointers.

6.23.4 dwarf_gdbindex_types culist_array()

int dwarf_gdbindex_types_culist_array(Dwarf Gdbixdgdbindexptr*/,
Dwarf_Unsigned ¥*types_list_length*/,
Dwarf_Error *[*error*/);

The functiondwar f _gdbi ndex_types_cul i st _array() takes as input valid Darf_Gdbindex
pointer.

While currently only W _DLV_OK is returned one should test forWDDLV_NO_ENTRY and
DW_DLV_ERROR and do something sensible if either is returned.

If successful, the function returndAD DLV_OK and returns the number of entries in the types culist
through théi st _| engt h

6.23.5 dwarf_gdbindex_types culist_entry()

rev 2.30, Sept 14, 2015 -90 -

-901-

int dwarf_gdbindex_types_culist_entry(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * cu_offset,
Dwarf_Unsigned * tu_offset,
Dwarf_Unsigned * type_signature,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_types_culist_entry() takes as input valid Darf Gdbindex
pointer and an indeinto the types culist arrayalid indexes ae 0 through ypes i st _length -1.

If it returns DNV_DLV_NO_ENTRY there is a coding errorlf it returns WW_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

On success it returnsVD DLV_OK and returns théu_of f set (the section global &fet of the CU in
.delug_types)) and u_| engt h (the length of the CU in .debug_types) values through the poiniters.
also returns the type signature (a 64bit value) throuth §hyge _si gnat ur e pointer.

6.23.6 dwarf_gdbindex_addressarea()

int dwarf_gdbindex_addressarea(Dwarf_Gdbinftgdbindexptr*/,
Dwarf_Unsigned ¥*addressarea_list_length*/,
Dwarf_Error *[*error*/);

The functiondwar f _addr essar ea() takes as input valid Darf _Gdbind& pointer and returns the
length of the address area throwglhdr essarea_| i st _| engt h.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returndAD DLV_OK and returns the number of entries in thddress area
through theaddr essarea_| i st _| engt h pointer.

6.23.7 dwarf_gdbindex_addressarea entry()

int dwarf_gdbindex_addressarea_entry(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * low_adddress,
Dwarf_Unsigned * high_address,
Dwarf_Unsigned * cu_index,
Dwarf_Error *error);

The functiondwar f _addr essarea_entry() takes as input valid Daurf _Gdbinde pointer and an
index into the address area (valid inde ae zero througladdr essarea |ist_length - 1.

If it returns DN_DLV_NO_ENTRY there is a coding errorlf it returns W_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returndAD DLV_OK and returns Théow_addr ess hi gh_addr ess and
cu_i ndex through the pointers.

Given an gen Dwarf_Gdbindeone uses the function as follows:

rev 2.30, Sept 14, 2015 -91-

-92-

Dwarf_Unsigned list_len = 0;
Dwarf_Unsigned i;
int res = dwarf_gdbindex_addressarea(gdbindex,
&list_len,err);
if (res I= DW_DLV_OK) {
/* Something wrong, ignore the addressarea */
}

[* Iterate through the address area. */
for(i =0;i<list_len; i++){
Dwarf_Unsigned lowpc = 0;
Dwarf_Unsigned highpc = 0;
Dwarf_Unsigned cu_index,
res = dwarf_gdbindex_addressarea_entry(gdbindex,i,
&lowpc,&highpc,
&cu_index,
err);
if (res I= DW_DLV_OK) {
/* Something wrong, ignore the addressarea */
}
/* We havea valid address area entdo ©mething
with it. */

6.23.8 dwarf_gdbindex_symboltable_array()

int dwarf_gdbindex_symboltable_array(Dwarf_Gdbixddbindexptr,
Dwarf_Unsigned symtab_list_length,
Dwarf_Error *error);

One can look at the symboltable as a-tewel table (with The outer el indexes through symbol names
and the inner leel indexes through all the compilation units that define that symbol (each symbol having a
different number of compilation units, this is not a simple rectangular table).

The function dwar f _gdbi ndex_synbol t abl e_array() takes as input valid Darf Gdbindex
pointer.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returndAD DLV_OK and returns Theynt ab_| i st _| engt h through the
pointer.

Given a \alid Dwarf_Gdbind& pointer, one can access the entire symbol table as follows (ussigrr’
here to indicate we are giving up due to a problem while keeping the example code fairly short):

rev 2.30, Sept 14, 2015 -92-

-93-

Dwarf_Unsigned symtab_list_length = 0;
Dwarf_Unsigned i = 0;
int res = dwarf_gdbindex_symboltable_array(gdbindex,
&symtab_list_length,err);
if (res I= DW_DLV_OK) {
return;
}
for(i =0;i<symtab_list_length; i++) {
Dwarf_Unsigned symnameoffset = 0;
Dwarf_Unsigned cuvecoffset = 0;
Dwarf_Unsigned ii = 0;
const char *name = 0;
res = dwarf_gdbindex_symboltable_entry(gdbindex,i,
&symnameoffset,&cuvecoffset,
err);
if (res I= DW_DLV_OK){
return;
}
res = dwarf_gdbindex_string_by_offset(gdbindex,
symnameoffset,&name,err);
if(res I= DW_DLV_OK) {
return;
}
res = dwarf_gdbindex_cuvector_length(gdbindex,
cuvecoffset,&cuvec_len,err);
if(res I= DW_DLV_OK){
return;
}
for(ii = 0; ii < cuvec_len; ++ii) {
Dwarf_Unsigned attributes = 0;
Dwarf_Unsigned cu_inde= 0;
Dwarf_Unsigned reservedl = 0;
Dwarf_Unsigned symbol_kind = 0;
Dwarf_Unsigned is_static = 0;

res = dwarf_gdbindex_cuvector_inner_attributes(
gdbindex,cuvecoffset,ii,
&attributes,err);

if(res I= DW_DLV_OK) {
return;

}

[* "attributes’ is a value with various internal
fields so we expand the fields. */

res = dwarf_gdbindex_cuvector_instance_expand_value(gdbindex,
attributes, &cu_index,&reservedl,&symbol_kind, &is_static,
err);

if(res I= DW_DLV_OK) {
return;

}

/* Do something with the attributes. */

rev 2.30, Sept 14, 2015 -93-

-94 -

6.23.9 dwarf_gdbindex_symboltable_entry()

int dwarf_gdbindex_symboltable_entry(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * string_offset,
Dwarf_Unsigned * cu_vector_offset,
Dwarf_Error *error);

The function dwar f _gdbi ndex_synbol t abl e_entry() takes as input valid Darf Gdbindex
pointer and an entry index(valid indealues being zero througtynt ab_Ii st _| ength -1).

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returns WODLV_OK and returns Thestring_of fset and
cu_vect or _of f set through the pointers. See the examplevabshich uses this function.

6.23.10 dwarf_gdbindex_cuvector _length()

int dwarf_gdbindex_cuvector_length(
Dwarf_Gdbinde gdbindex,
Dwarf_Unsigned cusctor_offset,
Dwarf_Unsigned * innercount,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cuvect or _| engt h() takes as input alid Dwarf_Gdbinde& pointer
and an a cu vector offset.

If it returns DNV_DLV_NO_ENTRY there is a coding errorf it returns W_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returnd\D DLV_OK and returns thenner _count through the pointerThe
i nner _count is the number of compilation uniegtors for this array ofectors. Sethe example abe
which uses this function.

6.23.11 dwarf_gdbindex_cuvector_inner_attributes()

int dwarf_gdbindex_cuvector_inner_attributes(
Dwarf_Gdbinde gdbindex,
Dwarf_Unsigned cuesctor_offset,
Dwarf_Unsigned innerinde
[* The attr_value is a field of bits. For expanded version

use dvarf_gdbindex_cuvector_expand_value() */

Dwarf_Unsigned * attr_value,
Dwarf_Error *error);

The function dwarf _gdbi ndex_cuvector i nner_attributes() takes as input alid
Dwarf_Gdbinde pointer and an a cu vector offset andraner _i ndex (validi nner _i ndex values are
zero through nner _count - 1.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returnd\D DLV_OK and returns That t r _val ue through the pointerThe
attr_val ue is actually composed of w&al fields, see the next function which expands thiee: See

rev 2.30, Sept 14, 2015 -94 -

-95-

the example ah@ which uses this function.

6.23.12 dwarf_gdbindex_cuvector_instance_expand_valug()

int dwarf_gdbindex_cuvector_instance_expand_value(
Dwarf_Gdbinde gdbindex,
Dwarf_Unsigned attr alue,
Dwarf_Unsigned * cu_index,
Dwarf_Unsigned * reservedl,
Dwarf_Unsigned * symbol_kind,
Dwarf_Unsigned * is_static,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cuvect or _i nst ance_expand_val ue() takes as input alid
Dwarf_Gdbinde pointer and amat t r _val ue.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returns DW_DLV_OK and returns the following values through the pointers:
The cu_i ndex field is the inde in the applicable CU list of a compilation unit. For the purpose of

indexing the CU list and the types CU list form a single array sa&thé ndex can be indicating either
list.

Thesynbol _ki nd field is a small integer with the symbol kind(zero is reserved, one is a tyhpe, 2 is a
variable or enum value, etc).

Ther eservedl field shouldhave the value zero and is the value of a bit field defined as reserved for
future use.

Thei s_st ati c field is zero if the CU inded is gobal and one if the CU inded is gatic.

See the example ab®which uses this function.

6.23.13 dwarf_gdbindex_string by offset()

int dwarf_gdbindex_string_by_offset(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned stringddet,
const char ** string_ptr,
Dwarf_Error * error);

The function dwar f _gdbi ndex_string by offset() takes as input valid Darf Gdbindex

pointer and &t ri ngof f set If it returns DNV_DLV_NO_ENTRY there is a coding erronf it returns

DW_DLV_ERROR there is an error of some kind. and the error is indicated byathe returned through
theer r or pointer.

If it succeeds, the call returns a pointer to a string from the 'constant pool’ throughrtheg _ptr. The
string pointed to must rer be free()d.

See the example ab®which uses this function.

rev 2.30, Sept 14, 2015 -95-

- 06 -

6.24 Debug Fission (.debug_tu_index, .debug_cu_index) operations

We rame things "xu" as these sectionsédne same format so we let "x" stand for either sectiimese
functions get access to thiedex functions needed to access and print the contents of an object file which is
an aggrgate of .dwo objects. Thesaections are implemented in gcc/gdb and are proposed to be part of
DWARF5 (As of July 2014 W/ARFS5 is not ihished). Theidea is that much debug information can be
separated 6finto individual .dve EIf objects and then agggaed simply into a single .dwp object so the
executable need not kia the complete debug information in it at runtime yetvalgmod debugging.

For additional information, see "https://gcc.gnghwiki/DebugFissionDWP",
"https://gcc.gnu.org/wiki/DelgFission”, and
"http://lwww.bayarea.net/"cary/dwf/Accelerated%20Access%20Diagram.png” and sometime in 2015, the
DWARFS5 standard.

There are FORM access functions related to Debug Fisstee dwarf formaddr() and
dwar f _get debug_addr _i ndex() anddwarf_get debug_str_i ndex().

The FORM with the hash value (for a referenceatype unit) isDNV FORM r ef _si g8.

In a compilation unit of Debug Fission object (or a .dwp Package FI®Y AT dwo_i d the hash is
expected to b®W FORM dat a8.

The DWARF5 standard défies the hash as an 8 byte value which we couldDuge f _Unsi gned.
Instead (and mostly for type safety) we define the valua sigicture whose type namelwar f _Si g8.

To look up a name in the hash (toind which CU(s) it exists in). use
dwar f _get debugfission_for_key()fP, defined bel ow

The second group of i nterfaces her e begi nni ng with
dwarf _get xu_i ndex_header() are useful if one wants to print a
.debug_tu_index or .debug cu_index section.

To access DIE, macro, etc information the support is built into D E,
Macro, etc operations so applications usually won't need to use these
operations at all.

6.24.1 Dwarf_Debug Fission Per CU

rev 2.30, Sept 14, 2015 - 96 -

-97-

#define DW_FISSION_SECT_COUNT 12
struct Dwarf_Dehg_Fission_Per CU_s {
/* Do not free the string. It contains "cu" or "tu". */
[* If this is not set (ie, not a CU/TU iBWP Package File)
then pcu_type will be NULL. */
const char * pcu_type;
[* pcu_inde is the inde (range 1 to N)
into the tu/cu table of offsets and the table
of sizes.1to N as he zero indeis reserved
for special purposes. Not a value one
actually needs. */
Dwarf_Unsigned pcu_index;
Dwarf_Sig8 pcu_hashi* 8 byte */
[* [0] has offset and size 0.
[1]-[8] are DW_SECT _* indees and the
values are the offset and size
of the respectie £ction contribution
of a single .dw object. When pcu_size[n] is
zero the corresponding section is not present. */
Dwarf_Unsigned pcu_offset[DW_FISSION_SECT_COUNT];
Dwarf_Unsigned pcu_size[DW_FISSION_SECT_COUNT];
Dwarf_Unsigned unusedi;
Dwarf_Unsigned unused?;

h

The structure is used to return data to callers with the data from eitheg .tlebnde or .debug_cu_index
that is applicable to a single compilation unit or type unit.

Callers to the applicable functions (see below) should allocate the structure and zero all the bytégin it.
structure has afefields that are presently unused. These are reserved for future use since it is impossible
to alter the structure without breaking binary compatibility.

6.24.2 dwarf_die from_hash_signature()

int dwarf_die_from_hash_signature(Dwarf_Debug dbg,
Dwarf_Sig8 * hash_sig,
const char * sig_type,
Dwarf_Die* returned_die,
Dwarf_Error* error);

The functiondwar f _di e_from hash_si gnat ur e() is the most direct way to go from the hash data
from aDW FORM ref _si g8 or aDW AT _dwo_i d (form DW FORM dat a8) to a DIE from a .dwp
package file or a .davobject file (.dwo access not supported yet).

The caller passes idbg which should bebwar f _Debug open/initialized on a .dwp package file (or a
.dwo object file).

The caller alsopasses imash_si g, a pinter to the hash signature for which the caller wishes to find a
DIE.

The caller also passes &1 g_t ype which must contain either "tu" (identifying the hash referring to a
type unit) or "cu" (identifying the hash as referring to a compilation unit).

On success the function retuld@/ DLV_OK and set$ r et ur ned_di e to be a pointer to a valid DIE for

the compilation unit or type unitf the type is "tu" the DIE returned is the specific type DIE that the hash
refers to. If the type is "cu” the DIE returned is the compilation unit DIE of the compilation unit referred
to.

rev 2.30, Sept 14, 2015 -97 -

-08 -

When appropriate the caller should free the space of the returned DIE by a call something like
dwarf_dealloc(dbg,die,DW_DLA DIE);

If there is no DWP &ckage File section or the hash cannot be found the function returns
DW DLV_NO ENTRY and leaesr et ur ned_di e untouched. Onlydwo objects and .dwp packagieb
have the package file indesections.

If there is an error of some sort the function retMs DLV _ERROR, leavesr et ur ned_di e untouched,
and setg er r or to indicate the precise error encountered.

6.24.3 dwarf_get_debugfission_for_die()

int dwarf_get_debudfission_for_die(Dwarf_Die die,
Dwarf_Debug_Fission_Per_CU * percu_out,
Dwarf_Error * error);

The functiondwar f _get _debugfi ssi on_f or _di e() returns the dely fission for the compilation
unit the DIE is a part of. AnDIE in the compilation (or type) unit will get the same result.

On a call to this function ensure the pointed-to space is fully initialized.
On success the function retu@/ DLV_OK and fills in the fields of per cu_out for which it has data.

If there is no DWP Package File section the function retubdg¢ DLV _NO ENTRY and leaes
*per cu_out untouched. Onlydwp package files lwva the package file indesections.

If there is an error of some sort the function retuddg DLV _ERROR, leares * per cu_out untouched,
and setg er r or to indicate the precise error encountered.

6.24.4 dwarf_get_debugfission_for_key()
int dwarf_get_debudfission_forel(Dwarf Debug dbg,

Dwarf_Sig8 * key,

const char * key type,
Dwarf_Debug_Fission_Per_CU * percu_out,
Dwarf_Error * error);

The function dwarf _get debugfi ssion_for_key() returns the debugiskion data for the
compilation unit in a .dwp package file.

If there is no DWP &ckage File section the function returibsW DLV _NO ENTRY and leaes
*per cu_out untouched. Onlydwp package files lva the package file indesections.

If there is an error of some sort the function retuddg DLV _ERROR, leaves * per cu_out untouched,
and setg er r or to indicate the precise error encountered.

6.24.5 dwarf_get_xu_index_header ()

rev 2.30, Sept 14, 2015 -98 -

-99-

int dwarf_get_xu_index_header(Dwarf_Debug dbg,
const char * section_type, /* "tu" or "cu" */
Dwarf_Xu_Index Header * xuhdr,

Dwarf_Unsigned * version_number,
Dwarf_Unsigned * dkets_count /1*/,
Dwarf_Unsigned * units_count /*N*/,
Dwarf_Unsigned * hash_slots_count /* M*/,
const char ** sect_name,

Dwarf_Error * err);

The functiondwar f _get xu_i ndex_header () takes as input a valid Davf_Delug pointer and an
secti on_t ype vaue, which must one of the strings orcu.

It returns DW_DLV_NO_ENTR if the section requested is not in the object file.

It returns DW_DLV_ERROR there is an error of some kind. and the error is indicated byate v
returned through ther r or pointer.

If successful, the function returns DW_DLV_OK and returns the following values through the pointers:
Thexuhdr field is a pointer usable in other operations (see below).

Thever si on_nunber field is a the indeversion numberFor gcc before WARF5 the version number
is 2. For DWARFS5 the version number is 5.

Theof f set s_count field is a the number of columns in the table of sectifsetsf. Sometimeknown
asL.

The uni ts_count field is a the number of compilation units or type units in thexindometimes
known as\.

Thehash_sl ot s_count field is a the number of slots in the hash table. Sometimes kndwn as

Thesect nane field is the name of the section in the objdet fBecausaon-EIf objects may not use
section names callers must recognize that the sect name may be set to NULL (zero) or to point to the
empty string and this is not considered an error.

An example of initializing and disposing oDmar f _Xu_| ndex_Header follows.

rev 2.30, Sept 14, 2015 -99 -

- 100 -

int res =0;
Dwarf_Xu_Index_ Header xuhdr = 0O;
Dwarf_Unsigned version_number = 0;
Dwarf_Unsigned offsets_count = 0; /*L */
Dwarf_Unsigned units_count = 0; /* M */
Dwarf_Unsigned hash_slots_count = 0; /* N */
Dwarf_Error err = 0;
const char * ret_type = 0;
const char * section_name = 0;
const char *type = "cu"; /* For example. Or "tu" */
res = dwarf_get xu_index_header(dbg,

type,

&xuhdr,

&version_number,

&offsets_count,

&units_count,

&hash_slots_count,

§ion_name,

&err);
if (res == DW_DLV_NO_ENTRY) {

/* No such section. */

return;
}
if (res == DW_DLV_ERROR) {

/* Something wrong. */

return;
}

if (res == DW_DLV_ERROR) {
[* Impossible errar*/
dwarf_xu_header_free(xuhdr);
return;

}

/* Do something with the xuhdr here . */
dwarf_xu_header_free(xuhdr);

6.24.6 dwarf_get_xu_index_section_type()

int dwarf_get_xu_index_section_type(
Dwarf_Xu_Index_Header xuhdr,
const char ** typename,
const char ** sectionname,
Dwarf_Error * error);

The function dwarf_get xu_section_type() takes as input a alid
Dwar f _Xu_Il ndex_Header . It is only useful when one already as an operhdr but one does not
know if this is a type unit or compilation unit indeection.

If it returns DN_DLV_NO_ENTRY something is wrong (should wer happen). If it returns
DW_DLV_ERROR something is wrong and ther or field is set to indicate a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:
typenane is set to the stringt u or cu to indcate the indeis of atype unit or a compilation unit,
respectiely.

rev 2.30, Sept 14, 2015 - 100 -

-101 -

secti onnane is set to name of the object file section. Because non-Elf objects may not use section
names callers must recognize that the sect_name may be set to NULL (zero) or to point to the empty string
and this is not considered an error.

Neither string should be free()d.

6.24.7 dwarf_get_xu_header_free()
void dwarf_xu_header_free(Dwarf_Xu_Index_Header xuhdr);

The functiondwar f _get _xu_header free() takes as input aalid Dwar f _Xu_I| ndex_Header
and frees all the special data allocated for this access @mee called, anpointers returned by use of the
xuhdr should be considered stale and unusable.

6.24.8 dwarf_get_xu_hash_entry()

int dwarf_get_xu_hash_entry(
Dwarf_Xu_Index_ Header xuhdr,
Dwarf_Unsigned inde
Dwarf_Sig8 * hash_value,
Dwarf_Unsigned * index_to_sections,
Dwarf_Error * error);

The functiondwar f _get xu_hash_entry() takes as input aalid Dwar f _Xu_| ndex_Header
and an index of a hash slot entry (valid hash slot iRdevalues are zero (0) through
hash_sl ots_count -1 (M-1)).

If it returns DW_DLV_NO_ENTR something is wrong

If it returns DW_DLV_ERROR something is wrong and ¢he or field is set to indicate a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:
hash_val ue is set to the 64bit hash of of the symbol name.

i ndex_t o_secti ons is set to the indeinto offset-size tables of this hash entry.

If both hash_val ue and i ndex_to_sections are zero (0) then the hash slot is unused.
i ndex_to_sections is used in calls to the functiahwar f _get xu_secti on_of fset () as the
row_i ndex.

An example of use follows.

rev 2.30, Sept 14, 2015 -101 -

-102 -

/* hash_slots_couneturned by
dwarf_get xu_index_header(), seeabd/
Dwarf_Unsigned h = 0;
for(h = 0; h < hash_slots_count; h++) {
Dwarf_Unsigned hashval = 0;
Dwarf_Unsigned inde= 0;
Dwarf_Unsigned col = 0;
res = dwarf_get_xu_hash_entry(xuhdr,h,
&hashval,&index,&err);
if (res == DW_DLV_ERROR) {
/* Oops. hash_slots_count wrong. */
return;
}else if (res == DW_DLV_NO_ENTRY) {
/* Impossible */
return;
} else if (hashval == 0 && inde==10) {
/* An unused hash slot, we do not print them */
continue;
}
[* Here,hashval and inde(a row index into offsets and lengths)
are valid. */

6.24.9 dwarf_get_xu_section_names()

int dwarf_get_xu_section_names(
Dwarf_Xu_Index_Header xuhdr,
Dwarf_Unsigned column_inde
Dwarf_Unsigned* number

const char ** name,
Dwarf_Error * err);
The function dwarf _get xu_section_nanes() takes as input a alid

Dwar f _Xu_Il ndex_Header and acol umm_i ndex of a hash slot entry &id column_indg values
are zero (0) througbf f set s_count -1 (L-1)).

If it returns DW_DLV_NO_ENTR something is wrong
If it returns DW_DLV_ERROR something is wrong and ére or field is set to indicate a specific error.
If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

nunber is set to a number identifying which section this column applies to.Xeonm@e, if the value is
DW SECT | NFO (1) the column came froma debug_info.dw section. Seehe table ofDW SECT _
identifiers and asigned numbers iIlVBRF5.

nane is set to the applicable spelling of the section identifil@rexampleDW SECT | NFO.

6.24.10 dwarf_get xu_section_offset()

rev 2.30, Sept 14, 2015 -102 -

-103 -

int dwarf_get_xu_section_offset(
Dwarf_Xu_Index_ Header xuhdr,
Dwarf_Unsigned ry_index,
Dwarf_Unsigned column_inde
Dwarf_Unsigned* sec_&det,
Dwarf_Unsigned* sec_size,
Dwarf_Error * error);

The function dwarf_get xu_section_offset() takes as input a alid
Dwarf _Xu_| ndex_Header and arow_i ndex (seedwarf _get xu_hash_entry() above) and
a col um_i ndex. Valid row_index values are one (1) througlni ts_count (N) but one uses
dwarf _get xu_hash_entry() (above) to get rov index. Valid column_indg values are zero (0)
throughof f sets_count -1 (L-1).

If it returns DW_DLV_NO_ENTR something is wrong.
If it returns DW_DLV_ERROR something is wrong and ¢hie or field is set to indicate a specific error.
If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

sec_offset, (base of fset) is %t to the base offset of the initial compilation-unit-header section
taken froma dwo object. The baseffset is the data from a single section of aadbject.

sec_si ze is set to the length of the original section taken from a.deject. Thisis the length in the
applicable section in the .dwpa which the base offset applies.

An example of use of dwarf _get xu_section_nanes() and
dwarf _get xu_section_of fset() follows.

/* We wse ’'of'sets_count’ returned by

a dvarf_get xu_index_header() call.

We wse 'index’ returned by a

dwarf_get xu_hash_entry() call. */

for (col = 0; col < offsets_count; col++) {

Dwarf_Unsigned df=0;

Dwarf_Unsigned len = 0;

const char * name = 0;

Dwarf_Unsigned num = 0;

res = dwarf_get_xu_section_names(xuhdr,

col,&num,&name,&err);

if (res I= DW_DLV_OK) {
break;

}

res = dwarf_get xu_section_offset(xuhdr,

index,col,&off,&len,&err);

if (res I= DW_DLV_OK) {
break;

}

[* Here we hae the DW_SECT_ name and number
and the base offset and length of the
section data applicable to the hash
that got us here.

Use the values.*/

rev 2.30, Sept 14, 2015 -103 -

-104 -

6.25 TAG ATTR etc names as strings

These functions turn a value into a string. So applicaticarsting the string "BV_TAG_compile_unit"
given the value 0x11 (the value defined for thid) can do so easily.

The general form is

i nt dwarf_get <sonet hi ng>_nane(
unsi gned val ue,
char **s _out,

)

If the val ue passed in is known, the function retuB\& DLV_OK and places a pointer to the appropriate
string into *s_out . The string is in static storage and applications mugérreee the string. If the
val ue is not knavn, DW DLV_NO _ENTRY is returned ands_out is not set.DW DLV_ERROR s never
returned.

Li bdwar f generates these functions at libdwarf build time by reading dwarf.h.
All these follow this pattern rigidlyso te details of each are not repeated for each function.

The choice of 'unsigned’ for the value type argument (the code value) argument is somewhat, airititrary
could hae keen used.

The library simply assumes the value passed in is applic8blefor example, passing AG value code to
dwar f _get ACCESS name() is a coding error which libdarf will process as if it was an accessibility
code walue. Examplesf bad and good usage are:

const char * out;
int res;
/* The following is wong, do not do it! */
res = dwarf_get ACCESS nanme(DW TAG entry_point, &ut);
/* Not hing one does here with 'res’ or 'out’
i s meani ngful. */

/* The followi ng is neaningful.*/
res = dwarf_get _TAG name(DW TAG entry_poi nt, &out);
if(res == DWDLV_CK) {
/* Here 'out’ is a pointer one can use which
points to the string "DWTAG entry _point". */
} else {
/* Here 'out’ has not been touched, it is
uninitialized. Do not use it. */

6.25.1 dwarf_get ACCESS name()

Returns an accessibility code name througtstheut pointer.

rev 2.30, Sept 14, 2015 - 104 -

- 105 -

6.25.2 dwarf_get_ AT_name()

Returns an attribute code name throughstheut pointer.
6.25.3 dwarf_get ATE_name()

Returns a base type encoding name through tloait pointer.

6.25.4 dwarf_get ADDR_name()

Returns an address type encoding nammeough thes_ out pointer As of this writing only
DW ADDR none is defined indwar f . h.

6.25.5 dwarf_get ATCF_name()

Returns a SUN code flag encoding name througts theut pointer This code flag is entirely a\BARF
extension.

6.25.6 dwarf_get CHILDREN_name()

Returns a child determination name (which is seen in the abbreviations section data) threugiuthe
pointer The only value this recognizes for a 'yes’ value isAk. a flag value this is not quite correctyan
non-zero value means yes) but dealing with this is left up to client code (normally compilers really do emit
avalue of 1 for a flag).

6.25.7 dwarf_get_children_name()

Returns a child determination name through gsheut pointer though this version is really a lib@wnf
artifact. Thestandard function isdwar f _get CHI LDREN nane() which appears just abe As a
flag value this is not quite correct ganon-zero alue means yes) but dealing with this is left up to client
code (normally compilers really do emit a value of 1 for a flag).

6.25.8 dwarf_get_ CC_name()

Returns aalling covention case code name through heout pointer.
6.25.9 dwarf_get CFA_name()

Returns aall frame information instruction name through sheout pointer.
6.25.10 dwarf_get_ DS name()

Returns a decimal sign code name througtstheut pointer.

6.25.11 dwarf _get DSC_name()

Returns aliscriminant descriptor code name throughgheut pointer.
6.25.12 dwarf_get EH_name()

Returns a&GNU exception header code name througlstheut pointer.
6.25.13 dwarf_get END_name()

Returns an endian code name throughstheut pointer.

6.25.14 dwarf_get FORM _name()

Returns an form code name throughsheut pointer.

6.25.15 dwarf_get FRAME_name()

Returns a frame code name through sh@ut pointer These are dependent on the particular ABI, so
unless thedwar f . h used to generate libd&f matches your ABI these names are unlikely to ¢y v

rev 2.30, Sept 14, 2015 - 105 -

- 106 -

useful and certainly wohbe entirely appropriate.

6.25.16 dwarf_get_ID_name()

Returns andentifier case code name through sheout pointer.

6.25.17 dwarf_get INL_name()

Returns arinline code name through tise out pointer.

6.25.18 dwarf_get LANG_name()

Returns danguage code name through theout pointer.

6.25.19 dwarf_get LNE_name()

Returns dine table extended opcode code name through tlo@it pointer.
6.25.20 dwarf_get LNS name()

Returns dine table standard opcode code name through tlo@it pointer.
6.25.21 dwarf _get MACINFO_name()

Returns amacro information macinfo code name throughgheut pointer.
6.25.22 dwarf_get OP_name()

Returns @®WARF expression operation code name througtstheut pointer.
6.25.23 dwarf_get ORD_name()

Returns ararray ordering code name through sheout pointer.

6.25.24 dwarf_get TAG_name()

Returns &AG name through the_out pointer.

6.25.25 dwarf _get VIRTUALITY_name()

Returns avirtuality code name through tise out pointer.

6.25.26 dwarf_get VIS name()

Returns a visibility code name through theout pointer.

6.26 Section Operations

In checking DVARF in linkonce sections for correctness it has been found useful/éodadain section-
oriented operations when processing objées.f Normallythese operations are not needed or useful in a
fully-linked executable or shared library.

While the code is written with EIf sections in mind, it is quite possible to prawes<Elf objects with code
that implements certain function pointers (seeuct Dwarf _Obj Access_interface_s).

So far no one with such non-elf code has come forward to open-source it.

6.26.1 dwarf_get_section_count()

rev 2.30, Sept 14, 2015 - 106 -

- 107 -

int dwarf_get section_count (
Dwar f _Debug dbg)

Returns a count of the number of object sections found.

6.26.2 dwarf_get_section_info_by name()

int dwarf_get _section_info_by namg(
const char *section_nane,
Dwarf _Addr *section_addr,
Dwar f _Unsi gned *section_size,
Dwarf _Error *error)

The functiondwar f _get _secti on_i nfo_by_name() returnsDW DLV_CK if the section gien by
section_name was ®en by libdvarf. Onsuccess it set§secti on_addr to the virtual address
assigned to the section by the linker or compiler*aseict i on_si ze to the size of the object section.

It returns DW_DLV_ERROR on error.

6.26.3 dwarf_get_section_info_by index()

int dwarf_get section_info_by index(
i nt section_index,
const char **section_nane,
Dwar f _Addr *secti on_addr,
Dwar f _Unsi gned *section_size,
Dwar f _Error *error)

The functiondwar f _get section_i nfo_by i ndex() returnsDW DLV_OK if the section gien by
secti on_i ndex was ®en by libdvarf. *secti on_addr to the virtual address assigned to the section
by the linker or compiler antisect i on_si ze to the size of the object section.

No free or deallocate of information returned should be done by callers.

6.27 Utility Operations

These functions aid in the management of errors encountered when using functiorgawtré library
and releasing memory allocated as a resultlifdsvarf operation.

For clients that wish to encode LEB numbertimterfaces are prded to the producer codeinternal
LEB function.

6.27.1 dwarf_errno()

Dwar f _Unsi gned dwarf _errno(
Dwarf Error error)

The functiondwar f _errno() returns the error number corresponding to the error specified bgr .

6.27.2 dwarf_errmsg()

rev 2.30, Sept 14, 2015 - 107 -

- 108 -

const char* dwarf_errnsg(
Dwarf Error error)

The functiondwar f _errmsg() returns a pointer to a null-terminated error message string corresponding
to the error specified bgr r or . The string should not be deallocated usimgr f _deal | oc() .

The string should be considered to be a temporary string. That is, the returned pointer may become stale if
you do libdwarf calls on theDwarf Debug instance other thandwarf _errnsg() or

dwarf _errno(). So copy the errmsg string (or print it)ub do not depend on the pointer remaining

valid past other libdwarf calls to tHanar f _Debug instance that detected an error

6.27.3 dwarf_get_harmless error_list()

int dwarf_get _harm ess_error_Ilist(Dwarf_Debug dbg,
unsi gned count,
const char ** errnsg_ptrs_array,
unsi gned * newerr_count);

The harmless errors are not denoted by error returns from the other libdwarf functions. Instead, this
function returns strings of srharmless errors that ¥ been seen in the current object. Clientgen@eed
call this, but if a client wishes to reportyasuch errors it may call.

Only a ixed number of harmless errors are recorded. It is a circular list, so if more than the current
maximum is encountered older harmless error messages are lost.

The caller passes in a pointer to an array of pointer-to-char agtirearter r nsg_ptrs_array. The
caller must provide this arrayibdwarf does not provide it. The caller need not initialize the array
elements.

The caller passes in the number of elements of the array of pointer-to-chantimi. Since the

If there are no unreported harmless errors the function reMWBLY _NO ENTRY and the function
arguments are ignored. Otherwise the function retbdDLV_OK and uses the arguments.

I i bdwar f assigns error strings to the errmsg_ptrs_ariide MININUM(count-1, number of messages
recorded) pointers are assigned to the arfidye array is terminated with a NULL pointefThat is, one
array entry is reseed for a NULL pointer). So i€ount is 5 up to 4 strings may be returned through the
array and one array entry is set to NULL.

Because the list is circular and messages mag been dropped the function also returns the actual error
count of harmless errors encountered throngher r _count (unless the argument is NULL, in which
case it is ignored).

Each call to this function resets the circular erroffdy and the error countSo think of this call as
reporting harmless errors since the last call to it.

The pointers returned through r nsg_pt rs_array are only valid till the net call to libdwarf. Donot
save the pointers, thebecome inalid. Copy the strings if you wish to sa them.

Calling this function neither allocatesyegpace in memory nor freesyagpace in memory.

rev 2.30, Sept 14, 2015 - 108 -

-109 -

6.27.4 dwarf_insert_harmless error()

void dwarf_insert_harmless_error(Dwarf_Debug dbg,
char * newerror);

This function is used to testwar f _get harm ess_error _|i st. It simply adds a harmless error
string. Thereis little reason client code should use this function. It exists so that the harmless error
functions can be easily tested for correctness and leaks.

6.27.5 dwarf_set harmless error_list_size()

unsi gned dwarf_set harm ess _error_I|ist_size(Dwarf_Debug dbg,
unsi gned maxcount)

dwarf _set _harm ess_error_|ist_si ze returns the number of harmless error strings the library
is currently set to holdIf maxcount is non-zero the library changes the maximum it will record to be
maxcount .

It is extremely unwise to makmaxcount large becausé i bdwar f allocates space faraxcount
strings immediately.

The set of errors enumerated in Figure 3 Wwekere defined in Dwarf 1. These errors are not used by the
I i bdwar f implementation for Dwarf 2 or later.

SYMBOLIC NAME DESCRIPTION
DW_DLE_NE Noerror (0)
DW_DLE_VMM Version of DNARF information newer
than libdwarf
DW_DLE_MAP Memorymap failure
DW_DLE_LEE Propagtion of libelf error
DW_DLE_NDS Nodebug section
DW_DLE_NLS Noline section
DW_DLE_ID Requestethformation not associated
with descriptor
DW_DLE_IOF I/Ofailure
DW_DLE_MAF Memoryallocation failure
DW_DLE_IA Invalid argument
DW_DLE_MDE Mangleddebugging entry
DW_DLE_MLE Mangledine number entry
DW_DLE_FNO Filedescriptor does not refer
to an open file
DW_DLE_FNR Fileis not a regular file
DW_DLE_FWA File is opened with wrong access
DW_DLE_NOB Fileis not an object file
DW_DLE_MOF Mangledbiject file header
DW_DLE_EOLL Endof location list entries
DW_DLE_NOLL Nolocation list section
DW_DLE_BADOFF Invalid offset
DW_DLE_EOS Encf section
DW_DLE_ATRUNC Abbreviations section appears
truncated
DW_DLE_BADBITC Addresssize passed to
dwarf bad

Figure 6. Dwarf Error Codes

rev 2.30, Sept 14, 2015

-109 -

-110 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_DBG_ALLOC
DW_DLE_FS®T_ERFOR
DW_DLE_FSRT_MODE_ERFOR
DW_DLE_INIT_ACCESS_WRNG
DW_DLE_ELF BEGIN_ERRR
DW_DLE_ELF_GETEHDR_ERRR
DW_DLE_ELF GETSHDR_ERBR
DW_DLE_ELF STRPTR_ERBR
DW_DLE_DEBUG_INFO_DUPLICAE
DW_DLE_DEBUG_INFO_NULL
DW_DLE_DEBUG_ABBREV_DUPLICAE

DW_DLE_DEBUG_ABBREV_NULL
DW_DLE_DEBUG_ARANGES_DUPLICAE

DW_DLE_DEBUG_ARANGES_NULL
DW_DLE_DEBUG_LINE_DUPLICAE
DW_DLE_DEBUG_LINE_NULL
DW_DLE_DEBUG_LOC_DUPLICAE
DW_DLE_DEBUG_LOC_NULL
DW_DLE_DEBUG_MACINFO_DUPLICAE

DW_DLE_DEBUG_MACINFO_NULL
DW_DLE_DEBUG_PUBNAMES_DUPLICAE

DW_DLE_DEBUG_PUBMMES_NULL

DW_DLE_DEBUG_STR_DUPLICAE
DW_DLE_DEBUG_STR_NULL
DW_DLE_CU_LENGTH_ERR®R
DW_DLE_VERSION_STAMP_ERRR
DW_DLE_ABBREV_OFFSET_ERBR
DW_DLE_ADDRESS_SIZE_ERBR
DW_DLE_DEBUG_INFO_PTR_NULL

DW_DLE_DIE_NULL
DW_DLE_STRING_OFFSET_BD
DW_DLE_DEBUG_LINE_LENGTH_BD
DW_DLE_LINE_PROLOG_LENGTH_BD
DW_DLE_LINE_NUM_OPERANDS_BD

DW_DLE_LINE_SET_ADDR_ERRR

Couldnot allocate Dwarf_Debug stru
Errorin fstat()-ing object
Errorin mode of object file
Incorreciaccess to dwarf_init()
Errorin elf_begin() on object
Errorin elf_getehdr() on object
Errorin elf_getshdr() on object
Errorin elf_strptr() on object
Multiple .debug_info sections
Nodata in .debug_info section
Multiple .debug_abbrev
sections

Nodata in .debug_abbreection
Multiple .debug_arange
sections

Nodata in .debug_arange section
Multiple .debug_line sections
No data in .debug_line section
Multiple .debug_loc sections
Nodata in .debug_loc section
Multiple .debug_macinfo
sections

Nodata in .debug_macinfo section
Multiple .debug_pubnames
sections

Nodata in .debug_pubnames
section

Multiple .debug_str sections
Nodata in .debug_str section
Lengthof compilation-unit bad
Incorrectersion Stamp

Offset in .debug_abbvebad
Sizeof addresses in target bad
Pointeinto .debug_info in

DIE null

Null Dwarf_Die
Offset in .debug_str bad
Lengthof .debug_line
segment bad
Lengthof .debug_line

prolog bad
Numberof operands to line
instr bad

Errorin DW_LNE_set address
instruction

-

rev 2.30, Sept 14, 2015

Figure 7. Dwarf 2 Error Codes (continued below)

-110 -

The set of errors returned hy bdwar f functions is listed bels. Some of the errors are SGI specific.

—

-111 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_LINE_EXT_OPCODE_BD

DW_DLE_DWARF_LINE_NULL
DW_DLE_INCL_DIR_NUM_BAD

DW_DLE_LINE_FILE_NUM_BAD
DW_DLE_ALLOC_FAIL
DW_DLE_DBG_NULL
DW_DLE_DEBUG_FRAME_LENGTH_BD
DW_DLE_FRAME_VERSION_BD
DW_DLE_CIE_RET_ADDR_REG_ERBR

DW_DLE_FDE_NULL
DW_DLE_FDE_DBG_NULL
DW_DLE_CIE_NULL
DW_DLE_CIE_DBG_NULL
DW_DLE_FRAME_TABLE_COL_B\D

DW_DLE_PC_NO_IN_FDE_RANGE
DW_DLE_CIE_INSTR_EXEC_ERBR
DW_DLE_FRAME_INSTR_EXEC_ERRR
DW_DLE_FDE_PTR_NULL
DW_DLE_RET OP_LIST_NULL
DW_DLE_LINE_CONTEXT_NULL
DW_DLE_DBG_NO_CU_CONTEXT
DW_DLE_DIE_NO_CU_CONTEXT
DW_DLE_FIRST_DIE_NG_CU
DW_DLE_NEXT_DIE_PTR_NULL
DW_DLE_DEBUG_FRAME_DUPLICAE
DW_DLE_DEBUG_FRAME_NULL
DW_DLE_ABBREV_DECODE_ERRR
DW_DLE_DWARF_ABBREV_NULL
DW_DLE_ATTR_NULL
DW_DLE_DIE_BAD
DW_DLE_DIE_ABBREV_BAD
DW_DLE_ATTR_FORM_B\D
DW_DLE_ATTR_NO_CU_CONTEXT
DW_DLE_ATTR_FORM_SIZE_BD
DW_DLE_ATTR_DBG_NULL
DW_DLE_BAD_REF_FORM
DW_DLE_ATTR_FORM_OFFSET _ABD
DW_DLE_LINE_OFFSET_BD
DW_DLE_DEBUG_STR_OFFSET 4D
DW_DLE_STRING_PTR_NULL
DW_DLE_PUBNAMES_VERSION_ERBR
DW_DLE_PUBNAMES_LENGTH_BD
DW_DLE_GLOBAL_NULL
DW_DLE_GLOBAL_CONTEXT_NULL
DW_DLE_DIR_INDEX_BAD

Errorin DW_EXTENDED_OPCODE
instruction
Null Dwarf_line argument
Errorin included directory for
given line
File number in .debug_line bad
Failed to allocate required structs
Null Dwarf_Debug argument
Errorin length of frame
Badversion stamp for frame
Badregister specified for
return address
NullDwarf_Fde argument
NoDwarf_Debug associated with FDE
Null Dwarf_Cie argument
NoDwarf_Debug associated with CIE
Bad column in frame table
specified
PQequested not in address range of FDE
Errorin executing instructions in CIE
Errorin executing instructions in FDE
NullPointer to Dwarf_Fde specified
Ndocation to store pointer to Dwarf_Frame_(
Dwarf_Line has no context
dbbas no CU context for dwarf_siblingof()
Dwrf Die has no CU context
FirstDIE in CU not DW_TRG_compilation_unit
Erroin moving to next DIE in .debug_info
Multiple .debug_frame sections
Nodata in .debug_frame section
Errorin decoding abbreviation
Null Dwarf_Abbres specified
Null Dwarf_Attribute specified
DIE bad
No abbreviation found for code in DIE
Inappropriateattribute form for attribute
NdaCU context for Dwarf_Attribute struct
Sizeof block in attribute value bad
NoDwarf_Debug for Dwarf_Attribute struct
Inappropriatlorm for reference attribute
Offset reference attribute outside current CU
Offset of lines for current CU outside .debug_|
Offset into .debug_str past its end
Pointeio pointer into .debug_str NULL
\ersion stamp of pubnames incorrect
Readpubnames past end of .debug_pubname
Null Dwarf_Global specified
No context for Dwarf_Global gen
Errorin directory inde read

Figure 8. Dwarf 2 Error Codes (continued below)

rev 2.30, Sept 14, 2015

-111 -

-112 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_LOC_EXPR_BD
DW_DLE_DIE_LOC_EXPR_BD

DW_DLE_OFFSET_RBD

DW_DLE_MAKE_CU_CONTEXT_RIL
DW_DLE_ARANGE_OFFSET_BD

DW_DLE_SEGMENT_SIZE_BD
DW_DLE_ARANGE_LENGTH_BA\D
DW_DLE_ARANGE_DECODE_ERRR

DW_DLE_ARANGES NULL
DW_DLE_ARANGE_NULL
DW_DLE_NO_FILE_NAME
DW_DLE_NO_COMP_DIR

DW_DLE_CU_ADDRESS_SIZE_BD

DW_DLE_ELF_GETIDENT_ERRR
DW_DLE_NO_AT_MIPS_FDE

DW_DLE_NO_CIE_FOR_FDE
DW_DLE_DIE_ABBREV_LIST_NULL

DW_DLE_DEBUG_FUNCNAMES_DUPLICAE
DW_DLE_DEBUG_FUNCMMES_NULL
DW_DLE_DEBUG_FUNCNAMES_VERSION_ERBR

DW_DLE_DEBUG_FUNCNAMES_LENGTH_BD

DW_DLE_FUNC_NULL
DW_DLE_FUNC_CONTEXT_NULL
DW_DLE_DEBUG_TYPENAMES_DUPLICAE
DW_DLE_DEBUG_TYPEMMES_NULL
DW_DLE_DEBUG_TYPENAMES_VERSION_ERBR

DW_DLE_DEBUG_TYPENAMES_LENGTH_BD

DW_DLE_TYPE_NULL
DW_DLE_TYPE_CONTEXT_NULL
DW_DLE_DEBUG_VARNAMES_DUPLICAE
DW_DLE_DEBUG_VARNAMES_NULL
DW_DLE_DEBUG_VARNAMES_VERSION_ERBR

DW_DLE_DEBUG_VARNAMES_LENGTH_BD

Bad operator read for location expressig
Expectedblock value for attribute
not found
Offset for next compilation-unit in
.debug_info bad
Could not male CU montext
Offset into .debug_info in
.debug_aranges bad
Segment size will be 0 for MIPS
processorsand shouldralys be < 8.
Lengthof arange section in
.debug_arange bad
Arangeglo not end at end
of .debug_aranges
NULL pointer to Dwarf_Arange specifie
NULL Dwarf_Arange specified
No file name for Dwarf_Line struct
NdCompilation directory for
compilation-unit
CU header address size not
match EIf class
Errorin elf_getident() on object
DIEdoes not hee
DW_AT_MIPS_fde attribute
NEIE specified for FDE
Noabbreviation for the code
in DIE found
Multiple .debug_funcnames sections
Nodata in .debug_funcnames section
\ersion stamp in
.debug_funcnames bad
Lengtherror in reading
.debug_funcnames
NULL Dwarf_Func specified
Nacontext for Dwarf_Func struct
Multiple .debug_typenames sections
No data in .debug_typenames section
\ersion stamp in
.debug_typenames bad
Lengtherror in reading
.debug_typenames
NULL Dwarf_Type specified
Nacontext for Dwarf_Type gen
Multiple .debug_varnames sections
Nodata in .debug_varnames section
\ersion stamp in
.debug_varnames bad
Lengtherror in reading
.debug_varnames

Figure 9. Dwarf 2 Error Codes (continued below)

rev 2.30, Sept 14, 2015 -112 -

-113 -

SYMBOLIC NAME DESCRIPTION
DW_DLE_VAR_NULL NULL Dwarf_Var specified
DW_DLE_VAR_CONTEXT_NULL Nocontext for Dwarf_Var gien
DW_DLE_DEBUG_WEAKNAMES_ DUPLICAE Multiple .debug_weaknames sectipn
DW_DLE_DEBUG_WEAKNAMES_ NULL Nodata in .debug_varnames section

DW_DLE_DEBUG_WEAKNAMES_VERSION_ERBR \krsion stamp in
.debug_varnames bad

DW_DLE_DEBUG_WEAKNAMES LENGTH_BD Lengtherror in reading
.debug_weaknames

DW_DLE_WEAK_NULL NULL Dwarf_Weak specified

DW_DLE_WEAK_CONTEXT_NULL Nocontext for Dwarf_Weak gen

Figure 10. Dwarf 2 Error Codes

This list of errors is not complete; additional errorsehbeen added.Some of the ah@ arors may be
unused. Errorsnay not hae the same meaning in different releas8ice most error codes are returned
from only one place (or a very small number of places) in the source it is normally very useful to simply
search thé i bdwar f source to find out where a particular error code is generated.

6.27.6 dwarf_seterrhand()

Dwar f _Handl er dwarf _set errhand(
Dwar f _Debug dbg,
Dwar f _Handl er errhand)

The functiondwar f _set er r hand() replaces the error handler (shear f _i ni t ()) with er r hand.
The old error handler is returned. This function is currently unimplemented.

6.27.7 dwarf_seterrarg()

Dwarf _Ptr dwarf_seterrarg(
Dwar f _Debug dbg,
Dwarf _Ptr errarg)

The functiondwar f _set errar g() replaces the pointer to the error handler communication area (see
dwarf _init()) with errarg. A pointer to the old area is returnedhis function is currently
unimplemented.

6.27.8 dwarf_dealloc()

voi d dwarf _deal | oc(
Dwar f _Debug dbg,
voi d* space,
Dwar f _Unsi gned type)

The functiondwar f _deal | oc frees the dynamic storage pointed tostpace, and allocated to the gén
Dwar f _Debug. The agumentt ype is an intger code that specifies the allocation type of tlggore
pointed to by thepace. Refer to section 4 for details dibdwarf memory management.

6.27.9 dwarf_encode leb128()

rev 2.30, Sept 14, 2015 -113 -

-114 -

int dwarf_encode_leb128(Dwarf_Unsigned val,
int * nbytes,
char * space,
int splen);

The functiondwar f _encode_| eb128 encodes thealueval in the callerprovided huffer thatspace
points to. The caller-provided buffer must be at lsgdten bytes long.

The function return®W DLV_K if the encoding succeedsf spl en is too small to encode thalue,
DW DLV_ERRORwill be returned.

If the call succeeds, the number of bytespéice that are used in the encoding are returned through the
pointernbyt es

6.27.10 dwarf_encode _signed_leb128()

int dwarf_encode_signed_leb128(Dwarf_Signed val,
int * nbytes,
char * space,
int splen);

The functiondwar f _encode_si gned_I| eb128 is the same adwar f _encode_| eb128 except that
the argumentval is signed.

rev 2.30, Sept 14, 2015 -114 -

-115-

rev 2.30, Sept 14, 2015 -115 -

CONTENTS

1. INTRODUCTION ittt ettt e e e ettt e et e e e s e bbb et e e e e e e bbb e e e e e e e e e e annnbreees 1
A o o)Y/ o | | PP 1
1.2 PUIPOSE GNA SCOPE.. .. i iiiiiieeiiiiie e e e e e ettt s e e e e e e e e e ettt e e e e e eeeeeeattar e e eeeeeeeeasrennnreeeeeeees 1
RS I I Lo Tod g1 o | A o 1 o YRR 1
1.4 DefiNIONS oo —————————— 2
T O 1 = V= PP 2
1.6 EMS ChANQEdooeieiieeeeeeeeeeeeeeee e 3
A | Y 44 ST =T 010 s = o [P PPRRPTP 4
S T Lo 1T o T o 1] (o] /P 4

B Y o =TS L= 1] 71 1 o] g TSRS 4
2.1 GENETAl DESCIIPLIONuteiitiieiiiiitte ittt e e e e e e e e e s e r e e e e e e e naans 4
2.2 SCAIAT TYPES eeeeiiiieeiiitt ettt e ettt e e e e e e e e e e e e s e e e e e e e aaan 5
ARG I Ao To [g2 = (I 1Y/ 012 RUSSPPPPPRRRR 5

2.3.1 LOCALION RECON ...cooiiiiiiiiiiie ettt ettt e e e e e st e e e e e e e anes 6
AR T W Tor= 11 o] T D L= ol] 1 o o [6
2.3.3 DAt@ BIOCK ...coiieiiiiiiiiiieeeeeee et 7
2.3.4 Frame Operation COdeSMBRF 2 ... 7
2.3.5 Frame RegtableMARF 2 . 8
2.3.6 Frame Operation CodesSMBRF 3 (and DVARF2)ccccvvvvvvvvvinivinninevennne, 9
2.3.7 Frame RegtableMIARF 3 ..o 9
2.3.8 Macro Details ReCOrd.........cooviiiiiiiiiiii 11
2.4 OPAGUE TYPES ..ttt e ettt e e e ettt ettt et e e e ettt ae b b e e e e et e et hrba e e e e e eeeeerran s 11

3. UTF-8 SINGS oeiiieiiiieeei ittt ettt e s e anbbnnreeeeeeeann 14

4. ErrOr HANAING oottt ettt e e e s e e e e e s st n e e e e e e e e ann 14
4.1 Returned values in the functional interface...........cccccoviiiiiiiiiii 15

Y =T 0 g ToT o VY=V = T [T 01T o PP 16
LT R U= T= (o o]] NV o (o 01T 1= 16
SIS (o] = To [= I D= = (o o%= 14 o] o S 16

. Functional INterfaceoovvviiiiii 18
6.1 INitialization OPEIAtIONSc.uveiiiiieieiiiiiie et e e et e e e e e e e e e e e s aaanes 18

6.1.1 dwarf init() ...oooeeeeeiii 18
6.1.2 dwarf elf init() ..cooorvrii 19
6.1.3 dwarf_get elf() ..cooeiiiieiii e 19
6.1.4 dwarf_set_tied_dDg()....... e ueemmemmmmmiiiiiiiiiiiiieee e 20
6.1.5 dwarf_fINISN() ...eeeeeeieiii e 20
6.1.6 dwarf_set_StringCheCk()........cuuiieiiiiiii e 21
6.1.7 dwarf_set_reloc_application()..........coeevvveiiieiiieii, 21
6.1.8 dwarf_record _cmdline_OptioNS()..........uuvrrrrrrmrrrmiiiririiirrinnrirnrrrnrrerrrerree—————— 21
6.2 SECLON SIZE OPEIALIONS .. uuui i e i e ee ittt e e e e e e e ettt e e e e e e e e e e r e e e e eeeeeeeeera s e eeeeeeeennnnes 22
6.2.1 dwarf_get_section_max_offSetS_D()..........uuuurmmrmmmmmmmmmiiiiiiiiiiiieieeeieeeeeeeeeeeee 22
6.2.2 dwarf_get_section_max_OffSEIS()........uuurrmrrmmmmmmmmmriniiiniiieriineennieeeeeeereeeeenenee 22
6.3 Printf CallDacKs ..o ————— 22

6.4

6.5

6.6

6.3.1 dwarf _register_printf_callback..........cccoovviiiiii 23
6.3.2 Dwarf Printf_Callback INfO_Sccoceiiiiiiiiic e, 23
6.3.3 dwarf_printf_callback_function_type..........ccccuuvurriiimriiiminiiiniiieiieeiieeeeeeeeeeee. 23
6.3.4 Example of printf callback use in a C++ application using libdwarf........ 24
Debugging Information Entry Deliry Operationsccccccccvvvvviiiieiiieeeeeeeeeeeeee, 24
6.4.1 dwarf _get die_Section_NAME().........uurrurrrrrmrimririrrirrirersrerrreeseeereerreeeeer——. 24
6.4.2 dwarf_next_cu _header _d()....cccccoeeiiiiiieiiieiier e 25
6.4.3 dwarf_next_cu_header_C()......ccccoouummmummuiiiiiiiiiiiiiiiieiieeiieeeieeeeeeeeee e e eeeeeeeees 26
6.4.4 dwarf_next_cu_header_D()......cccccouummiimiiimiiiiiiiiiiiiiiiieeiieee e 26
6.4.5 dwarf_next_cu_header()........ccccoeiiiii it 26
6.4.6 dwarf_siblingof _b() ... ——— 27
6.4.7 dwarf_siblingof()oovviiiiiiii 27
6.4.8 dwarf_Child() ...ooooeeieiieeee e 28
6.4.9 dwarf_offdie_D()eeeueeeeiiiiiiiiiiii e e e eeeees 28
6.4.10 dAWAIT_OffAIE() ..vvveeeeeeiiiiiii e 29
6.4.11 dwarf_validate_die_SibDlNG().......coooimmmmmiiiiii e 29
Debugging Information Entry Query OperationS...............uevuereierrveerreereeeseeereeereeeen. 29
6.5.1 dwarf _get die_infotypes flag().......cccccomiiiiiiiiii 30
6.5.2 dWarf tag() .ooveerrrriiiiii e e e e e anan 30
6.5.3 dwarf_dieoffSEL() ..eeeieiiiiiiiiiiiiiie 30
6.5.4 dwarf_die_CU_OffSEL()uvrrrrrrrririiiiiiiiiiiiiiiiiiieiiieeieeeee e e e e e e e e eeeeeees 30
6.5.5 dwarf_di€_OffSELS()uvvrrieeeiiiiiiiiii e 31
6.5.6 dwarf_ptr_ CU_OffSEL()uvvrrrriiiiiiiiiiiiiiiiiiiiiiiiieeieeeeee e eee e ee s e e e e e e e e e e e eeeeees 31
6.5.7 dwarf CU_dieoffset @en_die()ccccoeviurimmiiiiiiiiiniiiiiireiiiseerrereereesreeeeee.. 31
6.5.8 dwarf die CU_offset_range()......ccccuruiiiiiiiiiiiieiiiiie e ee e e e e e e 32
LTS I |V U o 1T g = 1 1=) USSR 32
6.5.10 dwarf_die_abbrev_code().... .. 32
6.5.11 dwarf_die_abbrev_children_flag(}......cccccceeeeeeiiir 33
6.5.12 dwarf_get version_of die().....ccccceriirii 33
6.5.13 dWarT_AtFlISE() .evvveeeieiiiiiiiiiiieee e 33
6.5.14 dwarf _hasattr()coeeuruiiiiiii e 34
6.5.15 dWaIT_Atlr() .ooeeeeeeeeeeee e e 34
6.5.16 AWAIT_TOWPC() -ervveeeeeeiiiiiiiiii et e e a e 34
6.5.17 dwarf_highPC_D() weeeeeeeiiiiiie e 34
6.5.18 dwarf_highpc() ...coovvvvviiiii 35
6.5.19 dWAIT _DYLESIZE() ..vuuvvruriiriiiiiiiiiiiiiiiiiitti ittt eebeebeesbresbeerraesrrasresraearaenraes 35
6.5.20 dwarf _DItSIZE() ..ooeeeiiieeece e 35
6.5.21 dwarf_DitOfFSEL()uueuumreuniiiiiiiiiiiiiiiiii ittt eeeeeeeeas 36
6.5.22 AWAIT_SICIANG() .. ueeeeeeeeeeee et 36
6.5.23 dwarf_arrayorder()ocuueeeeieieeeiii e 36
ALIIDULE QUETIES ...ttt e e e e e e et r e e e e e e e e ee s bbb e e eeeaeeesnees 36
6.6.1 dwarf_hasfOrm()ccoociiiuiiiiii e —————————. 37
6.6.2 dwarf_ Whatform()ooooriiiiiii e 37
6.6.3 dwarf_whatform_dir€CH()uuueummmmmiiiiiiiiiiiiiiiiieiiieieeee e e e e e eeeeeeas 37
6.6.4 dwarf_Whatattr()ccoeriiiiiiee e 37
6.6.5 dwarf_fOrMIef()oooooiiiiiiii s 38
6.6.6 dwarf_global_formref() ... 38
6.6.7 dwarf_cowmert to_global OffSEt()cccccviiiiiiiiiiiiiiiieeeeeee e 38

6.6.8 dwarf formaddr()coooiriiiiiiii e 39

6.6.9 dwarf_get_debug_Str_iNAEX()........uueuuueeremmmemeiiiiieiiiieieeeeeeeeeeeeeee e e e e e eeeeeeas 39
6.6.10 dwarf_fOrmflag()eeeeeeeeeiiii e 40
6.6.11 dwarf_fOrmudata)cvverereeeeeiiii e 40
6.6.12 dwarf_fOrmMSAAA()uurrrurrimiiiiiiiiiiiiiiiiirrierreerr e e e rrrrrereaaeees 40
6.6.13 dwarf_fOrmbIOCK()uuriiiiiiiiiiiiiiiiiiiiiii e 41
6.6.14 dwarf formstring() ...cooevvveiiiiii e 41
6.6.15 dwarf_fOrmsSig8() «.eeeeeeiiriieiiiiiiiieiiie e 41
6.6.16 AWArT_fOrMSIGB() ...uvvvrrerieeiiiiiiiiiii e 41
6.6.17 dwarf_get_fOrm_ClIasS()........ccouurmmriiieeiiiiiiiie e 42
6.6.18 dwarf_l0ClSt_N() .eevvverieiiiiiiiieiee e, 42
6.6.19 dWAIT IOCHSI() .evvvrrririiiiiiiieiiiieeee e 43
6.6.20 dwarf _10CliSt_from_eXPr() c.ueeeeeeiieeeeieieiiiee e e 44
6.6.21 dwarf_loclist_from_expr_D() ... 45
6.6.22 dwarf_loclist_from_eXpr_a()......coooveeeriieeieee e 45
6.7 Line NUMDEI OPEIAtIONS.......uiiiiiiiiiiiiiiiii et ettt e e e st e e e e e e e e e e e e aannees 46
6.7.1 Gt A St Of LINES .cooiiiiiiiiiee e 46
6.7.1.1 dwarf srchines() ...cccoeeeeeeeieeie e, 46
6.7.2 Get the set of Source File Names...............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeee. a7
6.7.3 Get information about a Single Table Line...........cccooooeiii 47
6.7.3.1 dwarf_linebeginstatement()...........cceveeeiiiiiiiiiiieee e 48
6.7.3.2 dwarf_lineendsequencCe()..........uureriieeiiiiiiiiiiee e 48
IR TR I o |11V Vg S [T =T o o 48
6.7.3.4 dwarf_line_srcfileno()ooooee oot 48
6.7.3.5 dwarf_lINeaddr()ccoeveeeeiiieiiiei e 49
6.7.3.6 dwarf_liNeoff()oovrrriiiiiiii 49
6.7.3.7 dWarf_lINESIC() ...cueeeiiieieeeieiee e 49
6.7.3.8 dwarf_liN€DIOCK() ..vveveeiiiiiiiiiiiie e 49
6.7.3.9 dwarf_is_addr_set()......ccccccceeriiiiiiii 50
6.7.3.10 dwarf_prologue_end _etC().......ccooeiiiiiiiiiiiiiicii 50
6.8 Global Name Space OpPEerations............uuceiiiieeriiieiiiieie e e e e e e e e e e e e e e 50
6.8.1 Debugger Interface OPerations..........cooeeeiieii i 50
6.8.1.1 dwarf_get_globalS()ccuummriiieiiii e 50
6.8.1.2 dwarf_globname()cccuumiiiiiiiii 51
6.8.1.3 dwarf_global_die_offset()......ccccccevviiiiiiiiii 52
6.8.1.4 dwarf _global _cu_oOffSet().....ccccevveeiiiiiiiiiiiiii 52
6.8.1.5 dwarf _get cu _die_offsetvgn_cu_header_offset().........c........... 52
6.8.1.6 dwarf_get _cu_die_offsetvgn_cu_header_offset()c......... 53
6.8.1.7 dwarf_global_name_offSEetS().........uurreeeiiiiiiiiiiiieeeieiieeeee e 53
6.9 DWARF3 Type Names OPeratiOnS............uueiiieeiiiiiiiiiiieieeeeasiiiieeeeeeessssinineeeeeaessannes 53
6.9.1 Debugger Interface Operations.............ccoe oo 53
6.9.1.1 dwarf_get pubtypes()......cooeiiiiiiiii i 53
6.9.1.2 dwarf_pubtypename()........cccceoriiiiiiiiiiiiii s 54
6.9.1.3 dwarf_pubtype_die_offSet()........ccccevrrriiiiiiiiiii 54
6.9.1.4 dwarf_pubtype_cCu_0OffSEt()........cuummrrrieeiiiiiiiiiiieee e 55
6.9.1.5 dwarf_pubtype_name_OffSEtS().......cccceerriiimrmmriiieeiriiiiiiiieeeee e 55
6.10 User Defined Static Variable Names Operations.................uueuvevrveerierreeeeeeeeeeeeeneen. 55
6.11Weak Name Space OPEratiONS..........cooeieiiiiii i 55

6.11.1 Debugger Interface OpPerationsS.........cooveuuiuiiiiiieieeeeeecee e 55

6.11.1.1 dwarf_get WEaAKS(). ... uuuuurrerrueuuennienennnnnneineeeeeneeeeeeeeeeeeeeeeeeeeneeeeeeees 56
6.11.1.2 dwarf_weakname()........ccceuriiuiimiiieee e 57
6.11.1.3 dwarf_weak _cu_offSet()......cccovveiieiieei 57
6.11.1.4 dwarf_weak _name_offSets()...........ccceeeviiiiiiiiieiieeccccccc s 57
6.12 Static Function Names Operations...........cccouvvvviiiiiiiiiiieeeee e 57
6.12.1 Debugger Interface OperationsS..........oovvuuiieiiiieieceeeeiee e 58
6.12.1.1 dwarf_get_fUNCS() --.-ccceeeuumemmninneiiiiiiiieeiiiie et eeeeeeeeeeeeees 58
6.12.1.2 dwarf_funcname()c.uuereeeieriiiii e 59
6.12.1.3 dwarf_func_die_offset().......ccccceerriieeiiiiii 59
6.12.1.4 dwarf_func_cu_offSet()....ccccccevviiviiiiiiiiiii 59
6.12.1.5 dwarf_func_name_offSets().......ccccccviiiiiiiiiiii 59
6.13 User Defined Type Names OPeratiONS...........ccevivieriiiiiiiieeeeeeeeiiiiienseeeeeeeeeesnnnnn e eees 60
6.13.1 Debugger Interface Operations............coooieeiiiiiiiiiiieie e 60
6.13.1.1 dwarf_get_tyPes() ...coooorrrrrieieeee i 60
6.13.1.2 dwarf_typename()ccuueeeieeeeiiiiiiii e 61
6.13.1.3 dwarf_type_die_offset()......ccccceeeiriiiiiiii 61
6.13.1.4 dwarf_type cu OffSet()...ccceeeiiiiiiiiiiiiiiiii 62
6.13.1.5 dwarf_type name_offSets()......cccccceeiiiiiiiiiiiiiici e, 62
6.14 User Defined Static Variable Names Operations...................eeueeeeeeeeeeiieieeeeeeeeeeeene. 62
6.14.1 Debugger Interface OPErations.............eeuveeiiiiiiiiiiiiieee e 62
6.14.1.1 dWArT_gEL VaArS() ...evvveeeeeeiiiiiiiiiieie et 63
6.14.1.2 dwarf varname()cceeevveeeiiiiiieiie e, 64
6.14.1.3 dwarf_var_die_OffSet().......ccceiiiiiiiiniiiiiiiii 64
6.14.1.4 dwarf var Cu_OffSet()......ccuueiiiiiiiiiieiiis e 64
6.14.1.5 dwarf_var_name_offSetS().......ccuueriiriiiaeire i 64
6.15 Macro INformation OPEratiONS..........couiiuiiiiiiiieeei ittt e e e e e e e 65
6.15.1 General Macro OPEratiONS.........oivuurriiiiiee et e e e e s e e e e eeeas 65
6.15.1.1 dwarf_find_macro_value_start()..........cccccccevvveiiiiiini 65
6.15.2 Debugger Interface Macro Operations............ccccceevveiiiiiiieiiieeeeeeeeeeeeee, 65
6.15.3 Lav Levd Macro Information Operations...........cc.cceevvvvviiiiiinie e, 65
6.15.3.1 dwarf_get_macro_detailS()..........uuuueemeememmemmieiiiiieeieeeeeeeeeee e 65
6.16 Lov Levd Frame OPEIatiONScccuvririieeeeeiiiiiie it e e e e e et e e e e e s e e e e e nanneneees 66
6.16.0.1 dwarf_get_fde_liSt()ccuummrrieeeiiiiiieee e 69
6.16.0.2 dwarf_get fde list €n()ecceeeeeeeieeiiiii 70
6.16.0.3 dwarf_get cie_of fde()...cccccoomviiiiiiiiiiii 71
6.16.0.4 dwarf _get fde for die()....cccccoveiiiiiiieiiieeecce e 71
6.16.0.5 dwarf_get_fde_range()......ccccooeeoeummmmmmniiiiiiiiiiiiieieeeee e 72
6.16.0.6 dwarf_get_Cie_iNfO()euveeeiiiiiiiiiiiiee e 72
6.16.0.7 dwarf_get_Cie_INAEX() .. .uurieeeiiiiiiiiiieee e 73
6.16.0.8 dwarf_get _fde_instr_bytes(}.........ooeveiiiieiiiii e 73
6.16.0.9 dwarf _get fde_info _for reg()....cccccveeiiiiiiiiiiiiiiiii 73
6.16.0.10dwarf_get fde_info_for_all regs()....ccccceeeiiivririiiemiiiiiiiiieeeeeeeeeinns 74
6.16.0.11dwarf_set_frame_rule_table_size()..........ccoeeeeiiiiiieiiieiiecee 74
6.16.0.12dwarf_set_frame_rule_initial_value()...........cceveerrrrrrrerreeirieeeennen. 75
6.16.0.13dwarf_set_frame_cfa_value()........cccuvvrerrreereeirieiiiiiiieeeeeeeeeeeeeeeen 75
6.16.0.14dwarf_set_frame_same_value()........cccvvvrerrrereiiiiiiiiiiiiiiiiiecieeeee, 75
6.16.0.15dwarf_set frame_undefined_value().............ccccoeeeeeeieiiiiiiieeieen, 75

6.16.0.16dwarf_set_default_address_Siz€()........cccccerrvrieiiieeeeireeiiiiiien e, 76

6.16.0.17dwarf_get_fde_info_for_reg3().......ccceaeeaeeeneei e 76
6.16.0.18dwarf_get_fde_info_for_cfa_reg3()......cccuevremrmmmreeerreeeieerieeeeeennee. 77
6.16.0.19dwarf_get fde_info_for_all_regS3()......cccvveerrerrirrreeeiieiiiriieniiennenn, 78
6.16.0.20dwarf_get fde N()...cccooeiiiii 78
6.16.0.21dwarf_get fde_at PC()......uuuurmmmmmmnrinriiiiiiiriiniiiiiiriee 79
6.16.0.22dwarf_expand_frame_instructionS().........ccccvevvvrvviinieieerreernnnnnnnn. 79
6.16.0.23dwarf_get_fde_exception_info()........evvvvririiiiiiii 80
6.17 Location EXpression EVAIUALION.couiiiiiiiiiiiiie e 80
6.17.1 Location List Internald@ Interfaceccooooiiiiiiiiiiiiicieee 80
6.17.1.1 dwarf_get_loclist_entry()......ccceeveevieeiiiiiiiiiiiiiiiie e, 80
6.18 ADDIEVIatioNS GCCESS.uuuiiiiiieeiiiiiiiei it e et e e e s e e e e s s st e e e e e e e s eeaeas 81
6.18.1 dwarf_get_ abbrev()........cooiiii i 81
6.18.2 dwarf_get_abbrev_tag()....cccccooriiiriiiiie 82
6.18.3 dwarf_get_abbrev_cCode().........cuumriiiiiiiiiiiiii e 82
6.18.4 dwarf_get_abbrev_children_flag()..........ccourmiiiiiiiii e 82
6.18.5 dwarf_get_abbrev_entry().......ccccc oo 82
6.19 String SECLON OPEIALIONS.......ccviiiiiiiiiieiiiee e 83
6.19.1 dWAIT QBT SII() .evuieieieeiiiee i ereeaane 83
6.20 Address Range OPerations........ccoooieeiieeeiaee et eeeeeneennees 83
6.20.1 dwarf_get_aranges().......c.uuueeeeeeriiiiiiiiie e e e 83
6.20.2 dWarf_get_arange():.... . ueeeeeiiiurrrreieeeee it e e 84
6.20.3 dwarf_get_cu_die_OffSet()........cceeeeeiiiii s 84
6.20.4 dwarf_get_arange cu_header offset().......cccccccvviiiiiiii 84
6.20.5 dwarf_get_arange_iNfO()........ovuuriiiiiiiie e 85
6.21 General Ly Levd OPEratiONS eeueuemimemememmueees 85
6.21.1 dwarf_get_address_SIiZE()........ccuurrrrieeiiiiiiiiee e 85
6.21.2 dwarf_get_die_addresSs_SiZe()......ccccceiriiiieiieeieee e, 85
6.22 Ranges Operations (.debuUg_raNgES)........uuuuuririiriieiiieiiiieeeeeeereeeeereeeerereerreeereereeeeeees 86
6.22.1 dwarf_get rangeS().....uueeiiiiiiiiiieiieeieeee e 86
6.22.2 dwarf_get rangesS_a().....c.ucieeriiieiriiiieiiis e e e e e e e eearaa 86
6.22.3 dwarf_ranges_dealloC().......couverriiiiiiiiiiiii 87
6.23 GAD INAR OPEIALIONS eeeiiiieiiiet e e e e e as 87
6.23.1 dwarf_gdbindex_header().........c.uurieiieiiiiiii e 87
6.23.2 dwarf_gdbindeX_CuliSt_array()............euuuurrrurrmrummmrrnrrrerrrrrrreereeereerreeereeree. 90
6.23.3 dwarf_gdbindeX_ Culist_eNntry()...........ueuuurrurmrummriieiinriierirerereereeeeeeereeereeee.. 90
6.23.4 dwarf_gdbindex_types_culist_array()......cccccceeeeeiiieeeiiereiiiiiie e 90
6.23.5 dwarf_gdbindex_types_CuliSt_entry().............uuuuereuermmemrmmeeneeenereeeeneeeeeeeeeeeee. 90
6.23.6 dwarf_gdbindex_addressar€a()...........uuuveeeeriiiiiiiiiiee e 91
6.23.7 dwarf_gdbindex_addressarea_entry()..........cccureeeeeeeiiiiiiiiiieeeee e 91
6.23.8 dwarf_gdbindex_symboltable_array()...........ccccccvvurrrmurmmrrmreennrinnerenreneeeenen. 92
6.23.9 dwarf_gdbindex_symboltable_entry()..........ccccuvrrrimrremireriiniieerieeireereeereeeee. 94
6.23.10 dwarf_gdbindex_cuvector_length()..........coeeiiiiiiiiiiiic e 94
6.23.11 dwarf_gdbindex_cuvector_inner_attributes()............coovvvveeiieiiiiiiieeieeeeee. 94
6.23.12 dwarf_gdbindex_cuvector_instance_expand_value()........ccccccvvevveeveennenn.. 95
6.23.13 dwarf_gdbindex_string_by_OffSEt().........cccurrririiieiiiiiieece e 95
6.24 Debug Fission (.debug_tu_index, .debug_cu_index) operations......................... 96
6.24.1 Dwarf Debug Fission_Per CU..........ccccccoiiiiiiiiiiii 96

6.24.2 dwarf_die_from_hash_signature()..........ccccceevrriiiiniiiiiiiieiiei e, 97

6.24.3 dwarf_get_debugfission_for_die().....cccccoerreiirriirii 98
6.24.4 dwarf_get_debudfiSSION_fORYK) ...ccooriiiiiiiiiiiee e 98
6.24.5 dwarf_get xu_index_header()........ccccccveiiieiieiiiee . 98
6.24.6 dwarf_get xu_index_section_type().......ccccccrrriiiiiiiiiiiiiiee 100
6.24.7 dwarf_get xu_header_free()......cccoiieiiiiiiiiiiicccc 101
6.24.8 dwarf_get xu_hash_entry().......ccccourriiiiii e 101
6.24.9 dwarf_get_Xu_SeCtiON_NAMES()......uuurrrrurrruenireeiieeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 102
6.24.10 dwarf_get_xu_section_offSet()..........coourreeriiiriieiecie e 102
6.25TAG ATTR €1C NAMES S SIINQS. .. eeeiieiiiiiiiiiiiiie ettt e e e e e s ae e 104
6.25.1 dwarf_get ACCESS _NAME()....cciieeeieeiieieieiieeiiii e naneennennnes 104
6.25.2 dwarf_get. AT _NAmMeE().....ccoeiieiiiee e 105
6.25.3 dwarf_get ATE _NAME() ...ceuuuruiiiiieeeeieeiici s e e e e e e e e e e e e e e eeeeees 105
6.25.4 dwarf_get_ADDR_NAME() .-t tceeeeeeae e eeeeeeeeeeeeeeeeeeeeeennees 105
6.25.5 dwarf_get_ ATCF_NAME().......iiurrrriiieeeiiaiiiiiee et e e e e 105
6.25.6 dwarf_get CHILDREN_NAME()ccoiiiuiriiiiiieeiiiiiiiiee e 105
6.25.7 dwarf_get_children_name()......cccceveeevieiiiiiiiii 105
6.25.8 dwarf_get CC _NAME()...uuuurrruririiiiiiiiiiiiiiriirerirsrrerrresrrerrrerrersrerreere—————————. 105
6.25.9 dwarf_get CFA_NAME().....cuuiuiii i e e e e e e e e e e eeeeees 105
6.25.10 dwarf_get DS NAME()...ccooiieeieieieeie i eneee 105
6.25.11 dwarf_get_ DSC_NAME()....uuuureiieeeiiiiiiiiiiie et 105
6.25.12 dwarf_get_ EH_NamME()....eveiiiiiiiiiiiiei e 105
6.25.13 dwarf_get END_NAME()....uuuuuruuuiiuiinniinniiinriniinninnennnrrrerrrsrmrermsrmnesee———. 105
6.25.14 dwarf_get FORM_NAME().. ... aeaaeeaneanneeanenneenneennees 105
6.25.15dwarf_get FRAME _NAME()....ccooeeiiieieiiiiie e e e et e e e e eeaeens 105
6.25.16 dwarf_get ID _NAME() . .cooieeieeeieee e 106
6.25.17 dwarf_get_INL_NAME() . ..couiiiiiriiieeeeee it 106
6.25.18 dwarf_get_ LANG_NAME(). .. uuuurieieeeiiiiiiiiiieee et e e e e 106
6.25.19dwarf_get LNE_Name().......ccooeeiiieiiiie i e 106
6.25.20 dwarf_get LNS Name().......coooeeiiiiiiie e 106
6.25.21 dwarf_get MACINFO_Name()...cuuuuriiiiiieeeiieeiiiiiis e e e eeee e e e e e ee e 106
6.25.22 dwarf_get_ OP_Name()......coooee i 106
6.25.23 dwarf_get_ORD_NAME(). . uuteeeeiiiiiiiiieiiee e 106
6.25.24 dwarf_get AG_NAME() ..occuvrrriiieeeiiiiiiiie e 106
6.25.25 dwarf_get VIRTUALITY_Name()cccovvvvviiiiiiieeeeeeeeeeeee 106
6.25.26 dwarf_get VIS Name().....ccoovvvviiiiiiiiii 106
oA IS T =Tex (o) g I @] o<1 7= 11 [0] o < 106
6.26.1 dwarf_get_Section_COUNT()......ccccoeiiii e eeeeeeeeeeeeeees 106
6.26.2 dwarf_get_section_info_by Name()........uueeeeeeeiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeee e 107
6.26.3 dwarf_get_section_info_by indeX()...........ueereeeriieiiiiiiiiiiiiiieeiieeeeeeeeeeeeee e 107
6.27 Utility OPErationNScccoeiiiiii e 107
6.27.1 dwarf_ermo() ...cccoooeeeiei s 107
A o Y7 L =T E= T) PN 107
6.27.3 dwarf_get_harmless_error_list()........cccooerieeiiiiie e 108
6.27.4 dwarf_insert_harmless_error()........cooooeeeoeeiioe e 109
6.27.5 dwarf_set_harmless_error_list_Size().........coeeeeiieeiieeeeeeeeeeccce s 109
6.27.6 dwarf_Seterrand()..........ccccuuuuuuurimuiiiiiieiiiiiieirrrer e —————————————————— 113
6.27.7 dwarf_Seterrarg()cccccvvvieeiieee L 113

Vi

6.27.8 dwarf_dealloc()

6.27.9 dwarf_encode_1eD128()........coueiiiiiiiiiiii
6.27.10 dwarf_encode_signed_1eD128()........ccueeeeiiiiiiiiiiiieee e

vii

LIST OF FIGURES

FIQUIE 1. SCaAlar TYPES oo —————— 5
Figure 2. Error INdiCAtiONSooovvviiiiiiiii e 15
Figure 3. Allocation/Deallocation Identifiers............couuuiiiiii e 18
Figure 4. Frame Information Rule Assignments MIPS...........cccoiiiiiiiiiiiieee 68
Figure 5. Frame Information Special Valuey architecturecccccooviiiiiiiiiieeiiniiiie, 68
Figure 6. DWarf ErrOr COUESuuuiiiiiiieiieiitii ettt e e e 109
Figure 7. Dwarf 2 Error Codes (continued below)...............ooooe oo 110
Figure 8. Dwarf 2 Error Codes (continued below)...............oooo oo, 111
Figure 9. Dwarf 2 Error Codes (continued below)...........oooviiiiiiiiiiieci e, 112
Figure 10.DwWarf 2 ErrOr COUES.......cooiiiiee e 113

viii

A Consumer Library Interfaceto DWARF
David Anderson

ABSTRACT

This document describes an inte® to a library of functions to acces¥VBRF delugging
information entries and WARF line number information (and other WBARF2/3/4/5
information). It does not mak recommendations as to wothe functions described in this
document should be implemented nor does it suggest possible optimizations.

The document is oriented to readin§VBRF version 2 and laterThere are certain sections
which are SGI-specific (those are clearly identified in the document).

rev 2.30, Sept 14, 2015

0. UNIXis a registered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

iX

