n" A Consumer Library Interfaceto DWARF
David Anderson

1. INTRODUCTION

This document describes an interfacelitmiwarf, a library of functions to pndde access to WARF
delugging information records, \MARF line number information, WARF address range and global
names information, weak names informationVARF frame description information, IARF static
function names, WARF static variables, andARF type information.

The document has long mentioned the "Unix International Programming Languages Special Interest
Group" (PLSIG), under whose auspices th&/ARF committee was formed around 1991Unix
International” was disbanded in the 1990s and no longer exists.

The DNARF committee published\WWARF2 July 27, 1993.

In the mid 1990s this document and the library it describes (which the commiteeeemdorsed, hang
decided not to endorse or appeoay particular library interface) was madgadable on the internet by
Silicon Graphics, Inc.

In 2005 the DVARF committee bgen an dfiliation with FreeStandardsar In 2007 FreeStandardsgor
merged with The Linux Bundation. Th®WARF committee dropped itsfdfation with FreeStandardsgr
in 2007 and established the alfistd.og website. Seéhttp://www.dwarfstd.og" for current information
on standardization activities and a gaf the standard.

1.1 Copyright
Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2014 David Anderson.

Permission is hereby granted to gap republish or use anor dl of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that dud be useful, but WITHOUT ANY WRRANTY;
without even the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to act®8KRMP dehlugging
information. There is no effort made in this document to address the creation of these records as those
issues are addressed separately (see "A Producer Library Interfadé RMAD).

Additionally, the focus of this document is the functional irded, and as such, implementation as well as

optimization issues are intentionally ignored.

1.3 Document History

A document vas written about 1991 which had similar layout and iate$. Writterby people from Hal

rev 2.27, May 01, 2015 -1-



Corporation, That document described a library for readifgARF1. Theauthors distributed paper
copies to the committee with the clearly expressed intent to propose the document as a suppa@ted interf
definition. Thecommittee decided not to pursue a library definition.

SGI wrote the document you arewnoeading in 1993 with a similar layout and content argirgration,

but it was complete documentwsdte with the intent to read WARF2 (the DVARF version then in
existence). Thantent was (and is) to also s future revisions of B/ARFE All the function interdces
were changed in 1994 to uniformly return a simple integer success-codéNs&d ¥ OK etc), generally
following the recommendations in the chapter titled "Candy Machine dne='f of "Writing Solid Code",
a book by Stge Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIEs) are thgnsents of information placed in thelebug_*

sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source4t debugging. Referto the latest DWARF Debugging Information

Format" from www.dwarfstd.ay for a more complete description of these entries.

This document adopts all the terms and definitionsDWARF Debugging Information Format" versions
2,3,4, and 5.1t originally focused on the implementation at Silicon Graphics, Inc., butattempts to be
more generally useful.

1.5 Overview

The remaining sections of this document describe the proposed interfadedwar f , first by describing

the purpose of additional types ihefd by the interface, followed by descriptions of theilable
operations. Thiglocument assumes you are thoroughly familiar with the information contained in the
DWARF Debugging Information Format document.

We eparate the functions intovs&eal categories to emphasize that not all consumart to use all the
functions. V¢ all the catgories Dehgger Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the ratlyer $at of function calls easier to
understand.

Unless otherwise specified, all functions and structures should ée sakbeing designed for Dejyer
consumers.

The Debugger Interface of this library is intended to be used hygdels. Theanterface is lov-level
(close to dwarf) but suppresses irvale detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sectignsp at need. Andven then will probably
want to absorb only the information in a single compilation unit at a titndebugger does not care about
implementation details of the library.

The Internal-lgel Interface is for a WARF prettyprinter and cheek A thorough prettyprinter will ant

to know al kinds of internal things (lie ectual FORM numbers and actual offsets) so it can check for
appropriate structure in theVBARF data and print (on request) all that internal information for human
users and libdwarf authors and compileiters. Callsin this interface provide data a debugger does not
care about.

The High-level Interface is for higher kel access (it is not really a highvd interface!). Programsuch as
disassemblers will want to be able to displayvaieinformation about functions and line numbers without
having to ivest too much effort in looking at\BARF.

The miscellaneous interface is just what is lgfirothe error handler functions.

The following is a brief mention of the changes in this libdwarf from the Eivfldraft for DVARF \ersion
1 and recent changes.

rev 2.27, May 01, 2015 -2-



1.6 Items Changed

Adding some DVARF5 support and impved DWP Package File supportiwarf_net cu_header_d() and
W

Added a note about dwarf_errmsg(): the string pointer returned should be considered ephemeral, not a
string which remains valid permanentlyser code should print it or cpjit before calling other libdarf
functions on the specific Dwarf_Debug instance. (May 15, 2014)

Added a printf-callback so libdwarf will not actually print to stdout. Added dwarf_highpc_b() so return of
a DWARF4 DW_AT high_pc of class constant can be returned prop@igust 15 2013)

Defined hav the nev operator DW_OP_GNU_const_type is handled. (January 26 2013)

Added dvarf_loclist from_e&pr_b() function which adds gmments of the WARF version (2 for

DWARF2, etc) and the f&fet size to the darf loclist from_epr _a() function. Because the
DW_OP_GNU_implicit_pointer opcode is defined differently foWWBRF2 than for later ersions.

(November 2012)

Added nev functions (some for libdwarf client code) and internal logic support for tWWARF4

.delug_types section. The we functions are derf next cu_header c(), dwf siblingof b(),

dwarf_ofdie_b(), dvarf get cu_die_ offset ygn cu_header_ &fet _b(), dvarf get die_infotypes flag(),
dwarf_get_section_max_offsets_b().

New functions and logic support additional detailed error reporting so that more comygjierchn be
reported sensibly by consumer code (as opposedvinchbBbdwarf just assume things are ok and blindly
continuing on with erroneous data). Wmber 20, 2010

It seems impossible to deflt to both W_FRAME_CFA_COL and BOW_FRAME_CFA_COL3 in a single
build of libdwarf, so the defult is nav unambiguously & FRAME_CFA_COL3 unless the coigfure
option --enable-oldframecol is specified at configure time. The functi@fdset frame_cfa alue() may
be used to werride the dedult : using that function gés consumer applications full control (its use is
highly recommended). (January 17,2010)

Added dwarf_set_reloc_application() and the default automatic application of EIf rela’ relocations to
DWARF sections (such rela sections appear irleg,fnot in &ecutables or shared objects, in general).
The dwvarf_set reloc_application() routine lets a consumer tufrth&f automatic application ofela’
relocations if desired (it is not clear wlnyone would really want to do that, but possibly a consumer
could write its own relocation application). An example application the¢rses a set of DIEsasg added

to the nev dwarfexample directory (not in this libdwarf directobyt in parallel to it). (July 10, 2009)

Added dvarf_get ARG _name() (and the FORMTAand so on) interface functions so applications can get
the string of the AG, Attribute, etc as needed. (June 2009)

Added dwarf_get ranges_a() andafvloclist from_e&pr_a() functions which add guments allowing a
correct address_size when the address_sidesvby compilation unit (a varying address_size is quite rare
as of May 2009). (May 2009)

Added dvarf_set frame_sameale(), and darf_set frame_undefinedale() to complete the set of

frame-information functions needed to all@n aplication get all frame information returned correctly
(meaning that it can be correctly interpreted) for all ABBocumented darf _set frame cfa value().

Corrected spelling to dwarf_set_frame_rule_initialue(). (April2009).

Added support for various\BARF3 features, but primarily awdrame-information interface tailorable at
run-time to more than a single ABl. See dwarf _set frame_rule_initial_value(),
dwarf_set frame_rule_table_size(), ailv set_frame_cfa alue(). Sealso dvarf_get fde info_for_reg3()

and dwarf_get fde_info_for_cfa g®). (April 2006)

Added support for B/ARF3 .debug_pubtypes section. Corrected various leakisi(rg dealloc() calls,
adding n& functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the previous deallocation method documented for data returned by

rev 2.27, May 01, 2015 -3-



dwarf_srclines() was incapable of freeing all the allocated storage (14 July 2005).

dwarf_netglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pomigereats.
This males writing safe and correct library-using-code far eadter justification for this approach, see
the chapter titled "Candy Machine Interfaces" in the book "Writing Solid Code" g Blguire.

1.7 Items Removed

Dwarf_Type was remad snce types are no longer special.

dwarf_typeof() was remad since types are no longer special.

Dwarf_Ellist was remeed since element lists no longer are a special format.
Dwarf_Bounds was remved snce bounds ha bkeen generalized.

dwarf_netdie() was replaced by @ next_cu_header() to reflect the real wayVBRF is oganized.
The dvarf_netdie() was only useful for getting to compilation uniglmnings, so it does not seem harmful
to remave it in favar of a more direct function.

dwarf_childcnt() is remeed on gounds that no good use was apparent.

dwarf_pre/line() and dvarf_netline() were remeed on gounds this is better left to a dejger to do.
Similarly, dwarf_dieline() was remeed.

dwarf_islstline() was remved as it wvas not meaningful for the revised\B\RF line operations.

Any libdwarf implementation might well decide to support all the resddunctionality and to retain the
DWARF Version 1 meanings of that functionalityhis would be dffcult because the original libcf

draft specification used traditional C library insés which confuse the values returned by successful
calls with exceptional conditions Bkfailures and 'no more data’ indications.

1.8 Revision History

July 2014 Added support for the .gdb_indeection and started support for the .dgbcu_index
and .debug_tu_indesections.

October 2011 DWARF4 support for reading .debug_types added.

March 93 Work on DWARF2 SGI draft begins
June 94 The function returns are changed to return an error/success code only.
April 2006: Support for WARF3 consumer operations is close to completion.

November 2010: Added various wedunctions and impneed error checking.

2. Types Definitions

2.1 General Description

Thelibdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects dibdwarf. The types defined by typedefs containedlilodwarf.h all use the
convention of addingDwar f _ as a prefix and can be placed in three categories:

rev 2.27, May 01, 2015 -4 -



« Scalar types : The scalar typesidedl inlibdwarf.h are defined primarily for notational coenience
and identiication. Dependingn the individual defition, they are interpreted as a value, a pointer
or as a flag.

« Aggregae types : Some alues can not be represented by a single scalar type;ntbst be
represented by a collection of, or as a union of, scalar and/ogaigggoes.

« Opaque types : The complete idéfon of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opaque type to be used in another
guery or an nstance of a scalar or aggae type, which is the actual result.

2.2 Scalar Types
The following are the defined bibdwarf.h:

typedef int Dwar f _Bool ;

t ypedef unsigned long | ong Dwarf O f;

typedef unsigned | ong | ong Dwarf_Unsi gned;

t ypedef unsi gned short Dwar f _Hal f;

t ypedef unsi gned char Dwar f _Smal | ;

typedef signed |long |ong Dwar f _Si gned;

t ypedef unsigned | ong | ong Dwarf _Addr;

typedef void *Dwarf_Ptr;

typedef void (*Dwarf _Handl er) (Dwarf_Error *error, Dwarf Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the Jibmatryfor representing pc-
values/addresses within the target objelet. f Dwarf _Addr is for pc-values within the target objeibe.f
The sample scalar type assignmentsvabae for alibdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machine. The types mustdéfned appropriately for each
implementation of libdwarf. A description of these scalar types in the SGI/MIPS environmentes mji
Figure 1.

NAME SIZE ALIGNMENT PURPOSE
Dwarf_Bool 4 4 Boolean states
Dwarf_Of 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Sgned large integer
Dwarf_Addr 8 8 Program address
(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer
(host program)
Dwarf Handler 4|8 4)8 Pointeto
error handler function

Figurel. Scalar Types

2.3 Aggregate Types

The following aggrgade types are d&fed by libdwarf.h: Dwarf _Loc, Dwarf_Locdesc,
Dwar f _Bl ock, Dwarf_Frame_Qp. Dwarf_Regtabl e. Dwarf_Regtabl e3. While most of

rev 2.27, May 01, 2015 -5-



I i bdwar f acts on or returns simple values or opaque pointer types, this small set of structures seems
useful.

2.3.1 Location Record

TheDwar f _Loc type identifies a single atom of a location description or a location expression.

typedef struct {

Dwar f _Smal | Ir_atom

Dwar f _Unsi gned I r _nunber;

Dwar f _Unsi gned I r _nunber 2;

Dwar f _Unsi gned I r_offset;
} Dwarf _Loc;

Thel r _at omidentifies the atom corresponding to thi&/ OP_* definition in dwarf.h and it represents
the operation to be performed in order to locate the item in question.

Thel r _nunber field is the operand to be used in the calculation spddify thel r _at omfield; not all
atoms use thisidld. Someatom operations imply signed numbers so it is necessary to cast this to a
Dwar f _Si gned type for those operations.

Thel r _nunber 2 field is the second operand specified byltheat omfield; onlyDW OP_BREGX has
this field. Someatom operations imply signed numbers so it may be necessary to cast this to a
Dwar f _Si gned type for those operations.

For aDW OP_i npl i ci t _val ue operator thé r _nunber 2 field is a pointer to the bytes of thalwe.

The field pointed to i$r _nunber bytes long. There is nakplicit terminator Do not attempt td r ee

the bytes which r _numrber 2 points at and do not alter those bytes. The pointer value remains valid till
the open Dwarf_Dehlug is closed. This is a rather ugly use of a host integer to hold a poffaerwill
normally hae o do a cast’ operation to use the value.

For aDW OP_GNU const _t ype operator the r _nunber 2 field is a pointer to a block with an initial
unsigned byte giving the number of bytes following, followed immediately that number of @ust v
bytes. Theras no explicit terminator Do not attempt tdf r ee the bytes whicH r _nunber 2 points at
and do not alter those bytes. The pointer value remains valid till the opefi De&hug is closed. This is a
rather ugly use of a host integer to hold a poin¥u will normally hae o do a tast’ operation to use the
value.

Thelr _of fset field is the byte déet (within the block the location record came from) of the atom
specifed by thel r _at omfield. Thisis set on all atoms. This is useful for operatitig OP_SKI P and
DW OP_BRA.

2.3.2 Location Description

The Dwar f _Locdesc type represents an ordered listiyiar f _Loc records used in the calculation to
locate an item. Note that in marases, the location can only be calculated at runtime of the associated
program.

rev 2.27, May 01, 2015 -6-



typedef struct {

Dwar f _Addr I d_I opc;
Dwar f _Addr [ d_hi pc;
Dwar f _Unsi gned | d_cents;
Dwarf _Loc* ld_s;

} Dwarf_Locdesc;

Thel d_I opc andl d_hi pc fields proide an address range for which this location descriptoalid.v
Both of these fields are set zero if the location descriptor isalid throughout the scope of the item it is
associated with.These addresses are virtual memory addresses, feetsefrom-something. Thertual
memory addresses do not account for dseement (none of the pcalues from libdwarf do that, it is up to
the consumer to do that).

Thel d_cent s field contains a count of the numbeDsfar f _Loc entries pointed to by tHed_s field.

Thel d_s field points to an array @war f _Loc records.

2.3.3 Data Block

The Dwarf Bl ock type is used to contain the value of an attribute whose form is either
DW FORM bl ock1, DW FORM bl ock2, DW FORM bl ock4, DW FORM bl ock8, or
DW FORM bl ock. Its intended use is to dedr the value for an attribute of wof these forms.

typedef struct {
Dwar f _Unsi gned bl | en;
Dwarf _Ptr bl dat a;
} Dwarf Bl ock;

Thebl _| en field contains the length in bytes of the data pointed to blgltheat a field.

The bl _dat a field contains a pointer to the uninterpreted data. Since wealxaarf _Ptr here one
must cop the pointer to some other type (typicallyamsi gned char *) so ame can add increments to
index through the data. The data pointed tdiby dat a is not necessarily at gruseful alignment.

2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable fotMBRF3
and for DNARF?2 is described belo This interface is deprecated. Use the imtesf for DVARF3 and
DWARF2. Sealso the section "lw Levd Frame Operations" belo

The DNARF2Dwar f _Fr anme_Qp type is used to contain the data of a single instruction of an instruction-
sequence of le-level information from the section containing frame information. This is ordinarily used
by Internal-leel Consumers trying to printverything in detail.

rev 2.27, May 01, 2015 -7-



typedef struct {
Dwarf_Small fp_base_ op;
Dwarf_Smal |l fp_extended_op;
Dwar f _Hal f fp_register;
Dwar f _Si gned fp_offset;
Dwarf_Offset fp_instr_offset;
} Dwarf_Frane_Op;

f p_base_op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tBal | Franme Instruction
Encodi ngs figure in thedwar f document. lfhot used with the Op it is 0.

fp_offset is the address, delta, offset, or second register as defined irCahk Frane
I nstruction Encodi ngs figure in thedwar f document. Ifthis is anaddr ess then the walue
should be cast tbDwar f _Addr ) before being used. In wmmplementation this field *must* be as dar
as the larger of Dwarf_Signed and Dwarf_Addr for this to work propdirlyot used with the op it is 0.

fp_instr_of fset is the byte dbet (within the instruction stream of the frame instructions) of this
operation. lIstarts at O for a gen frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate foMARF2 and MIPS but not for\lWARF3. Aseparate and preferred intaré
usable for WWARF3 and for DVARF2 is described belo See also the section "o Levd Frame
Operations" belw.

The Dwar f _Regt abl e type is used to contain thegisterrestore information for all registers at aayi

PC walue. Normallyused by delggers. Ifyou wish to default to this interface and to the use of
DW_FRAME_CFA_COL, specify --enable_oldframecol at libdwarf configure time. Or add a call
dwarf_set frame_cfa_value(dbg,DW_FRAME ACEEOL) after your dwarf_init() call, this call replaces
the default libdwarf-compile-time value with DW_FRAME_CFA_COL.

/* DW_REG_TABLE_SIZE must reflect the number of registers
*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h

*

#define DW_REG_ABLE_SIZE <fill in size here, 66 for MIPS/IRIX>
typedef struct {

struct {
Dwar f _Smal | dw of fset _rel evant;
Dwar f _Hal f dw_r egnum
Dwar f _Addr dw of f set;

} rul es[ DW REG TABLE Sl ZE] ;

} Dwarf _Regtabl e;

The array is indeed by regster number The field values for each indere described ne. For clarity we
describe the field values for indeules[M] (M being ag legd array element index).

dw of fset _rel evant is non-zero to indicate théw _of f set field is meaningful. If zero then the
dw_of f set is zero and should be ignored.

dw_regnum is the register number applicabléf. dw of f set _rel evant is zero, then this is the
register number of the gister containing the value for register M. dw_of f set _r el evant is non-
zero, then this is the gisster number of the register to use as a base (M maybe-RAME_CFA_COL,
for example) and thdw_of f set vaue applies. The value of register M is therefore the valuegidtesr
dw_r egnum

rev 2.27, May 01, 2015 -8-



dw_of f set should be ignored dlw_of f set _r el evant is zero. If dw_of f set _rel evant is non-
zero, then the consumer code should add the value to the value gfisterdsv_r egnumto produce the
value.

2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2)

This interface is adequate foMARF3 and for BWARF2 (and DVARF4). Itis nev in libdwarf in April
2006. Sealso the section "lw Levd Frame Operations" belo

The DNARF2 Dwarf _Frame_(p3 type is used to contain the data of a single instruction of an
instruction-sequence of welevel information from the section containing frame information. This is
ordinarily used by Internal-lel Consumers trying to printverything in detail.

typedef struct {

Dwar f _Smal | fp_base_op;
Dwar f _Smal | f p_ext ended_op;
Dwar f _Hal f fp_register;

/* Val ue may be signed, depends on op.

Any applicable data_alignnment_factor has

not been applied, this is the raw offset. */
Dwarf _Unsigned fp_offset_or_block |en;
Dwar f _Smal | *f p_expr_bl ock;

Dwar f O f fp_instr_offset;
} Dwarf_ Frane_Op3;

fp_base _op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tBal | Frane Instruction
Encodi ngs figure in thedwar f document. Ifhot used with the Op itis 0.

fp_offset or_ bl ock | en is the address, delta, offset, or second register as defined Cakhe
Frame Instruction Encodi ngs figure in thedwar f document. Or (depending on the op, it may
be the length of the davf-expression block pointed to Byp_expr _bl ock. If this is anaddr ess then
the value should be cast f®war f _Addr) before being usedin ary implementation this field *must*
be as large as the ¢gar of Dwarf_Signed and Dwarf_Addr for this to work propetfynot used with the
opitis 0.

fp_expr_bl ock (if applicable to the op) points to a drfrexpression block which is
fp_offset or bl ock | en bytes long.

fp_instr_of fset is the byte dbet (within the instruction stream of the frame instructions) of this
operation. lIsstarts at O for a gen frame descriptor.

2.3.7 Frame Regtable: DWARF 3

This interface is adequate foMARF3 and for DVARF2. Itis newv in libdwarf as of April 2006.The
default configure of libdwarf inserts\W_FRAME_CF_COL3 as the default @Fcolumn. Oradd a call
dwarf_set frame_cfa_value(dbg,DW_FRAME ACEOL3) after your dwarf_init() call, this call replaces
the default libdwarf-compile-time value with DW_FRAME_CFA_COL3.

TheDwar f _Regt abl e3 type is used to contain thegisterrestore information for all registers at &ei
PC \alue. Normallyused by debuggers.

rev 2.27, May 01, 2015 -9-



-10 -

typedef struct Dwarf_Regtable Entry3 s {

Dwar f _Smal | dw of fset _rel evant;
Dwar f _Smal | dw val ue_type;
Dwar f _Hal f dw_r egnum

Dwar f _Unsi gned dw of fset _or_ bl ock | en;
Dwarf Ptr dw_bl ock_ptr;

} Dwar f _Regt abl e_Entry3;

typedef struct Dwarf_Regtabl e3_s {
struct Dwarf_Regtable Entry3_s rt3 _cfa rule;

Dwar f _Hal f rt3_reg_table_size;
struct Dwarf_Regtable Entry3_ s * rt3_rules;
} Dwarf_Regtabl e3;

The array is indeed by regster number The field values for each ind@re described n¢. For clarity we
describe the field values for inderules]M] (M being ay legd array element inde.
(DW_FRAME_CHA_COL3 DW_FRAME_SAME_\AL, DW_FRAME_UNDEFINED_MAL are not lgd
array indees, nor is ap index < 0 or >= it3_reg_table_size); The calleof routines using this struct must
create data space for rt3gréable_size entries of struct Brvf Regtable Entry3_s and arrange that
rt3_rules points to that space and that rt3_reg_table_size is set corfidatlycaller need not (but may)
initialize the contents of the rt3 acfrule or the rt3_rules arrayrhe following applies to each rt3_rules rule
M:

dw_regnum is the rgister number applicable. If dw_regnum is
DW_FRAME_UNDEFINED_ ML, then the register | has undefinedlve. Ifdw_r egnumis
DW_FRAME_SAME_VAL, then the register | has the same value as in the previous frame.

If dw_r egnhumis neither of these two, then the following apply:

dw_val ue_t ype determines the meaning of the othetds. Itis one of W _EXPR_OFFSET
(0), DW_EXPR_\AL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_VAL_EXPRESSION(3).

If dw_val ue_t ype is DW_EXPR_OFFSET (0) then this is as ilWVBARF2 and the dfet(N)
rule orthe register(R) rule of the\ARF3 and DVARF2 document applies. The value is either:
If dw_of f set _r el evant is non-zero, thedw_r egnumis efectively ignored ut
must be identical to W_FRAME_CF_COL3 (and thedw _of f set value applies.
The value of rgister M is therefore the value of Eplus the value oflw_of f set .
The result of the calculation is the address in memory where the value of register M
resides. Thiss the offset(N) rule of the WARF2 and MVARF3 documents.

dw_of f set _r el evant is zero it indicates théw_of f set field is not meaningful.
The value of rgister M is the value currently in gister dw_r egnum (the \alue

DW_FRAME_CF_COL3 must not appeaonly real rgisters). Thids the rgister(R)

rule of the DWVARF3 spec.

If dw_val ue_t ype is DW_EXPR_OFFSET (1) then this is the thed wfiset(N) rule of the
DWARF3 spec applies. The calculation is identical to that W BXPR_OFFSET (0) but the
value is interpreted as the value ofjister M (rather than the address where registervlue is
stored).

If dw_val ue_t ype is DW_EXPR_EXPRESSION (2) then this is the thpression(E) rule of
the DWVARF3 document.

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopkinted

rev 2.27, May 01, 2015 -10-



-11 -

at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Eagluate that
expression and the result is the address where the previous value of register M is found.

If dw value_ type is DW_EXPR_\AL EXPRESSION (3) then this is the the
val_expression(E) rule of the\ARF3 spec.

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopkinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Eagluate that
expression and the result is the previous value of register M.

The rulert 3_cfa_rul e is the current value of the CFA. It is interpreted exactlg bRy
register M rule (as described just aBp except that dw_regnum cannot be
CW_FRAME_CR_REG3 or DV_FRAME_UNDEFINED_M\AL or DW_FRAME_SAME_VAL
but must be a real register number.

2.3.8 Macro Details Record
TheDwar f _Macr o_Det ai | s type gives information about a single entry in the .debug.macinfo section.

struct Dwarf_Macro Details_s {
Dwarf O f dnd_of f set;
Dwarf _Smal|l dnd_type;
Dwarf _Si gned dnd_I i neno;
Dwar f _Si gned dnd_fil ei ndex;
char * dnd_nuacr o;
b
typedef struct Dwarf_Macro _Details_s Dwarf_Macro _Details;

dnd_of f set is the byte offset, within the .debug_macinfo section, of this macro information.

dnd_t ype is the type code of this macro info entry (or 0, the type code indicating that this is the end of
macro information entries for a compilation unifee DW MACI NFO defi ne, ec in the DNARF
document.

dnd_| i neno is the line number where this entry was found, or 0 if there is no applicable line number.

dnd_fil ei ndex is the file ind& of the file involved. Thisis only guaranteed meaningful on a
DW MACI NFO start _fil e dnd type. Setto -1 if unknown (see the functional interface for more
details).

dnd_nacr o is the applicable stringFor a DW MACI NFO_def i ne this is the macro name andlue.
For a DW MACI NFO_undef , or this is the macro nameror a DW MACI NFO vendor _ext this is the
vendor-defined stringalue. or otherdnd_t ypes this is 0.

2.4 Opaque Types

The opaque types declaredlibdwarf.h are used as descriptors for querieaiagt DNVARF information

stored in various debugging sectiorigach time an instance of an opaque type is returned as a result of a
libdwarf operation Dwar f _Debug excepted), it should be freed, usidgar f _deal | oc() when it is

no longer of use (read the following documentation for details, as in at least one case there is a special
routine provided for deallocation anddwarf _deall oc() is not directly called: see

dwarf _srclines()). Somefunctions return a number of instances of an opaque type in a block, by
means of a pointer to the block and a count of the number of opaque descriptors in the block: see the
function description for deallocation rules for such functions. The list of opaque types defined in
libdwarf.h that are pertinent to the Consumer Librand their intended use is described belo

rev 2.27, May 01, 2015 -11-



-12 -

typedef struct Dwarf_Debug_s* Dwarf_Debug;

An instance of thé®war f _Debug type is created as a result of a successful calivar f _init (), or

dwarf _elf_init(),andis used as a descriptor for subsequent access td ntbdar f functions on

that object. The storage pointed to by this descriptor should be not be freed, using the
dwar f _deal | oc() function. Insteadree it withdwar f _fi ni sh().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of ebwar f _Di e type is returned from a successful call to thwar f _si bl i ngof (),
dwarf _child, or dwarf_of fdi e_b() function, and is used as a descriptor for queries about
information related to that DIEThe storage pointed to by this descriptor should be freed, using
dwar f _deal | oc() with the allocation typ®W DLA DI E when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances ofDwar f _Li ne type are returned from a successful call to tvaarf _srclines()

function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individually freed, usirdwarf_deal | oc() with the allocation type

DW DLA LI NEwhen no longer needed.

typedef struct Dwarf_d obal _s* Dwarf_d obal;

Instances oDwar f _G obal type are returned from a successful call todhar f _get _gl obal s()
function, and are used as descriptors for queries about global names (pubnames).

typedef struct Dwarf_Weak s* Dwarf_Weak;

Instances of Dwarf _\Weak type are returned from a successful call to the SGI-specif
dwar f _get weaks() function, and are used as descriptors for queries about weak names. The storage
pointed to by these descriptors should be individually freed, udimar f deal | oc() with the
allocation type DW DLA WEAK CONTEXT (or DW DLA WEAK, an dder name, supported for
compatibility) when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf _Func type are returned from a successful call to the SGI-specif
dwar f _get funcs() function, and are used as descriptors for queries about static function names.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf _Type type are returned from a successful call to the SGI-specif
dwar f _get _types() function, and are used as descriptors for queries about user defined types.

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf_Var type are returned from a successful call to the SGI-specif
dwar f _get vars() function, and are used as descriptors for queries about static variables.

typedef struct Dwarf_Error_s* Dwarf_FError;

This descriptor points to a structure that provides detailed information about errors detédtbod\ogr f .
Users typically provide a location fdri bdwar f to store this descriptor for the user to obtain more
information about the error The storage pointed to by this descriptor should be freed, using

rev 2.27, May 01, 2015 -12 -



-13 -

dwar f _deal | oc() with the allocation typ®wW DLA ERRCRwhen no longer needed.

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances obwar f _At t ri but e type are returned from a successful call todtarf _attrlist(),
ordwarf_attr () functions, and are used as descriptors for queries about attrédués.v Thestorage
pointed to by this descriptor should be individually freed, udiwgr f _deal | oc() with the allocation
typeDW DLA_ATTRwhen no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of @war f _Abbr ev type is returned from a successful calldwar f _get abbrev(),
and is used as a descriptor for queries about wibtions in the .dalg_abbre section. Thestorage
pointed to by this descriptor should be freed, usitvgar f _deal | oc() with the allocation type
DW DLA ABBREV when no longer needed.

t ypedef struct Dwarf_Fde_s* Dwarf _Fde;

Instances oDwar f _Fde type are returned from a successful call todinar f _get _fde_list(),
dwarf _get _fde for_die(),ordwarf_get fde_at_ pc() functions, and are used as descriptors
for queries about frames descriptors.

typedef struct Dwarf_Cie_s* Dwarf_Cie;

Instances oDwar f _Ci e type are returned from a successful call to dwerf _get _fde_list()
function, and are used as descriptors for queries about information that is commearaidrsenes.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances oDwar f _Ar ange type are returned from successful calls todkar f _get _ar anges(),
ordwar f _get _arange() functions, and are used as descriptors for queries about address fHmges.
storage pointed to by this descriptor should be individually freed, usiagf deal | oc() with the
allocation typeDW DLA ARANGE when no longer needed.

typedef struct Dwarf_CGdbi ndex_s* Dwarf _CGdbi ndex;

Instances of Dwarf_CGdbi ndex type are returned from successful calls to the
dwar f _gdbi ndex_header () function and are used to extract information from a .gdbxisdetion.
This section is a gcc/gdb extension and is designed to alldebugger fast access to data in .gghbinfo.
The storage pointed to by this descriptor should be freed using a calbtd _gdbi ndex_free()

with a validDwar f _Gdbi ndex pointer as the argument.

typedef struct Dwarf_Xu_I ndex_Header s* Dwarf_Xu_l ndex_header;

Instances of Dwarf_Xu_Il ndex_Header _s type are returned from successful calls to the
dwarf _get xu_i ndex_header () function and are used to extract information from a
.debug_cu_inde or debug_tu_inde section. These sections are used to enpissible access to .aw
sections gathered into a .dwp object as part of theudlébsion project allowing separation of an
executable from most of its WARF debugging information. As of May 2015 these sections are accepted
into DWARF5 but the standard has not been relea3éé. storage pointed to by this descriptor should be
freed using a call todwar f _xh_header _free() with a \alid Dwar f _Xul ndexHeader pointer as

the argument.

rev 2.27, May 01, 2015 -13-



-14 -

3. Error Handling

The method for detection and disposition of error conditions that arise during accessugdgirtgb
information vialibdwarf is consistent across dibdwarf functions that are capable of producing an error
This section describes the method usetittmwarf in notifying client programs of error conditions.

Most functions withinlibdwarf accept as an argument a pointer tbwar f _Er r or descriptor where a

Dwar f _Error descriptor is stored if an error is detected by the functiRoutines in the client program

that provide this gument can query tHanar f _Er r or descriptor to determine the nature of the error and
perform appropriate processing. The intent is that clients do the appropriate processing immediately on
encountering an error and then the client char f _deal | oc to free the descriptor.

In the rare case where the malloc arenaxtsaested when trying to create a Dwarf_Error descriptor a
pointer to a statically allocated descriptor will be return€kis static descriptor is mein December 2014.

A call todwar f _deal | oc() to free the statically allocated descriptor is harmless (it sets the aluer v
in the descriptor taDW_DLE_FAILSAFE_ERR/AL). Thepossible conflation of errors when the arena is
exhausted (and a dwf_error descriptor is 8ed past the next reader call inyathread) is considered better
than havindibdwarf callabor t () (as earlietibdwarf did).

A client program can also specify a function to beaked upon detection of an error at the time the library

is initialized (seedwar f _i ni t () ). Whenalibdwarf routine detects an errahis function is called with

two arguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(agpin seedwar f _i nit()). Thispointer argument can be used to relay information between the error
handler and other routines of the client prograinclient program can specify or change both the error
handling function and the pointer argument after initialization uslmgrf set errhand() and

dwarf _seterrarg().

In the case wherBbdwarf functions are not provided a pointer tdaar f _Er r or descriptoy and no
error handling function was provided at initializatidibdwarf functions terminate x@cution by calling
abort (3C).

The following lists the processing steps taken upon detection of an error:

1. Checkthe error amgument; if not aNULL pointer dlocate and initialize eDwar f _Err or
descriptor with information describing the errptace this descriptor in the area pointed to by
error, and return a value indicating an error condition.

2. If anerrhand amgument was provided tdwarf _i nit () at initialization, caller r hand()
passing it the error descriptor and the value of #werarg amgument provided to
dwarf _init(). If the error handling function returns, return alue indicating an error
condition.

3. Terminate programxecution by callingabort ( 3C) .

In all cases, it is clear from thelue returned from a function that an error occurredxatiging the
function, since DW_DLV_ERROR is returned.

As can be seen from the aleogeps, the client program can provide an error handler at initialization, and
still provide aner r or argument tolibdwarf functions when it is not desired toveathe error handler
invoked.

If a libdwarf function is called with imalid arguments, the behavior is uniged. In particular,
supplying aNULL pointer to al i bdwar f function (xcept where explicitly permitted), or pointers to
invalid addresses or uninitialized data causes uneéfbehavior; the return value in such cases is
undefned, and the function may fail tovioke the caller supplied error handler or to return a meaningful
error number Implementations also may aboxeeution for such cases.

rev 2.27, May 01, 2015 -14 -



-15-

Some errors are so inconsequential that it does not warrant rejecting an object or returning @merror
example would be a frame length not being a multiple of an address-size (ngltiaas the only such
inconsequential error). To make it possible for a client to report such errors the function
dwarf _get harm ess_error_|i st returns strings with errorxein them. This function may be
ignored if client code does not amt to bother with such error reporting. See
DwW DLE DEBUG FRAME LENGTH NOT_MULTI PLE in the libdwarf source code.

3.1 Returned valuesin the functional interface

Values returned by i bdwar f functions to indicate success and errors are enumerated in Figlife2.
DW DLV_NO ENTRY case is useful for functions need to indicate that while thasen® data to return
there was no error eithefor example,dwar f _si bl i ngof () may returnDW DLV_NO_ENTRY to
indicate that that there was no sibling to return.

SYMBOLIC NAME VALUE MEANING
DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable value

Figure 2. Error Indications
Each function in the interface that returns a value returns one of the integers invihégaive.

If DW DLV_ERRORIs returned and a pointer tdDwar f _Er r or pointer is passed to the function, then a
Dwarf_Error handle is returned through the poinlier ather pointer value in the intexée returns aatue.
After the Dwar f _Error is no longer of interest, a
dwar f _deal | oc(dbg, dw_err, DW DLA ERROR) on the error pointer is appropriate to freey an
space used by the error information.

If DW DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW DLV_(Kis returned, th&war f _Err or pointet if supplied, is not touched, butyanther values to

be returned through pointers are returned. In this case calls (depending wacthfeirgction returning the
error) todwar f _deal | oc() may be appropriate once the particular pointer returned is no longer of
interest.

Pointers passed to allovalues to be returned through them are uniformly the last pointers in each
argument list.

All the interface functions are defined from the point ofwief the writer-of-the-library (as is traditional
for UN*X library documentation), not from the point of wieof the user of the libraryThe caller might
code:

Dwarf _Line |ine;

Dwarf _Signed ret | off;

Dwarf _Error err;

int retval = dwarf _lineoff(line, & et |off, &err);

for the function defined as

int dwarf _|ineoff(Dwarf_Line Iine, Dnarf_Signed *return_Ilineoff,
Dwarf Error* err);

and this document refers to the function as returning ahe=\through *err or *return_linebbr uses the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

4. Memory M anagement

Several of the functions that comprigéodwarf return pointers (opaque descriptors) to structures that ha

rev 2.27, May 01, 2015 -15-



-16 -

been dynamically allocated by the librarjo ad in the management of dynamic memahe function
dwar f _deal | oc() is provided to free storage allocated as a result of a caliiboveerf function. This
section describes the strategy that should be taken by a client program in managing dynamic storage.

4.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a resultibfhsarf Consumer Library call should be
assumed to point to read-only memofijhe results are undeéd forlibdwarf clients that attempt to write
to a region pointed to by a value returned typdwarf Consumer Library call.

4.2 Storage Deallocation

See the section "Returned values in the functional axtetf abwe, for the general rules where calls to
dwar f _deal | oc() is appropriate.

In some cases the pointers returned bdwarf call are pointers to data which is not freeable. The library
knows from the allocation type priaed to it whether the space is freeable or not and will not free
inappropriately whemwar f _deal | oc() is called. So it is vital thatwar f _deal | oc() be called
with the proper allocation type.

For most storage allocated byibdwarf, the client can free the storage for reuse by calling
dwar f _deal | oc(), providing it with theDwar f _Debug descriptor specifying the object for which the
storage was allocated, a pointer to the area to be free-ed, and aneidtaif specifies what the pointer
points to (the allocation type)For example, to free @bwarf _Di e di e belonging the the object
represented byDwar f _Debug dbg, dlocated by a call todwarf _si blingof (), the call to
dwar f _deal | oc() would be:

dwarf _deal | oc(dbg, die, DWDLA DI E);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list
should be deallocated, foll@d by deallocation of the actual list itself. The following code fragment uses
an invocation ofdwarf _attrlist() as an example to illustrate a technique that can be used to free
storage from anlibdwarf routine that returns a list:

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(sonedie, &atlist,&tcnt, &error);
if (errv == DWDLV_OK) {

for (i =0; i < atcnt; ++i) {
/[* use atlist[i] */
dwar f _deal | oc(dbg, atlist[i], DWDLA ATTR);

}
dwarf deal | oc(dbg, atlist, DWDLA LIST);

The Dwar f _Debug returned fromdwarf _init() ordwarf_el f_init() cannot be freed using
dwar f _deal | oc(). The functiondwar f fi ni sh() will deallocate all dynamic storage associated
with an instance of Bwar f _Debug type. Inparticular it will deallocate all dynamically allocated space
associated with thewar f _Debug descriptoyand finally male the descriptor ivalid.

An Dwar f _Error returned fromdwar f _i nit () ordwarf _el f _i nit () in case of a failure cannot
be freed usinglwar f _deal | oc() . The only way to free thédwar f _Err or from either of those calls

rev 2.27, May 01, 2015 -16 -



-17 -

is to usefree(3) directly. Every Dwarf Error must be freed bylwar f _deal | oc() except those
returned bydwar f _init () ordwarf _elf_init().

The codes that identify the storage pointed to in caliver f _deal | oc() are described in figure 3.

IDENTIFIER USED TO FREE
DW_DLA_STRING char*

DW_DLA LOC Dwarf_Loc
DW_DLA_LOCDESC Dvarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA_DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute
DW_DLA_TYPE Dwarf_Type (notused)
DW_DLA_SUBSCR Dvarf_Subscr (not used)
DW_DLA_GLOBAL_CONTEXT Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST alist of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dvarf_Frame_Op
DW_DLA_CIE Dwarf_Cie

DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_Loc Block
DW_DLA_ FRAME_BLOCK Dwarf_Frame Block (not used
DW_DLA_FUNC_CONTEXT Dvarf_Func
DW_DLA_TYPENAME_CONTEXT Dwarf_Type
DW_DLA_VAR_CONTEXT Dwarf_Var
DW_DLA_WEAK_CONTEXT Dwarf_Weak
DW_DLA_PUBTYPES_CONTEXT Dwarf_Type

Figure 3. Allocation/Deallocation Identifiers

5. Functional Interface
This section describes the functionsitable in thelibdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the funstaperation.

The following sections describe these functions.

5.1 Initialization Operations

These functions are concerned with preparing an objecfdr subsequent access by the functions in
libdwarf and with releasing allocated resources when access is complete.

5.1.1 dwarf _init()

rev 2.27, May 01, 2015 -17 -



-18 -

int dwarf _init(
int fd,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,
Dwar f _Debug * dbg,
Dwarf _Error *error)

When it returnsDW DLV_OK, the functiondwar f _i ni t () returns throughdbg a Dwar f _Debug
descriptor that represents a handle for accessing debugging records associated with tleedeserigdtor

fd. DWDLV_NO ENTRY is returned if the object does not contailV®RF debugging information.
DW DLV_ERRORis returned if an error occurredheaccess argument indicates what access is\atd

for the section.The DW DLC_READ parameter is valid for read access (only read access is defined or
discussed in this documentlhe err hand argument is a pointer to a function that will besdked
whenever an aror is detected as a result ofibdwarf operation. Theer r ar g agument is passed as an
argument to theer r hand function. Thefile descriptor associated with thd argument must refer to an
ordinary file (i.e. not a pipe, socket, device, /proc en&y.), be opened with the at least as much
permission as specified by tlaecess argument, and cannot be closed or used as an argumery to an
system calls by the client until aftdwar f _f i ni sh() is called. The seek position of thkefassociated
with f d is undefined upon return dfvar f _i nit ().

With SGI IRIX, by default it is allowed that the app ose() fd immediately after calling
dwar f _i ni t (), but that is nota portable approach (that it works is an accidental side effect oftte f
that SGI IRIX use€ELF_C READ MVAP in its hidden internal call tel f _begi n()). The portable
approach is to consider thad must be left open till after the correspondingadiwfinish() call has
returned.

Sincedwar f _i ni t () uses the same error handling processing as ttidwarf functions (seeerror
Handling above), client programs will generally supply @nr or parameter to bypass the delt actions
during initialization unless the default actions are appropriate.

5.1.2 dwarf_df_init()

int dwarf_elf _init(
EIf * elf file_pointer,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf_Ptr errarg,
Dwar f _Debug * dbg,
Dwar f _Error *error)

The functiondwar f _el f _i ni t () is identical todwarf i nit () except that an opeBl f * pointer

is passed instead of @efdescriptor In systems supportingLF object files this may be more space or
time-eficient than usinglwar f _i nit (). The client is allowed to use thg f * pointer for its avn
purposes without restriction during the time twar f _Debug is open, gcept that the client should not
el f _end() the pointer till afterdwar f _fi ni shis called.

5.1.3 dwarf_get_elf()

int dwarf_get_el f(
Dwar f _Debug dbg,
Elf ** el f,
Dwarf _Error *error)

When it returnW DLV_CK, the functiondwar f _get _el f () returns through the pointet f theEl f

rev 2.27, May 01, 2015 -18 -



-19 -

* handle used to access the object represented byowhef Debug descriptordbg. It returns
DW DLV_ERROR 0N error.

Becausa nt dwarf _init () opens an Elf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran gp should uselwar f _get _el f and should calel f _end with the pointer returned
through theEl f ** handle created biynt dwarf _init().

This function is not meaningful for a system that does not use the Elf format for objects.

5.1.4 dwarf_finish()

int dwarf _finish(
Dwar f _Debug dbg,
Dwarf Error *error)

The functiondwar f _fi ni sh() releases alLibdwarf internal resources associated with the descriptor
dbg, and invalidatesdbg. It returnsDW DLV_ERRORf there is an error during the finishing operatidh.
returnsDW DLV _OK for a successful operation.

Becausa nt dwarf i nit () opens an EIf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran gop should uselwar f _get el f and should calel f _end with the pointer returned
through theel f ** handle created hiynt dwarf _init().

5.1.5 dwarf_set_stringcheck()

int dwarf_set_stringcheck(
i nt stringcheck)

The functioni nt dwar f _set _stringcheck() sets a global flag and returns theviwes value of
the global flag.

If the stringcheck global flag is zero (the aeit) libdwarf does string length validity checks (the checks do
slow libdwarf down very slightly). If the stringcheck global flag is non-zero libdwarf does not do string
length validity checks.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

5.1.6 dwarf_set_reloc_application()

int dwarf_set _reloc_application(
int apply)

The functioni nt dwarf_set _rel oc_application() sets a global flag and returns thevioes
value of the global flag.

If the reloc_application global flag is non-zero (the default) then the applicable .rela section fists)e e
will be processed and applied toydDWARF section when it is read in. If the reloc_application global flag
is zero no such relocation-application is attempted.

Not all machine types (elf header e_machine) or all relocations are supported, but thew velyction
types apply to BWARF debug sections.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

It seems unlikely anyone will need to call this function.

rev 2.27, May 01, 2015 -19-



-20 -

5.1.7 dwarf_record_cmdline options()

int dwarf_record cndline_options(
Dwarf _Cndl i ne_Options options)

The function int dwarf_record cndline_options() copies a Dwrf Cmdline_Options
structure from consumer code to libdwarf.

The structure is defined In bdwar f . h.

The initial version of this structure has a singldfcheck ver bose_nopde which, if non-zero, tells
libdwarf to print some detailed messages to stdout in case certain errors are detected.

The default for this value is FALSE (0) so the extra messagesfdnedefault.

5.2 Section size operations

These operations are informagitut not normally needed.

5.2.1 dwarf _get_section_max_offsets h()

int dwarf_get section_max_of fsets_ b(Dwarf_debug dbg,

Dwar f _Unsigned * /*debug info_size*/,
Dwar f _Unsi gned * /*debug abbrev_si ze*/,
Dwar f _Unsi gned /*debug | i ne_si ze*/,
Dwar f _Unsi gned / *debug_| oc_si ze*/,

Dwar f _Unsi gned / *debug_ar anges_si ze*/,
Dwar f _Unsi gned / *debug_naci nfo_si ze*/,
Dwar f _Unsi gned / *debug_pubnanes_si ze*/,
Dwar f _Unsi gned / *debug_str_size*/,

Dwar f _Unsi gned / *debug_frane_size*/,
Dwar f _Unsi gned / *debug _ranges_si ze*/,
Dwar f _Unsi gned / *debug_pubt ypes_si ze*/,
Dwar f _Unsigned * /*debug types_size*/);

L R N A T

The functiondwar f _get section_nax_of fsets_b() an open Dwrf Dbg and reports on the
section sizes by pushing section siakues baclkhrough the pointers.

Created in October 2011.

5.2.2 dwarf_get_section_max_offsets()

int dwarf_get section_max_of f set s(Dwarf _debug dbg,
Dwar f _Unsi gned * /*debug_i nfo_size*/,
Dwar f _Unsi gned * /*debug_abbrev_si ze*/,
Dwar f _Unsi gned /*debug_| i ne_si ze*/,
Dwar f _Unsi gned /*debug_| oc_si ze*/,
Dwar f _Unsi gned / *debug_ar anges_si ze*/,
Dwar f _Unsi gned / *debug_naci nfo_si ze*/,
Dwar f _Unsi gned / *debug_pubnanes_si ze*/,
Dwar f _Unsi gned /*debug_str_size*/,
Dwar f _Unsi gned [ *debug_frane_size*/,
Dwar f _Unsi gned / *debug_ranges_si ze*/,
Dwar f _Unsi gned * /*debug_pubtypes_size*/);

L . T I B

The function is the same abnvarf_get _secti on_max_of fsets_b() except it is missing the

rev 2.27, May 01, 2015 -20-



-21-

debug_types_si ze() amgument. Thouglobsolete it is still supported.

5.3 Printf Callbacks
This is nev in August 2013.

Thedwarf _print_|ines() function is intended as a helper to programs divar f dunp and sha

some line internal details in a way only the interals of liédwan shwo these details. But using printf
directly in libdwarf means the caller has limited control of where the output apggansav the 'printf

output is passed back to the caller through a callback function whose implementation is provided by the
caller.

Any code calling libdwarf can ignore the functions described in this section complHtiig functions are
ignored the messages (if any) from libdwarf will simply not appear anywhere.

The |ibdwarf.h header file dehes struct Dwarf Printf_Callback Info_s and
dwarf _regi ster_printf_call back for those libdwarf callers wishing to implement the callback.
In this section we describe \wmne uses that intea€e. Theapplicationsdwar f dunp anddwar f dunp2

are examples of othese may be used.

5.3.1 dwarf_register_printf_callback

struct Dwarf_Printf_Callback _Info_s
dwarf _register_printf_call back(Dwarf_Debug dbg,
struct Dwarf_Printf_Callback_Info_s * newal ues);

The dwarf _register_printf_call back() function can only be called after the B Debug
instance has been initialized, the call makes no sense at other Tiheefunction returns the currerdlue
of the structure.lf newval ues is non-null then the passed-ialues are used to initialize the libaf
internal callback data (the values returned are the values beforeetiraal ues are recorded).If
newal ues is null no change is made to the libdwarf internal callback data.

5.3.2 Dwarf _Printf_Callback Info s
struct Dwarf _Printf_Callback Info_ s {

void * dp_user_pointer;

dwarf _printf_call back function_type dp_fptr;

char * dp_buffer;

unsi gned int dp_buffer_|en;

i nt dp_buffer_user_ provided;
void * dp_reserved;

s

First we describe the fields as applicable in settng up for a «call to
dwarf _register_printf_call back().

The feld dp_user _poi nt er is remembered by libdwarf and passed back incafl libdwarf makes to
the useis allback function. It is otherwise ignored by libdwarf.

The fielddp_f pt r is either NULL or a pointer to a user-implemented function.

If the field dp_buf fer _user_provi ded is non-zero thenp_ buffer | en anddp_buf f er must
be set by the user and libdwarf will use thaffér without doing ap malloc of space. If theidld

rev 2.27, May 01, 2015 -21-



-22-

dp_buffer_user_provi ded is zero then the inpuidids dp_buf fer | en anddp_buffer are
ignored by libdwarf and space is malldeis reeded.

The fielddp_r eser ved is ignored, it is reserved for future use.

When the structure is returned dyarf _regi ster_printf _cal | back() the values of theidlds
before thedwar f _regi ster_printf_cal | back() call are returned.

5.3.3 dwarf_printf_callback_function_type

typedef void (* dwarf_printf_call back function type)(void * user_pointer,
const char * |linecontent);

Any application using the callbacks needs to use the function
dwarf register_printf_callback() and supply a function matching the abofunction
prototype from libdwarf.h.

5.3.4 Example of printf callback usein a C++ application using libdwarf

struct Dwarf_Printf_Callback _Info_s printfcall backdat a;
menset (&printfcal | backdat a, 0, si zeof (printfcal | backdata));
printfcal | backdata.dp_fptr = printf_call back_for_libdwarf;
dwarf _regi ster_printf_call back(dbg, &rintfcal | backdat a);

Assum ng the user inplenments sonething
like the followi ng function in her application:

voi d
printf_call back_for_libdwarf(void *userdata, const char *data)

{
}

It is crucial that the usex’allback function copies or prints the data immediat@lyce the user callback
function returns thdat a pointer may change or become stale without warning.

cout << dat a;

5.4 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries, whether fram anfieb
.delug_types, .dalg_info.dwo, or .delig_types.dw . Snce all such sections use similar formats, one set
of functions sufces.

5.4.1 dwarf_get_die_section_name()

int

dwarf_get_die_section_name(Dwarf_Debug dbg,
Dwarf_Bool is_info,
const char ** sec_name,
Dwarf_Error * error);

dwarf _get _di e_secti on_name() lets consumers access the object section name. This is useful for
applications wanting to print the name, but of course the object section name is not really a part of the
DWARF information. Most applications will probably not call this functidhcan be called at grtime

after the Dwarf_Debug initialization is done.

rev 2.27, May 01, 2015 -22-



-23-

The function dwar f _get _di e_secti on_nane() operates on the either the .dgbinfo[.dwo]
section (ifi s_i nf o is non-zero) or .debug_types[.dwo] sectiori §f i nf o is zero).

If the function succeed$,sec_nane is set to a pointer to a string with the object section name and the
function returndW DLV_COK. Do not free the string whose pointer is returnéar non-EIf objects it is
possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling
application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_EXTR
If there is an internal error detected the function retDkivsDLV _ERROR and sets th&er r or pointer.

5.4.2 dwarf _next_cu_header c()

int dwarf_next cu_header c(
Dwar f _debug dbg,
Dwarf _Bool is_info,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_offset,
Dwar f _Hal f *addr ess_si ze,
Dwar f _Hal f *of f set _si ze,
Dwar f _Hal f *ext ensi on_si ze,
Dwar f _Si g8 *si gnat ur e,

Dwar f _Unsi gned *typeoffset
Dwar f _Unsi gned *next _cu_header,
Dwar f _Hal f *header cu_type,
Dwar f _Error *error);

The functiondwarf _next cu_header _c() operates on the either the .dgbinfo section(if
i s_i nfo is non-zero) or .debug_types sectioni(§_i nf o is zero). It returnsDW DLV_ERROR if it
fails, andDW DLV_OK if it succeeds.

If it succeeds* next _cu_header is set to the offset in the .debug_info section of the next compilation-
unit header if it succeeds. On reading the last compilation-unit header in thg .ohd section it contains
the size of the .dely_info or debug_types section. The next caltdtar f _next cu_header b()
returns DW DLV_NO ENTRY without reading a compilation-unit or settingnext cu_header.
Subsequent calls war f _next _cu_header () repeat the cycle by reading the first compilation-unit
and so on.

The other values returned through pointers are #iaes in the compilation-unit headelf any of
cu_header | ength, version_stanp, abbrev_offset, address_size, offset_size,
ext ensi on_si ze, si gnat ure, ort ypeof f set, isNULL, the argument is ignored (meaning it is not
an error to provide BULL pointer for ay or dl of these arguments).

cu_header _| engt h returns the length in bytes of the compilation unit header.

ver si on_st anp returns the section version, which would be (for .debug_info) 2 WARF2, 3 for
DWARF4, or 4 for DVARF4.

abbr ev_of f set returns the .debug_abbrsection offset of the abbreviations for this compilation unit.
addr ess_si ze returns the size of an address in this compilation unit. Which is usually 4 or 8.

of f set _si ze returns the size in bytes of an offset for the compilation unit. Tisetdfize is 4 for 32bit
dwarf and 8 for 64bit darf. Thisis the ofset size in dwarf data, not the address size insidexdoaitable
code. Theoffset size can be 4/en if embedded in a 64bit elf file (which is normal for 64bit elf), and can
be 8 @en in a 2bit elf file (which probably will neer be £en in practice).

rev 2.27, May 01, 2015 -23-



-24 -

Theext ensi on_si ze pointer is only releant if theof f set _si ze pointer returns 8. The value is not
normally useful bt is returned through the pointer for completeness. The pe@nteensi on_si ze

returns 0O if the CU is MIPS/IRIX non-standard 64bitadfv(MIPS/IRIX 64bit dwarf was created years
before DNARF3 deined 64bit dwarf) and returns 4 if the dwarf uses the standard 64bit extension (the 4 is
the size in bytes of the @ffff i n the initial length field which indicates the foling 8 bytes in the
.debug_info section are the real length). See WARF3 or DNVARF4 standard, section 7.4.

Thesi gnat ur e pointer is only releant if
the CU has a type signature, and if vafe the 8 byte type signature of the .debug_types CU header is
assigned through the pointer.

Thet ypeof f set pointer is only releant the CU has a type signature if kelet the local offset within

the CU of the the type offset the .debug_types entry represents is assigned through the Tanter

t ypeof f set matters because afD AT _type referencing the type unit may reference an inner type, such
as a C++ class in a C++ namespac#, the type itself has the enclosing namespace in theigdsipe
type_unit.

Theheader _cu_t ype pointer is applicable to alCU headers. The value returned through the pointer is
eitherDW UT_conpi | e DW UT_parti al DW UT_t ype and identifies the header type of this Cld.
DWARF4 a DW UT_t ype will be in . debug_t ypes, but in DWARF5 these compilation units are in

. debug_i nf o and the Debug Fissiardebug_i nf 0. dwo .

5.4.3 dwarf_next_cu_header c()

int dwarf_next cu_header c(
Dwar f _debug dbg,
Dwarf _Bool is_info,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_offset,
Dwar f _Hal f *address_si ze,
Dwar f _Hal f *of f set _si ze,
Dwar f _Hal f *ext ensi on_si ze,
Dwar f _Si g8 *si gnat ur e,

Dwar f _Unsi gned *typeoffset
Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

The functiondwarf _next cu_header _c() operates on the either the .dgbinfo section(if
i s_i nf ois non-zero) or .debug_types section §f i nf o is zero).

It operates exactly li&kdwar f _next cu_header c() butis missing theheader _t ype field. This
is kept for compatibility All code using this should be changed todsar f _next _cu_header _d()

5.4.4 dwarf_next_cu_header_b()

rev 2.27, May 01, 2015 -24 -



-25-

i nt dwarf_next_cu_header b(
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header _I engt h,

Dwar f _Hal f *ver si on_st anp,
Dwar f _Unsi gned *abbrev_of fset,
Dwar f _Hal f *addr ess_si ze,
Dwar f _Hal f *of f set _si ze,
Dwar f _Hal f *ext ensi on_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwarf _Error *error);

This is obsolete as of October 2011 though supported.

The functiondwar f _next _cu_header _b() operates on the .debug_info section. It operatastly
like dwar f _next cu_header _c() butis missing thesi gnat ur e, andt ypeof f set fields. Thigs
kept for compatibility All code using this should be changed todwsar f _next _cu_header _c()

5.4.5 dwarf_next_cu_header()

The following is the original form, missing thd f set _si ze, ext ensi on_si ze, si gnat ur e, and
typeof f set fields indwarf _next cu_header c(). This is kept for compatibility All code using
this should be changed to ubsar f _next cu_header c()

i nt dwarf_next cu_header (
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_offset,
Dwar f _Hal f *addr ess_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

5.4.6 dwarf_siblingof_b()

i nt dwarf_siblingof_b(
Dwar f _Debug dbg,
Dwarf_Di e die,

Dwarf _Bool is_info,
Dwarf _Die *return_sib,
Dwarf _Error *error)

The functiondwar f _si bl i ngof _b() returnsDW DLV_ERROR and sets ther r or pointer on erraor
If there is no sibling it return®W DLV_NO _ENTRY. When it succeedsjwar f _si bl i ngof _b()
returnsDW DLV_OK and setdr et ur n_si b to theDwar f _Di e descriptor of the sibling afi e.

If i s_i nf o is non-zero then theli e is assumed to refer to a .debug_info DIEi s_i nf o is zero then
the di e is assumed to refer to a .debug_types DNiote that the first call (the call that gets the
compilation-unit DIE in a compilation unit) passes in a NWlilLe so having the caller passiis_i nf o

is essential. And ifli e is non-NULL it is still essential for the call to passiis_i nf o set properly to
reflect the section the DIE came from. The functibmar f _get di e_i nfotypes_flag() is of
interest as it returns the proper is_info value fromran-NULL di e pointer.

If di e is NULL, the Dwar f _Di e descriptor of the first die in the compilation-unit is returned. This die
has theDW TAG conpi | e_unit,DW TAG partial _unit,or DW TAG type_unit tag.

rev 2.27, May 01, 2015 -25-



-26 -

Dwarf Die return_sib = 0;
Dwarf Error error = 0;
int res;
Dwarf Bool is_info = 1;
/* in_die mght be NULL or a valid Dwarf_Die */
res = dwarf_siblingof _b(dbg,in_die, is_info,&eturn_sib, &error);
if (res == DWDLV_OK) {
/* Use return_sib here. */
dwar f _deal | oc(dbg, return_sib, DWDLA D E);
/* return_sib is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_sib = 0;

5.4.7 dwarf_siblingof()

i nt dwarf _siblingof(
Dwar f _Debug dbg,
Dwarf _Die die,
Dwarf _Die *return_sib,
Dwar f _Error *error)

i nt dwarf_siblingof() operates exactly the sameiast dwarf _si bl i ngof b(), butint
dwar f _si bl i ngof () refers only to .debug_info DIEs.

5.4.8 dwarf_child()

int dwarf_chil d(
Dwarf_Die die,
Dwarf _Die *return_kid,
Dwarf _Error *error)

The functiondwar f _chi | d() returnsDW DLV_ERRCR and sets ther r or die on error If there is no
child it returnsDW DLV_NO_ENTRY. When it succeedsjwarf _chi |l d() returnsDW DLV_(K and
sets *return_kid to the Dwarf_Di e descriptor of the first child ofdi e. The function
dwar f _si bl i ngof () can be used with the returralue of dwarf_chil d() to access the other
children ofdi e.

Dwarf Die return_kid = 0;
Dwarf Error error = 0;
int res;

res = dwarf_child(dbg,in_die, & eturn_kid, &error);
if (res == DWDLV_OK) {
/* Use return_kid here. */
dwar f _deal | oc(dbg, return_kid, DWDLA D E);
/* return_die is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_kid = 0;

rev 2.27, May 01, 2015 -26-



-27-

5.4.9 dwarf_offdie b()

int dwarf_offdie _b(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwarf _Bool is_info,
Dwarf _Die *return_die,
Dwar f _Error *error)

The functiondwar f _of f di e_b() returnsDW DLV_ERROR and sets ther r or die on error When it
succeedsgwar f _of fdi e_b() returnsDW DLV_OK and setgr et urn_di e to the theDwarf _Di e
descriptor of the debugging information entryo&f set in the section containing detging information
entries i.e the .dely_info section. A return of DW DLV_NO _ENTRY means that thef f set in the
section is of a byte containing all 0 bits, indicating that there is no\aatioe code. Meaning thisiie
offset’ is not the offset of a real digyths instead an offset of a null die, a padding die, or of some random
zero byte: this should not be returned in normal use.

It is the uses responsibility to mad sure thatof f set is the start of a valid debugging information entry
The result of passing it anvidid offset could be chaos.

If i s_i nfo is non-zero theof f set must refer to a .debug_info sectiorfset. Ifi s_i nf o zero the
of f set must refer to a .debug_types sectiofsef Errorreturns or misleading values may result if the
i s_i nf o flag or theof f set value are incorrect.

Dwarf _Error error = 0;
Dwarf _Die return_die = 0;
int res;

int is_info = 1;

res = dwarf_offdie _b(dbg,die offset,is _info,&eturn_die, &error);
if (res == DWDLV_OK) {
/* Use return_die here. */
dwarf deal | oc(dbg, return_die, DWDLA D E);
/* return_die is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_die = 0;

5.4.10 dwarf_offdig()

int dwarf_offdie(
Dwar f _Debug dbg,
Dwarf_ O f offset,
Dwarf _Die *return_die,
Dwarf _Error *error)

The functiondwar f _of f di e() is obsolete, usdwar f _of f di e_b() instead. Thédunction is still
supported in the librapyut only references the .debug_info section.

5.4.11 dwarf_validate die sibling()

rev 2.27, May 01, 2015 -27 -



-28 -

int validate_die_sibling(
Dwarf _Di e sibling,
Dwarf O f *of fset)

When used correctly in a depth-firsalle of a DIE tree this function validates thatyddW_AT_sibling
attribute gves the same offset as the direct treglkyv Thatis the only purpose of this function.

The functiondwar f _val i date_di e_si bl i ng() returnsDW DLV_XK if the last die processed in a
depth-frst DIE tree walk was the same offset as generated by a abdbtiof _si bl i ngof (). Meaning
that the DW_AT _sibling attribute value, ifyrwas correct.

If the conditions are not met thenAD DLV_ERROR is returned and of f set is set to the offset in the
.delug_info section of the last DIE processéfithe application prints the offset a knowledgeable user may
be able to figure out what the compiler did wrong.

5.5 Debugging Information Entry Query Operations

These queries return specific information aboutudgbng information entries or a descriptor that can be
used on subsequent queries whemerga Dwar f _Di e descriptor Note that some operations are specif

to debugging information entries that are representedwaaf Di e descriptor of a specific typeror
example, not all debugging information entries contain an attribute having a name, so consexjahtly
to dwar f _di ename() using aDwar f _Di e descriptor that does not\Vea rmme attribute will return
DW DLV_NO ENTRY. This is not an errgii.e. calling a function that needs a specific attribute is not an
error for a die that does not contain that specific attribute.

There are s@ral methods that can be used to obtain the value of an attributevenaligi:

1. Calldwarf _hasattr() to determine if the debugging information entry has the atgilof
interest prior to issuing the query for information about the attribute.

2. Supplyanerror amgument, and check itsalue after the call to a query indicates an unsuccessful
return, to determine the nature of the problérheer r or argument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to hare a1 eror handling function iwmoked upon detection of an error (see
dwarf _init()).

4. Calldwarf _attrlist() and iterate through the returned list of attributes, dealing with each one
as appropriate.

5.5.1 dwarf_get_die_infotypes flag()
Dwar f _Bool dwarf_get die_infotypes flag(Dwarf_Die die)

The functiondwar f _t ag() returns the section flag indicating which section the DIE originates fibm.
the returned value is non-zero the DIE originates from theigdéhfo section. If the returned value is zero
the DIE originates from the .debug_types section.

5.5.2 dwarf _tag()

rev 2.27, May 01, 2015 -28-



-29 -

int dwarf_tag(
Dwarf_Di e die,
Dwarf _Hal f *tagval,
Dwarf _Error *error)

The functiondwar f _t ag() returns thet ag of di e through the pointert agval if it succeeds.lIt
returnsDW DLV_OK if it succeeds. It returnBW DLV_ERROR on error.

5.5.3 dwarf_dieoffset()

int dwarf _di eof fset(
Dwarf _Die die,
Dwarf O f * return_offset,
Dwar f _Error *error)

When it succeeds, the functiondwarf di eoffset() returns DWDLV_OK and sets
*return_of fset to the position ofdi e in the section containing debugging information entries (the
return_of f set is a section-relate dfset). Inother words, it setset ur n_of f set to the offset of
the start of the debugging information entry describeddbg in the section containing dies i.e
.delug_info. ItreturnsDW DLV_ERROR 0N error.

55.4 dwarf_die CU_offset()

int dwarf_di e _CU of fset(
Dwarf_Di e die,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _di e_CU_of f set () is similar todwar f _di eof f set (), except that it puts the
offset of the DIE represented by timarf _Di e di e, from the start of the compilation-unit that it
belongs to rather than the start of .debug_infor(#teur n_of f set is a CU-relatre dfset).

5.5.5 dwarf_die offsets()

int dwarf_di e _of fsets(
Dwarf _Die die,
Dwarf O f *gl obal off,
Dwarf O f *cu_off,
Dwarf Error *error)

The function dwarf_di e offsets() is a combination of dwarf _dieoffset() and
dwarf _die cu_of fset() in that it returns both the global .debug_info offset and the CUwrelati
offset of thedi e in a single call.

5.5.6 dwarf_ptr_CU_offset()

int dwarf_ptr_CU of fset(
Dwar f _CU Cont ext cu_cont ext,
Dwarf _Byte ptr di_ptr
Dwarf O f *cu_off)

Given a wlid CU context pointer and a pointer into that CU context, the function
dwarf _ptr_CU of fset () returns DV_DLV_OK and set$ cu_of f to the CU-relatie (ocal) ofset
in that CU.

rev 2.27, May 01, 2015 -29-



-30-

5.5.7 dwarf CU_dieoffset_given_dig()

int dwarf_CU di eof fset given_die(
Dwarf_Di e given_die,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _CU di eof fset _gi ven_di e() is similar todwarf _di e CU of fset(),
except that it puts the global feét of the CU DIE wning gi ven_di e of .debug_info (the
return_of f set is a global section offset).

This is useful when processing a DIE tree and encountering an error or other surprise in a DIE, as the
return_of fset can be passed twar f _of fdi e_b() to return a pointer to the CU die of the CU
owning thegi ven_di e passed tawar f _CU di eof f set _gi ven_di e() . The consumer carxgact
information from the CU die and tlgg ven_di e (in the normal way) and print it.

An example (asnippet) of code using this function follows. It assumes thatdi e is a DIE in
.delug_info that, for some reason, you vba cecided needs CU context printed (assuming
print _di e_dat a does some reasonable printing).

int res;

Dwarf_Off cudieof = 0;
Dwarf _Die cudie = 0;
intis_info=1; /*

print_die_data(dbg,in_die);
res = dwarf_CU_dieoffset wgn_die(in_die,&cudieoff,&error);
if(res I= DW_DLV_OK) {
printf("FAIL: dwarf_CU_dieoffset_gien_die did not workO0);
exit(1);
}
res = dwarf_offdie_b(dbg,cudieoff,is_info,&cudie,&error);
if(res I= DW_DLV_OK) {
printf("FAIL: dwarf_offdie did not workO0);
exit(1);
}
print_die_data(dbg,cudie);
dwarf_dealloc(dbg,cudie, DW_DLA DIE);

5.5.8 dwarf_die CU_offset_range()

int dwarf_di e _CU of fset_range(
Dwarf_Di e die,
Dwarf _Of *cu_gl obal _of f set,
Dwarf O f *cu_l ength,
Dwarf _Error *error)

The functiondwar f _di e_CU of f set _range() returns the offset of the gmning of the CU and the
length of the CU. The &fet and length are of the entire CU that this DIE is a part of. It is used by
dwarfdump (for @ample) to check the validity of fsets. Mosapplications will hae ro reason to call this
function.

rev 2.27, May 01, 2015 -30-



-31-

5.5.9 dwarf_dienameg()

i nt dwarf _di enanme(
Dwarf _Die die,
char ** return_nane,
Dwar f _Error *error)

When it succeeds, the functidwar f _di ename() returnsDW DLV_OK and setgr et urn_nane to a
pointer to a null-terminated string of characters that represents the nameteattfili e. It returns
DW DLV_NO ENTRY if di e does not hae a rmame attrilite. It returnsDW DLV_ERROR if an error
occurred. Thestorage pointed to by a successful returdw#r f _di enanme() should be freed using the
allocation typeDW DLA STRI NGwhen no longer of interest (sdear f _deal | oc()).

5.5.10 dwarf_die abbrev_code()
int dwarf_di e_abbrev_code( Dwarf_Di e die)

The function returns the abbreviation code of the DIBat is, it returns the abbreviation "index" into the
abbreviation table for the compilation unit of which the DIE is a pdtrcannot fail. No errors are possible.
The pointerdi e() must not be NULL.

5.5.11 dwarf_die abbrev_children_flag()

int dwarf_di e _abbrev_children flag( Dwarf_Die die,
Dwarf _Hal f *has_chil d)

The function returns the has-children flag of thee passed in through thehas chi | d passed in and
returnsDW DLV_OK on successA non-zero value of has_chi | d means thai e has children.

On failure it return©W DLV_ERROR.

The function was desloped to let consumer code do better error reporting in some circumstances, it is not
generally needed.

5.5.12 dwarf_get_version_of_dig()

int dwarf_get _version_of die(Dwarf_Die die,
Dwarf Hal f *version,
Dwarf _Hal f *of fset_size)

The function returns the CU context version throéigier si on and the CU context offset-size through
*of f set _si ze and returnW DLV_OK on success.

In case of errgrthe only errors possiblevaolve an nappropriate NULLdi e pointer so no Dwarf_Debug
pointer is &ailable. Thereforesetting a Dwarf Error would not be very meaningful (there is no
Dwarf_Debug to attach it to). The function returns DW_DLV_ERROR on error.

The values returned through the pointers are the valueargqwments to dwarf_get form_class() requires.

5.5.13 dwarf_attrlist()

rev 2.27, May 01, 2015 -31-



-32-

int dwarf_attrlist(
Dwarf_Di e die,
Dwarf Attribute** attrbuf,
Dwar f _Si gned *attrcount,
Dwarf _Error *error)

When it returndW DLV_CK, the functiondwar f _attrli st () setsattrbuf to point to an array of
Dwar f _Attri but e descriptors corresponding to each of the aitéb in die, and returns the number of
elements in the array througtt t r count . DW DLV_NO _ENTRY is returned if the count is zero (no
att rbuf is allocated in this casePDW DLV_ERROCR is returned on errorOn a siccessful return from
dwarf _attrlist(), each of theDwarf _Attri but e descriptors should be individually freed using
dwar f _deal | oc() with the allocation typ®W DLA ATTR, followed by free-ing the list pointed to by
*at trbuf using dwar f _deal | oc() with the allocation typeDW DLA LI ST, when no longer of
interest (seewar f _deal | oc()).

Freeing the attrlist:

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(sonmedie, &atlist,&tcnt, &error);
if (errv == DWDLV_X) {

for (i =0; i < atcnt; ++i) {

/* use atlist[i] */

dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);
}
dwarf _deal | oc(dbg, atlist, DWDLA LIST);

}
5.5.14 dwarf_hasattr()

int dwarf _hasattr(
Dwarf _Die die,
Dwarf Half attr,
Dwar f _Bool *return_bool,
Dwar f _Error *error)

When it succeeds, the functiolwar f _hasattr () returnsDW DLV_OK and sets r et ur n_bool to
non-zero if di e has the attributat t r andzero otherwise. Ifit fails, it returnsDW DLV_ERROR.

5.5.15 dwarf_attr()

int dwarf_attr(
Dwarf_Di e die,
Dwarf_ Hal f attr,
Dwarf Attribute *return_attr,
Dwarf _Error *error)

When it returns DW DLV_OK, the function dwarf_attr() sets *return_attr to the
Dwar f _Attri but e descriptor ofdi e having the attrilnte att r. It returnsDW DLV_NO_ENTRY if
at tr is not contained idi e. It returnsDW DLV _ERRORIf an error occurred.

rev 2.27, May 01, 2015 -32-



-33-

5.5.16 dwarf_lowpc()

int dwarf | owpc(
Dwarf _Die di e,
Dwarf _Addr * return_I| owpc,
Dwarf _Error * error)

The functiondwar f _| owpc() returnsDW DLV_OK and sets‘r et urn_| owpc to the lav program
counter value associated with tthiee descriptor ifdi e represents a debugging information entry with the
DW AT _| ow_pc attribute. ItreturnsDW DLV_NO _ENTRY if di e does not hae this attrilute. Itreturns
DW DLV_ERRORIf an error occurred.

5.5.17 dwarf_highpc_b()
i nt dwarf _hi ghpc_b(

Dwarf_Di e di e,
Dwar f _Addr * ret ur n_hi ghpc,
Dwarf Hal f * return_formr/,

enum Dwarf _Form C ass * return_cl ass*/,
Dwarf _Error *error)

The functiondwar f _hi ghpc_b() returnsDW DLV_OK and sets r et ur n_hi ghpc to the value of
the DW AT_hi gh_pc attribute. Italso setg et ur n_f or mto the FORM of the attrilte. Italso sets
return_cl ass to the form class of the attribute.

If the form classreturned iDW FORM CLASS ADDRESS ther et ur n_hi ghpc is an actual pc address

(1 higher than the address of the last pc in the address range).. If the form class returned is
DW FORM _CLASS_CONSTANT ther et ur n_hi ghpc is an offset from the value of the the DdElow

PC address (seeVIARF4 section 2.17.2 Contiguous Address Range).

It returnsDW DLV_NO_ENTRY if di e does not hee the DW AT _hi gh_pc attribute.

It returnsDW DLV _ERRORIf an error occurred.

5.5.18 dwarf_highpc()

i nt dwarf _hi ghpc(
Dwarf _Die die,
Dwarf _Addr * return_highpc,
Dwar f _Error *error)

The functiondwar f _hi ghpc() returnsDW DLV_OK and sets‘r et ur n_hi ghpc the high program
counter value associated with tthiee descriptor ifdi e represents a debugging information entry with the
DW AT high_pc attribute and the form isDW FORM addr (meaning the form is of class
address).

This function is useless for@W AT_hi gh_pc which is encoded as a constant (which was first possible
in DWARF4).

It returnsDW DLV_NO_ENTRY if di e does not hee this attribute.

It returnsDW DLV_ERRORIf an error occurred or if the form is not of class address.

rev 2.27, May 01, 2015 -33-



-34 -

5.5.19 dwarf_bytesize()
Dwar f _Si gned dwarf byt esi ze(

Dwarf _Die di e,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _byt esi ze() returnsDW DLV_OK and setsr et ur n_si ze to the number
of bytes needed to contain an instance of the gggrelebugging information entry representedibe. It
returnsDW DLV_NO _ENTRY if di e does not contain the byte size atttdbDW AT byt e si ze. It
returnsDW DLV_ERRORIf an error occurred.

5.5.20 dwarf_bitsize()

int dwarf_bitsize(
Dwarf_Di e die,
Dwar f _Unsigned *return_size,
Dwarf _Error *error)

When it succeedsiwar f _bi t si ze() returnsDW DLV_OK and set$r et ur n_si ze to the number of
bits occupied by the bit field value that is an attribute of thengiie. It returnsDW DLV_NO_ENTRY if
di e does not contain the bit size attrib DW AT _bi t _si ze. It returnsDW DLV_ERROR if an error
occurred.

5.5.21 dwarf_bitoffset()

int dwarf _bitoffset(
Dwarf _Die die,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _bi t of f set () returnsDW DLV_OK and setér et ur n_si ze to the number
of bits to the left of the most significant bit of the bit fiellwe. Thishit offset is not necessarily the net bit
offset within the structure or class , sirid®&/ AT_dat a_nenber | ocati on may give a lyte offset to
this DI E and the bit offset returned through the pointer does not include the bits in the fogte tf
returnsDW DLV_NO _ENTRY if di e does not contain the bit offset attite DW AT bit _of fset. It
returnsDW DLV_ERRORIf an error occurred.

5.5.22 dwarf_srclang()

i nt dwarf _srcl ang(
Dwarf_Di e die,
Dwar f _Unsigned *return_| ang,
Dwarf _Error *error)

When it succeedsgwar f _srcl ang() returnsDW DLV_CK and sets*return_|l ang to a code
indicating the source language of the compilation unit represented by the desdriptort returns
DW DLV_NO _ENTRY if di e does not represent a sourie flebugging information entry (i.e. contain the
attributeDW AT _| anguage). It returnsDW DLV_ERRORIf an error occurred.

5.5.23 dwarf_arrayorder()

rev 2.27, May 01, 2015 -34 -



-35-

int dwarf_arrayorder(
Dwarf_Di e die,
Dwar f _Unsigned *return_order,
Dwarf _Error *error)

When it succeedgijwar f _arrayorder () returnsDW DLV_OK and sets*r et ur n_order a oode
indicating the ordering of the array represented by the descdptor It returnsDW DLV_NO_ENTRY if
di e does not contain the array order atitdeDW AT _or der i ng. It returnsDW DLV_ERRCRIf an error
occurred.

5.6 Attribute Queries

Based on the attributes form, these operations are concerned with returning uninterpretivel ddtidh
Since it is not abays obvious from the returnalue of these functions if an error occurred, one should
always supply anerror parameter or ha aranged to hee an eror handling function imoked (see
dwar f _i nit())to determine the validity of the returned value and the natureyoéraors that may hae
occurred.

A Dwarf_ Attribute descriptor describes an attribute of a specific die. Thus, each
Dwar f _Attri but e descriptor is implicitly associated with a specific die.

5.6.1 dwarf_hasform()

i nt dwarf _hasforn{
Dwarf _Attribute attr,
Dwarf _Hal f form
Dwar f _Bool  *return_hasform
Dwarf _Error *error)

The functiondwar f _hasf or m() returnsDW DLV_OK and andbuts anon-zero

value in the*r et ur n_hasf or m boolean if the attribute represented by thearf_ Attri bute
descriptorat t r has the attribute formhor m If the attribute does not ¥& that form zero is put into
*return_hasform DW DLV_ERRORIs returned on error.

5.6.2 dwarf_whatform()

i nt dwarf_what forn(
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwar f _Error *error)

When it succeedsiwar f _what f or n{) returnsDW DLV_CK and setg r et ur n_f or mto the attrilte
form code of the attribute represented by thearf Attri bute descriptorattr. It returns
DW DLV_ERROR on error.

An attribute using DW_FORM indirectfettively has two forms. Thisfunction returns the ‘final’ form
for DW FORM i ndi r ect , not theDW FORM i ndi r ect itself. This function is what most applications
will want to call.

5.6.3 dwarf_whatform_direct()

rev 2.27, May 01, 2015 -35-



-36 -

i nt dwarf_whatformdirect(
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwarf _Error *error)

When it succeedgjwar f _what f orm di rect () returnsDW DLV_COK and sets‘r et urn_f or mto
the attrilute form code of the attribute represented by Daar f _Att ri but e descriptorattr. It
returns DW DLV_ERRCR on error An dtribute usingDW FORM i ndi r ect effectively has two forms.
This returns the form ’directly’ in the initial fornield. Thatis, it returns the "initial’ form of the attribute.

So when the formidld isDW FORM i ndi r ect this call returns th®W FORM i ndi r ect form, which
is sometimes useful for dump utilities.

It is confusing that the _direct() function returns DW_FORM _indirect if an indirect fornvolsad. Just
think of this as returning the initial form the first form value seen for the attribute, which is alsoathe f
form unless the initial form iBW FORM i ndi r ect .

5.6.4 dwarf whatattr()

int dwarf_whatattr(
Dwarf Attribute attr,
Dwar f _Hal f *return_attr,
Dwar f _Error *error)

When it succeedsiwar f _whatattr () returnsDW DLV_COK and set$ret urn_attr to the attrilite
code represented by tbear f _Attri but e descriptorat t r. It returns DW DLV_ERROR on error.

5.6.5 dwarf_formref()

int dwarf _fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwarf _Error *error)

When it succeedgjwar f _f ornref () returnsDW DLV_CK and sets'r et ur n_of f set to the CU-
relatve dfset represented by the descripgoit r if the form of the attribute belongs to tREFERENCE
class. attr must be a CU-local reference, not fornrbW FORM ref addr and not
DW FORM sec_of f set . Itis an eror for the form to not belong to tHREFERENCE class. Itreturns
DW DLV_ERROR 0N error.

Beginning November 2010: All DW DLV_ERROR returns set*r et urn_of f set. Most errors set
*return_of fset to zero, lot for error DW DLE ATTR FORM OFFSET_BAD the function sets
*return_of f set to the irvalid offset (which allows the caller to print a more detailed error message).

See alsawar f _gl obal _f or nr ef below.

5.6.6 dwarf _global formref()

i nt dwarf _gl obal fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwar f _Error *error)

When it succeedsiwar f gl obal _fornref () returnsDW DLV_OK and set$ret urn_of f set to
the section-relate dfset represented by the descriptart r if the form of the attribte belongs to the
REFERENCE or other section-references classes.

rev 2.27, May 01, 2015 -36 -



-37-

attr can be am legd REFERENCE class form plus DWFORM ref _addr or
DW FORM sec_of fset. It is an eror for the form to not belong to one of the reference claskes.
returnsDW DLV_ERRORon error See alsadwar f _f or nr ef above.

The caller must determine which section thefsetf returned applies to. The function
dwarf _get form cl ass() is usefulto determine the applicable section.

The function cowerts CU relatve dfsets from forms such as DW_FORM_ref4 into global section offsets.

5.6.7 dwarf_convert_to global offset()

int dwarf_convert to_gl obal offset(
Dwarf Attribute attr,
Dwarf O f of f set,
Dwarf O f *return_of fset,
Dwar f _Error *error)

When it succeeds,dwarf convert to gl obal offset() returns DWDLV_OK and sets
*return_of f set to the section-relate dfset represented by the cu-ralatdfsetof f set if the form
of the attribute belongs to tHREFERENCE class. att r must be a CU-local reference \IBRF class
REFERENCE) or fornrDW FORM r ef _addr and theat t r must be directly rel@nt for the calculated
*ret urn_of f set to mean anything.

The function return®W DLV_ERROR on error.

The function is not strictly necessary but may be a@uance for attribute printing in case of error.

5.6.8 dwarf_formaddr()

i nt dwarf _fornmaddr(
Dwarf Attribute attr,
Dwar f _Addr * return_addr,
Dwarf _Error *error)

When it succeedsiwar f _f or maddr () returnsDW DLV_OK and set$r et ur n_addr to the address
represented by the descriptdrt r if the form of the attribte belongs to thADDRESS class. ltis an error
for the form to not belong to this class. It retubM DLV_ERRCR on error.

One possible error that can arise (in a advebject ile or a .dwp package file) is
DW DLE M SSI NG_NEEDED DEBUG ADDR SECTI ON. Such an error means that thewo or dwp
file is missing the debug_addr section and it is up to the consumer towrow to find the eecutable

or object that contains thedebug_addr section and hae to complete the finding of the actual address
for the passed in attiite. Sealwar f _get _debug_addr _i ndex() below.

H 3 "dwarf_get _debug_addr_index()"

i nt dwarf_get debug_addr _i ndex(
Dwarf Attribute attr,
Dwarf _Unsigned * return_index,
Dwarf _Error *error)

dwar f _get _debug_addr _i ndex() is only valid on attrites with form
DW FORM GNU_addr _i ndex or DW FORM addr x.

rev 2.27, May 01, 2015 -37-



-38 -

When it succeeds, dwarf _get debug_addr i ndex() returns DWDLV_OK and sets
*r et ur n_i ndex to the attributes index (into the. debug_addr section).

It returnsDW DLV_ERROR on error.

This is intended to be called only on atirtéss which a call tdwar f _f or maddr () would fail with error
codeDW DLE_M SSI NG_NEEDED DEBUG ADDR_SECTI ON.

5.6.9 dwarf_get_debug_str_index()

int dwarf_get debug str_i ndex(
Dwarf Attribute attr,
Dwarf _Unsigned * return_index,
Dwar f _Error * error);

For an atribute with form DW FORM st r x or DW FORM GNU_st r _i ndex this function retriges the
index (which refers to a .debug_str_offsets section in this .dwo).

If successful, the functiodwar f _get debug_str_i ndex() returnsDW DLV_OK and returns the
index through the et ur n_i ndex() pointer.

If the passed in attribute does nowéahis form or there is no valid compilation unit context for the
attribute the function returidV DLV_ERROR.

DW DLV_NO _ENTRY is not returned.

5.6.10 dwarf_formflag()

int dwarf_fornflag(
Dwarf Attribute attr,
Dwarf Bool * return_bool,
Dwarf _Error *error)

When it succeedsiwar f _fornfl ag() returnsDW DLV_OK and sets‘r et ur n_bool to the (one
unsigned byte) flagalue. Ary non-zero value means trué zero value means false.

Before 29 Neember 2012 this would only return 1 or zero through the poibtérthat was alays a
strange thing to do. TheWARF specifcation has alays been clear that gmon-zero value means true.
The function should report the value found truthfugtyd naw it does.

It returnsDW DLV_ERRORon error or if theat t r does not hee form flag.

5.6.11 dwarf_formudata()

i nt dwarf _fornudata(
Dwarf Attribute attr,
Dwarf _Unsigned * return_uval ue,
Dwar f _Error * error)

The function dwarf fornmudata() returns DWDLV_OK and sets*return_uval ue to the
Dwar f _Unsi gned vaue of the attribte represented by the descripaadrt r if the form of the attribte
belongs to theCONSTANT class. Itis an error for the form to not belong to this class. It returns
DwW DLV_ERROR 0N error.

Never returnsDW DLV_NO_ENTRY.

rev 2.27, May 01, 2015 -38-



-39 -

For DWARF2 and WARF3, DW FORM dat a4 and DW FORM dat a8 are possibly clas€ONSTANT,
and for DNVARF4 and later theare definitely clas€CONSTANT.

5.6.12 dwarf_formsdata()

int dwarf_fornsdata(
Dwarf Attribute attr,
Dwarf _Signed * return_sval ue,
Dwar f _Error *error)

The function dwarf fornmsdata() returns DWDLV_OK and sets*return_sval ue to the
Dwar f _Si gned vaue of the attriite represented by the descripgdrt r if the form of the attribte
belongs to th&CONSTANT class. Itis an error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size dhe f _Si gned type, its value is signxéended. It
returnsDW DLV_ERROR on error.

Never returnsDW DLV_NO_ENTRY.

For DWARF2 and WARF3, DW FORM dat a4 and DW FORM dat a8 are possibly clas€ONSTANT,
and for DNVARF4 and later theare definitely classCONSTANT.

5.6.13 dwarf_formblock()

i nt dwarf_fornbl ock(
Dwarf Attribute attr,
Dwarf Bl ock ** return_bl ock,
Dwarf _Error * error)

The functiondwar f _f or nbl ock() returnsDW DLV_OK and setsr et ur n_bl ock to a pointer to a
Dwar f _Bl ock structure containing the value of the attribute represented by the desatiptorif the
form of the attribute belongs to tlB: OCK class. ltis an error for the form to not belong to this clashe
storage pointed to by a successful returnlwér f _f or nbl ock() should be freed using the allocation
type DW DLA BLOCK, when no longer of interest (seelwarf_dealloc()). It returns
DW DLV_ERROR 0N error.

5.6.14 dwarf_formstring()

int dwarf_fornstring(
Dwarf Attribute attr,
char ** return_string,
Dwar f _Error *error)

The functiondwar f _f or nstri ng() returnsDW DLV_OK and set$return_stri ng to a pointer to
a rull-terminated string containing the value of the attribute represented by the desdriptoif the form
of the attribute belongs to tt&TRI NG class. Itis an error for the form to not belong to this clasée
storage pointed to by a successful returrdwér f _fornstring() should not be freedThe pointer
points into existing BWARF memory and the pointer becomes staldlith after a call to
dwarf _finish. dwarf_fornstring() returnsDW DLV_ERRCRon error.

5.6.15 dwarf_formsig8()

rev 2.27, May 01, 2015 -39-



-40 -

int dwarf_fornsig8(
Dwarf Attribute attr,
Dwarf_Sig8 * return_sig8,
Dwarf _Error * error)

The function dwarf _formsi g8() returns DWDLV_OK and copies the 8 byte signature to a
Dwar f _Si g8 structure preided by the caller if the form of the attribute is of form
DW FORM r ef _si g8 ( a member of theREFERENCE class). Itis an error for the form to be whing

but DW FORM r ef _si g8. It returnsDW DLV_ERROR on error.

This form is used to refer to a type unit.

5.6.16 dwarf_formsig8()

i nt dwarf _fornexprloc(
Dwarf Attribute attr,
Dwarf _Unsigned * return_exprlen,
Dwarf Ptr * bl ock _ptr,
Dwar f _Error * error)

The functiondwar f _f or mexpr | oc() returnsDW DLV_OK and sets the twvalues thru the pointers to
the length and bytes of theWD FORM_eprloc entry if the form of the attribute is of form
DW FORM exper | oc. It is an eror for the form to be anythingubDW FORM expr | oc. It returns
DwW DLV_ERROR 0N error.

On success the value set throughrtle¢ ur n_expr | en pointer is the length of the locatiorpgession.
On success the value set through Heock ptr pointer is a pointer to the bytes of the location
expression itself.

5.6.17 dwarf_get_form_class()

enum Dwarf _Form Cl ass dwarf_get _formcl ass(
Dwarf Hal f dwversi on,
Dwarf Hal f attrnum
Dwarf Hal f of fset_si ze,
Dwarf_Hal f form

The function is just for the cwanience of libdvarf clients that might wish to categorize the FORM of a
particular attrilite. TheDWARF specification diides FORMSs into classes in Chapter 7 and this function
figures out the correct class for a form.

Thedwer si on passed in shall be the dwarf version of the compilation wuobhiad (2 for DVARF2, 3
for DWARF3, 4 for DNARF 4). Theatt r numpassed in shall be the attribute number of the at&ib
involved (for ,ample,DW AT_nane ). Theof f set _si ze passed in shall be the length of afsef in
the current compilation unit (4 for 32bit dwarf or 8 for 64bitadf)y Thef or mpassed in shall be the
attribute form number If f or mDW FORM i ndi r ect is passed ildW FORM CLASS UNKNON will
be returned as this form has no defined 'class’.

When it returndDW FORM_CLASS_UNKNOWN the function is simply saying it could not determine the
correct class gen the arguments presented. Some user-defined attributes mighthlsaproblem.

The functiondwar f _get _versi on_of _di e() may be helpful inifling out arguments for a call to
dwarf _get formclass().

5.6.18 dwarf_loclist_n()

rev 2.27, May 01, 2015 -40 -



-41 -

int dwarf_loclist_n(
Dwarf Attribute attr,
Dwarf _Locdesc ***|| buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The functiondwar f _| ocl i st_n() sets*I | buf to point to an array obwar f _Locdesc pointers
corresponding to each of the location expressions in a location list, arfd sstsl en to the number of
elements in the array and retu\& DLV_OKif the attribute is appropriate.

This is the preferred function for Dwarf_Locdesc as it is the interfac&iaticaccess to an entire loclist.
(use ofdwar f _I ocl i st_n() is suggested as the better interface, thaghr f _| ocl i st () is still
supported.)

If the attribute is a reference to a location list (DW_FORM_datad4 or DW_FORM_data8) the location list
entries are used to fill in all the fields of thear f _Locdesc(s) returned.

If the attritute is a location description (DW_FORM_block2 or DW_FORM_block4) then some of the
Dwar f _Locdesc vaues of the singl®war f _Locdesc record are set to 'sensibletibarbitrary \alues.
Specifically Id_lopc is set to 0 and Id_hipc is set to all-bits-on. Ahdst | en is set to 1.

If the attribute is a reference to a locatiorpmession (DV_FORM_loceper) then some of the
Dwar f _Locdesc vaues of the singl®war f _Locdesc record are set to 'sensibletibarbitrary \alues.
Specifically Id_lopc is set to 0 and Id_hipc is set to all-bits-on. Ahdst | en is set to 1.

It returnsDW DLV_ERROR on error.

dwarf _loclist_n() works on DWAT |ocation, DWAT data_nenber_I| ocation,
DW AT vtabl e _el em | ocation, DWAT string_|ength, DWAT use_ |location, and
DW AT return_addr attributes.

If the attribute is DW AT _dat a_nenber _| ocati on the value may be of class CONSNT.
dwarf | oclist_n() is unable to read class CONSNT, so you need toifst determine the class using
dwarf_get _formclass() and if it is class CONSANT call dwarf_formsdata() or
dwar f _f or nudat a() to get the constant value (you may need to call bothVésRF4 does not dafe
the signedness of the constant value).

Storage allocated by a successful caliwér f _| ocl i st _n() should be deallocated when no longer of
interest (seelwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thied_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HypeDLA LOC BLOCK.
and thel | buf [] space pointed to should be deallocated with allocation@VgédLA LOCDESC. This
should be followed by deallocation of thebuf using the allocation typPW DLA LI ST.

Dwar f _Si gned | cnt;
Dwar f _Locdesc **I | buf;
int lres;

Ires = dwarf_loclist_n(soneattr, & |buf, & cnt &error);
if (lres == DWDLV_X) {
for (i =0; i <lecnt; ++i) {
/* use Ilbuf[i] */

dwar f _deal | oc(dbg, Ilbuf[i]->d_s, DWDLA LOC BLOCK);
dwar f _deal | oc(dbg, |1 buf[i], DWDLA LOCDESC);

}
dwar f _deal | oc(dbg, |l buf, DWDLA LIST);

rev 2.27, May 01, 2015 -41 -



=42 -

5.6.19 dwarf_loclist()

int dwarf | oclist(
Dwarf Attribute attr,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwar f _Error *error)

The functiondwar f _| ocl i st () sets*| | buf to point to aDwar f _Locdesc pointer for the single
location expression it can return. It sétsi stlen to 1. and return®wW DLV_X if the attribute is
appropriate.

It is less flexible thardwar f _| ocl i st _n() in thatdwarf | ocli st() can handle a maximum of
one location expression, not a full location list. If a location-list is present it returns oniystHedation-
list entry location description. Ushvarf _| ocl i st_n() instead.

It returns DWDLV_ERROR on error dwarf loclist() works on DWAT |ocation,
DW AT dat a_nenber | ocati on, DW AT vtabl e el em | ocati on,
DW AT string_ | ength, DWAT use_| ocati on,andDW AT return_addr attributes.

Storage allocated by a successful caldwgar f | ocli st () should be deallocated when no longer of
interest (seawar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thied_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HyeDLA LOC BLOCK.
This should be followed by deallocation of thebuf using the allocation typeW DLA LOCDESC.

Dwar f _Si gned | cnt;
Dwar f _Locdesc *I I buf;
int Ires;

Ires = dwarf _loclist(soneattr, & |buf, & cnt, &error);

if (lres == DWDLV_X) {
/* lcnt is always 1, (and has al ways been 1) */ */
/* Use || buf here. */

uf->ld s, DWDLA LOC BLOCK);
uf, DWDLA LCCDESC);

dwar f _deal | oc(dbg,

I1b
dwarf deal l oc(dbg, IIb

/* Earlier version.

* for (i =0; i <lcnt; ++i) {

* /* use Ilbuf[i] */

* /* Deallocate Dwarf_Loc block of Ilbuf[i] */

* dwarf _deal | oc(dbg, Ilbuf[i].ld_s, DWDLA LOC BLOCK);
* }

* dwar f _deal | oc(dbg, I1buf, DWDLA LOCDESC);

*/

}

5.6.20 dwarf_loclist_from_expr()

rev 2.27, May 01, 2015 -42 -



-43-

int dwarf_loclist_fromexpr(
Dwarf _Ptr bytes_in,
Dwar f _Unsi gned bytes_I en,
Dwarf _Locdesc **I| buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

Usedwar f | oclist_from expr_b() instead. Thigunction is obsolete.

The functiondwar f _| ocl i st _from expr () sets*l | buf to point to abwar f _Locdesc pointer
for the single locationx@ression which is pointed to Byt es_i n (whose length isbyt es_I| en). It
sets*listlen to 1. and return&W DLV_X if decoding is successfulSome sources of bytes of
expressions are dwarf expressions in frame operations DWW CFA_def _cf a_expressi on,
DW CFA expressi on, and DW CFA val _expressi on.

Any address_size data in the location expression is assumed to be the same size as the default address_size
for the object being read (normally 4 or 8).

It returnsDW DLV_ERROR on error.

Storage allocated by a successful calleéir f _| ocl i st _from expr () should be deallocated when
no longer of interest (sedwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by the

| d_s field of eachDwarf _Locdesc structure should be deallocated with the allocation type
DW DLA LOC BLOCK. This should be follwed by deallocation of thiel buf using the allocation type
DW DLA_LOCDESC.

Dwar f _Si gned | cnt;

Dwar f _Locdesc *I | buf;

int lres;

/* Exanmple with an enpty buffer here. */
Dwarf Ptr data = "";

Dwar f _Unsi gned len = O;

Ires = dwarf_loclist_fromexpr(data,len, & Ibuf,& cnt, &error);
if (lres == DWDLV_X) {
/* lcnt is always 1 */

/* Use || buf here.*/

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

Il buf->ld_s, DWDLA LOC BLOCK);
|| buf, DW DLA LOCDESC);

}
5.6.21 dwarf_loclist_from_expr_b()

int dwarf _loclist _fromexpr_a(
Dwarf Ptr bytes_in,
Dwar f _Unsi gned bytes | en,
Dwarf _Hal f addr_si ze,
Dwarf Hal f of fset_si ze,
Dwarf _Hal f version_stanp,
Dwarf _Locdesc **I 1| buf,
Dwarf _Signed *listlen,
Dwarf Error *error)

The function dwarf _loclist _fromexpr_b() is identical to
dwarf | oclist _fromexpr_a() in every way except that the caller passes an additiorgalraent
ver si on_st anp containing the version stamp (2 foMBBRF2, etc) of the CU using this location

rev 2.27, May 01, 2015 -43 -



-44 -

expression and an additionalgament of the offset size of the CU using this locatigpression. The
DW_OP_GNU_implicit_pointer operation requires this version and offset information to be correctly
processed.

The addr _si ze argument (from 27April2009) is needed to correctly interpret frame information as
different compilation units can ta dfferent address sizeDWARF4 adds address_size to the CIE header.

5.6.22 dwarf_loclist_from_expr_a()

int dwarf _loclist _fromexpr_a(
Dwarf Ptr bytes_in,
Dwar f _Unsi gned bytes | en,
Dwarf _Hal f addr_si ze,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf Error *error)

Usedwar f | oclist_from expr_b() instead. Thigunction is obsolete.

The functiondwar f _| ocl i st_from expr_a() is identical todwarf | oclist_from expr ()
in every way except that the caller passes the additiogainaentaddr _si ze containing the address size
(normally 4 or 8) applying this location expression.

The addr _si ze agument (added 27April2009) is needed to correctly interpret frame information as
different compilation units can ha dfferent address size®DWARF4 adds address_size to the CIE header.

5.7 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging information entry
objects to their corresponding source lines, and providing a mechanism for obtaining information about line
number entries. Although, the intack talks of "lines" what is really meant is "statements”. In case there

is more than one statement on the same line, there will be at least one descriptor per statement, all with the
same line numberlf column number is also being represented thiél have the column numbers of the

start of the statements also represented.

There can also be more than one Dwarf_Line per staterfentexample, if a fle is preprocessed by a
language translatpthis could result in translator output shing 2 or more sets of line numbers per
translated line of output.

5.7.1 Get A Set of Lines

The function returns information aboutveey source line for a particular compilation-unifThe
compilation-unit is specified by the corresponding die.

5.7.1.1 dwarf_srclines()

int dwarf_srclines(
Dwarf _Die die,
Dwarf _Line **|inebuf,
Dwarf _Si gned *linecount,
Dwar f _Error *error)

The functiondwar f _srcl i nes() places all line number descriptors for a single compilation unit into a
single block, setsl i nebuf to point to that block, setd i necount to the number of descriptors in this
block and return©W DLV_OK. The compilation-unit is indicated by theven di e which must be a
compilation-unit die. It returnBW DLV_ERROR on error On successful return, line number information
should be freed usindwar f _srcl i nes_deal | oc() when no longer of interest.

rev 2.27, May 01, 2015 -44 -



-45 -

Dwar f _Si gned cnt;
Dwarf _Line *Iinebuf;
int sres;

sres = dwarf_srclines(sonedie, & inebuf,&nt, &error);
if (sres == DWDLV_X) {
for (i =0; i <cnt; ++i) {
/* use linebuf[i] */
}

dwar f _srclines_deal | oc(dbg, |inebuf, cnt);

The folloving dealloc code (the only documented method before July 2005) still works, but does not
completely free all data allocatedhe dwar f _srcl i nes_deal | oc() routine was created to fix the
problem of incomplete deallocation.

Dwar f _Si gned cnt;
Dwarf _Line *linebuf;
int sres;

sres = dwarf_srclines(sonedie, & inebuf,&nt, &error);
if (sres == DWDLV_X) {
for (i =0; i <cnt; ++i) {
/* use linebuf[i] */
dwarf _deal | oc(dbg, linebuf[i], DWDLA LINE);

}
dwar f _deal | oc(dbg, |inebuf, DWDLA LIST);

5.7.2 Get the set of Source File Names

The function returns the names of the source files theg @mntributed to the compilation-unit represented
by the gven DIE. Onlythe source files named in the statement program prologue are returned.

int dwarf_srcfiles(
Dwarf _Die die,
char ***srcfil es,
Dwar f _Si gned *srccount,
Dwarf Error *error)

When it succeeddwar f _srcfil es() returnsDW DLV_CK and puts the number of source files named
in the statement program prologue indicated by thiengdi e into * sr ccount . Source files defined in

the statement program are ignorethe given di e should hae the tagDW TAG conpil e_unit,

DW TAG partial unit, or DW TAG type_unit The location pointed to bgrcfil es is set to
point to a list of pointers to null-terminated strings that name the sadlase ®na auccessful return from
this function, each of the strings returned should bevichailly freed usinglwar f _deal | oc() with the
allocation typeDW DLA_STRI NGwhen no longer of interest. This should be folbal by free-ing the list
using dwar f _deal | oc() with the allocation typeDW DLA LI ST. It returns DW DLV_ERROR on
error. It returnsDW DLV_NO_ENTRY if there is no corresponding statement program (i.e., if there is no
line information).

rev 2.27, May 01, 2015 -45 -



- 46 -

Dwar f _Si gned cnt;
char **srcfil es;
int res;

res = dwarf_srcfil es(sonedie, &srcfiles,&nt &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {

/* use srcfiles[i] */

dwarf _deal | oc(dbg, srcfiles[i], DWDLA STRING;
}
dwar f _deal | oc(dbg, srcfiles, DWDLA LIST);

}
5.7.3 Get information about a Single Table Line

The following functions can be used on thear f _Li ne descriptors returned tgwar f _srcl i nes()
to obtain information about the source lines.

5.7.3.1 dwarf_linebeginstatement()

int dwarf _|inebegi nstatenent(
Dwar f _Li ne |ine,
Dwar f _Bool *return_bool,
Dwarf Error *error)

The functiondwar f _| i nebegi nst at enent () returnsDW DLV_OK and sets*r et urn_bool to
non-zero (if | i ne represents a line number entry that is marked ggbieg a statement)or zero ((if

i ne represents a line number entry that is not marked as beginning a statement). It returns
DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

5.7.3.2 dwarf_lineendsequence()

int dwarf_|ineendsequence(
Dwar f _Li ne |ine,
Dwar f _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i neendsequence() returnsDW DLV_OK and setsr et ur n_bool non-zero

(in which casd i ne represents a line number entry that is radrlas ending a text sequenceyap (in

which casd i ne represents a line number entry that is not marked as ending setpience).A line

number entry that is marked as endingx $equence is an entry with an address one beyond the highest
address used by the current sequence of line table entries (that is, the table entry is a
DW_LNE_end_sequence entry (see thARF specification)).

The function dwar f _| i neendsequence() returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.7.3.3 dwarf_lineno()

int dwarf_lineno(
Dwar f _Li ne line,
Dwar f _Unsigned * returned_Iineno,
Dwar f _Error * error)

The functiondwarf _| i neno() returnsDW DLV_OK and sets*return_l i neno to the source
statement line number corresponding to the descriptore. It returnsDW DLV_ERROR on error It

rev 2.27, May 01, 2015 - 46 -



-47 -

never returnsDW DLV_NO _ENTRY.

5.7.3.4 dwarf_line_srcfileno()

int dwarf_line_srcfileno(
Dwar f _Li ne l'ine,
Dwarf _Unsigned * returned_fil eno,
Dwar f _Error * error)

The functiondwar f _| i ne_srcfil eno() returnsDW DLV_COK and set$ret urned_fil eno to the
source statement line number corresponding to the desdripta nurber . When the number returned
through*r et ur ned_fi | eno is zero it means the file name is unlum(see the WARF2/3 line table
specifcation). Whenthe number returned throudh et ur ned_f i | eno is non-zero it is aile number:
subtract 1 from thisile number to get an indénto the array of strings returned twar f _srcfil es()
(verify the resulting indeis in range for the array of strings before irithg into the array of strings)The
file number may exceed the size of the array of strings returnativyf srcfil es() because
dwarf _srcfil es() does not return files names defined with thé&/ DLE_defi ne_fi | e operator.
The function dwarf _|ine_srcfil eno() returns DW DLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

5.7.3.5 dwarf_lineaddr ()

int dwarf _|ineaddr(
Dwar f _Li ne l'ine,
Dwarf _Addr *return_lineaddr,
Dwar f _Error *error)

The functiondwar f _| i neaddr () returnsDW DLV_OK and set$ret urn_| i neaddr to the address
associated with the descriptdri ne. It returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.7.3.6 dwarf_lineoff()

int dwarf _|ineoff(
Dwarf _Line |ine,
Dwar f _Si gned * return_Ilineoff,
Dwar f _Error *error)

The functiondwar f _| i neof f () returnsDW DLV_K and sets‘ret urn_| i neof f to the column
number at which the statement representeldibne begins.

It setsret urn_li neof f to zero if the column number of the statement is not represented (meaning the
producer library call was gén zero as the column numberXero is the correct value meaning "left edge"
as defined in the WARF2/3/4 specication (section 6.2.2).

Before December 2011 zero was not returned throughr tteur n_| i neof f pointer -1 was returned
through the pointerThe reason for this oddity is unclebost in history But there is no good reason for -1.

The type ofreturn_l i neof f is a pointer-to-signed, but there is no good reason for the value to be
signed, the BWARF speciication does not deal with gaive mlumn numbers.However, changing the
declaration would cause compilation errors for little benefit, so the pointer-to-signed is left unchanged.

On error it return®W DLV_ERROR. It neve returnsDW DLV_NO _ENTRY.

5.7.3.7 dwarf_linesrc()

rev 2.27, May 01, 2015 -47 -



-48 -

int dwarf _linesrc(
Dwarf_Line |ine,
char ** return_linesrc,
Dwarf _Error *error)

The functiondwar f _| i nesrc() returnsDW DLV_COK and set$ret urn_I i nesrc to a pointer to a
null-terminated string of characters that represents the name of the sleumbdrel i ne occurs. It
returnsDW DLV_ERRCR on error.

If the applicableife name in the line table Statement Program Prolog does not start with a '/’ character the
string in DW AT_conp_di r (if applicable and present) or the applicable directory name from the line
Statement Program Prolog is prepended to the file name in the line table Statement Program Prog to mak
a full path.

The storage pointed to by a successful returndegarf |inesrc() should be freed using
dwar f _deal | oc() with the allocation typeDW DLA STRI NG when no longer of interest. It v
returnsDW DLV_NO _ENTRY.

5.7.3.8 dwarf_lineblock()

int dwarf_I|inebl ock(
Dwarf_Line |ine,
Dwar f _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i nebl ock() returnsDW DLV_CK and sets‘return_| i nesrc to non-zero
(i.e. true)(if the line is marked as beginning a basic block) or zero (i.e. false) (if the line edraarkot
beginning a basic block). It returi®V DLV_ERRORon error It neve returnsDW DLV_NO_ENTRY.

5.7.3.9 dwarf_is addr_set()

int dwarf_|ine_is_addr_set(
Dwarf _Line |ine,
Dwar f _Bool *return_bool,
Dwar f _Error *error)

The functiondwar f _|i ne_i s_addr_set () returnsDW DLV_OK and setsr et ur n_bool to non-
zero (i.e. true)(if the line is marked as being\W LNE_set address operation) or zero (i.e. false) (if the
line is marled as not being a DW_LNE_set _address operation). It reBMthBLV _ERROR on error It
never returnsDW DLV_NO_ENTRY.

This is intended to alle consumers to do a more useful job printing and analyzMWé\ RF data, it is not
strictly necessary.

5.7.3.10 dwarf_prologue_end_etc()

int dwarf_prol ogue_end etc(Dwarf_Line |ine,
Dwar f _Bool * pr ol ogue_end,
Dwar f _Bool * epi | ogue_begi n,
Dwar f _Unsigned * isa,
Dwar f _Unsigned * discrimnator,
Dwar f _Error * error)

The functiondwar f _prol ogue_end_etc() returnsDW DLV_OK and sets the returned fields to
values currently set. While it is pretty safe to assume that ¢laeanddi scri ni nat or values returned
are \ery small integers, there is no restriction in the standard. It rebWWhBLY _ERROR on error It neve
returnsDW DLV_NO_ENTRY.

rev 2.27, May 01, 2015 -48 -



- 49 -

This function is n& in December 2011.

5.8 Global Name Space Oper ations

These operations operate on the .debug_pubnames section of the debugging information.

5.8.1 Debugger Interface Operations

5.8.1.1 dwarf_get_globals()

i nt dwarf_get gl obal s(
Dwar f _Debug dbg,
Dwar f _d obal **gl obal s,
Dwar f _Si gned * return_count,
Dwarf _Error *error)

The functiondwar f _get gl obal s() returnsDW DLV_OK and set$ r et ur n_count to the count of
pubnames represented in the section containing pubnames i.ag_pebnames. I&lso stores at
*gl obal s, a pointer to a list ofDwar f _Qd obal descriptors, one for each of the pubnames in the
.delug_pubnames section. The returned results are for the entire section. It BsWuBis/ ERROR on
error. It returnsDW DLV_NO_ENTRY if the .debug_pubnames section does not exist.

On a successful return frodwar f _get _gl obal s(), theDwar f _G obal descriptors should be freed
usingdwar f _gl obal s_deal | oc() . dwarf_gl obal s_deal | oc() is nav as of dily 15, 2005 and
is the preferred approach to freeing this memory..

Global names referxelusively to names and offsets in the .dgbinfo section. See section 6.1.1 "Lookup
by Name" in the dwarf standard.

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf_get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use globs[i] */
}
dwar f _gl obal s_deal | oc(dbg, globs, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as it ver did. On a wccessful return fromdwar f _get gl obal s(), the
Dwar f _Q obal descriptors should be individually freed usihgar f _deal | oc() with the allocation
type DW DLA GLOBAL_CONTEXT, (or DW DLA GL.OBAL, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation tgéDLA LI ST when the descriptors
are no longer of interest.

rev 2.27, May 01, 2015 - 49 -



-50 -

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf_get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use globs[i] */
dwar f _deal | oc(dbg, globs[i], DWDLA G.OBAL_CONTEXT);

}
dwar f _deal | oc(dbg, gl obs, DWDLA LIST);

5.8.1.2 dwarf_globname()

i nt dwarf _gl obnanme(
Dwar f _d obal gl obal,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _gl obname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the pubname represented bying G obal descriptor,gl obal .

It returnsDW DLV_ERROR on error On a successful return from this function, the string should be freed
usingdwar f _deal | oc(), with the allocation typddW DLA_ STRI NG when no longer of interestit
never returnsDW DLV_NO_ENTRY.

5.8.1.3 dwarf_global_die offset()

int dwarf_gl obal die offset(
Dwar f _d obal gl obal,
Dwar f O f *return_of fset,
Dwar f _Error *error)

The functiondwar f _gl obal di e _of fset () returnsDW DLV_COK and setsret urn_of f set to

the ofset in the section containing DIEs, i.e. .debug_info, of the DIE representing the pubname that is
described by th®war f _G obal descriptorgl ob. It returnsDW DLV_ERROR on error It neve returns

DW DLV_NO_ENTRY.

5.8.1.4 dwarf_global_cu_offset()

int dwarf_gl obal cu_offset(
Dwar f _d obal gl obal,
Dwarf O f *return_of fset,
Dwar f _Error *error)

The functiondwar f _gl obal _cu_of fset () returnsDW DLV_OK and setgr et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the pubname described by Earf G obal descriptor, gl obal . It returns

DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

5.8.1.5 dwarf_get_cu_die_offset_given_cu_header_offset()

rev 2.27, May 01, 2015 -50-



-51 -

int dwarf_get _cu_die_offset_given_cu_header_offset_ b(
Dwar f _Debug dbg,
Dwarf O f i n_cu_header offset,
Dwarf Bool is_info,
Dwarf O f * out_cu_di e offset,
Dwarf _Error *error)

The functiondwar f _get cu_di e_of f set _gi ven_cu_header _of f set () returnsDW DLV_CK
and sets*out _cu_di e_offset to the offset of the compilation-unit DIE wgh the ofset
i n_cu_header _of f set of a compilation-unit headeit returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO _ENTRY.

If i s_i nfo is non-zero thé n_cu_header _of f set must refer to a .debug_info sectiorfset. If
i s_i nfo zero thei n_cu_header _of f set must refer to a .debug_types sectiofsetf Chaognay
result if thei s_i nf o flag is incorrect.

This efectively turns a compilation-unit-header offset into a compilation-unit DIE offset (by adding the
size of the applicable CU header). This function is also sometimes useful with the
dwarf_weak cu_offset(), dwarf_func_cu_offset(), dwarf_type_cu_offset(), and

int dwarf_var_cu_of fset () functions, though for those functions the data is only inugeinfo

by definition.

5.8.1.6 dwarf_get_cu_die offset_given_cu_header_offset()

int dwarf_get _cu_die_offset_given_cu_header_offset(
Dwar f _Debug dbg,
Dwarf_ O f i n_cu_header offset,
Dwarf O f * out_cu_di e of fset,
Dwarf _Error *error)

This function is superseded byarf _get cu_di e_of f set _gi ven_cu_header _of fset _b(),
a function which is still supported thought it refers only to the .debug_info section.

dwarf _get cu_di e_offset _given_cu_header of fset () added Re 1.45, June, 2001.

This function is declared as ’optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if ¢hgion of libdwarf linked into an application has this
function.

5.8.1.7 dwarf_global_name offsets()

i nt dwarf _gl obal nanme_of f set s(
Dwar f _d obal gl obal,
char **return_nane,
Dwarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwar f _gl obal nane_of f set s() returnsDW DLV_OK and set$ret urn_nane to a
pointer to a null-terminated string thaveg the name of the pubname described byDivar f _Qd obal
descriptorgl obal . It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. It aso
returns in the locations pointed to Biye_of f set, andcu_of f set , the offsets of the DIE representing
the pubname, and the DIE representing the compilation-unit containing the pubname,vebsp€rii a
successful return frordwar f _gl obal _nane_of f set s() the storage pointed to byet ur n_nane
should be freed usingwar f _deal | oc(), with the allocation typdW DLA STRI NG when no longer
of interest.

rev 2.27, May 01, 2015 -51-



-52 -

5.9 DWARF3 Type Names Operations
Section ".debug_pubtypes" issmen DWARF3.

These functions operate on the .debug pubtypes section of the debugging infornigtien.
.delug_pubtypes section contains the namesl®fstope usedefined types, the offsets of th# Es that
represent the definitions of those types, and tfeetsf of the compilation-units that contain theirdgébns
of those types.

5.9.1 Debugger Interface Operations

5.9.1.1 dwarf_get_pubtypes()

i nt dwarf_get pubtypes(
Dwar f _Debug dbg,
Dwar f _Type **types,
Dwar f _Si gned *typecount,
Dwarf _Error *error)

The functiondwar f _get pubt ypes() returnsDW DLV_CK and sets't ypecount to the count of
user-dehed type names represented in the section containing-deteed type names, i.e.
.delug_pubtypes. lalso stores dtt ypes, a pinter to a list oDwar f _Type descriptors, one for each of

the userdefined type names in the .debug_pubtypes section. The returned results are for the entire section.
It returnsDW DLV_NOCOUNT on error It returnsDW DLV_NO _ENTRY if the .debug_pubtypes section

does not exist.

On a successful return frodwar f _get _pubt ypes(), theDwar f _Type descriptors should be freed
using dwarf_types_deal | oc(). dwar f _types_deal | oc() is used for both
dwarf _get pubtypes() anddwarf_get types() asthe data types are the same.

Global type names refex@usively to names and offsets in the .debug_info section. See section 6.1.1
"Lookup by Name" in the dwarf standard.

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get_ pubtypes(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use types[i] */
}
dwarf _types_deal | oc(dbg, types, cnt);

5.9.1.2 dwarf_pubtypename()

i nt dwarf_pubt ypename(
Dwar f _Type type,
char **return_narne,
Dwarf _Error *error)

rev 2.27, May 01, 2015 -52-



-53 -

The functiondwar f _pubt ypename() returnsDW DLV_OK and setg r et ur n_nane to a pointer to a
null-terminated string that names the udefned type represented by tbear f _Type descriptort ype.
It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

5.9.1.3 dwarf_pubtype die offset()

i nt dwarf_pubtype_di e_of fset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _pubt ype_di e_of f set () returnsDW DLV_CK and setsret urn_of f set to

the ofset in the section containing DIEs, i.e. .debug_info, of the DIE representing thdefised type that
is described by thBwar f _Type descriptort ype. It returnsDW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.9.1.4 dwarf_pubtype cu_offset()

int dwarf_pubtype cu_offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _pubt ype_cu_of f set () returnsDW DLV_OK and setsret urn_of f set to
the offset in the section containing DIEs, i.e. wgbnfo, of the compilation-unit header of the
compilation-unit that contains the usiafined type described by tHanar f _Type descriptort ype. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY.

5.9.1.5 dwarf_pubtype _name offsets()

i nt dwarf_pubtype_ nane_of fset s(
Dwar f _Type type,
char ** returned_nane,
Dwarf Of * die_offset,
Dwarf Of * cu_offset,
Dwar f _Error *error)

The functiondwar f _pubt ype_nane_of f set s() returnsDW DLV_CK and set$r et ur ned_nane

to a pointer to a null-terminated string thavegi the name of the uselefined type described by the
Dwar f _Type descriptort ype. It also returns in the locations pointed to bye_ of fset, and
cu_of fset, the ofsets of the DIE representing the udefined type, and the DIE representing the
compilation-unit containing the usdefined type, respectely. It returnsDW DLV_ERROR on error It
never returns DW DLV_NO _ENTRY. On a successful return from
dwar f _pubt ype nane_of f set s() the storage pointed to hyet ur ned_nane should be freed
usingdwar f _deal | oc(), with the allocation typ®W DLA STRI NGwhen no longer of interest.

5.10 User Defined Static Variable Names Oper ations
This section is SGI specific and is not part of standaM\RF version 2.

These functions operate on the .udgharnames section of the debugging informatiomhe
.debug_wrnames section contains the names of file-scope static variables, the offsetDioEshibat
represent the definitions of those variables, and the offsets of the compilation-units that contain the

rev 2.27, May 01, 2015 -53-



-54 -

definitions of those variables.

5.11 Weak Name Space Operations
These operations operate on the .debug_weaknames section of the debugging information.

These operations are SGI specific, not part of standaiRF.

5.11.1 Debugger Interface Operations

5.11.1.1 dwarf_get_weaks()

i nt dwarf_get weaks(
Dwar f _Debug dbg,
Dwar f _Weak **weaks,
Dwar f _Si gned *weak_count,
Dwarf _Error *error)

The functiondwar f _get weaks() returnsDW DLV_OK and set$ weak _count to the count of weak
names represented in the section containing weak names i.eug_deaknames. Itreturns
DW DLV_ERROCR on error It returnsDW DLV_NO_ENTRY if the section does nokist. It also stores in
*weaks, a pointer to a list ofDwar f _Weak descriptors, one for each of the weak names in the
.debug_weaknames section. The returned results are for the entire section.

On a successful return from this function, tBearf_ Weak descriptors should be freed using
dwar f _weaks_deal | oc() when the data is no longer of interestwar f _weaks_deal | oc()is
new as of dily 15, 2005.

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;
int res;

res = dwarf_get_ weaks(dbg, &weaks, &cnt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use weaks[i] */
}

dwar f _weaks_deal | oc(dbg, weaks, cnt);

The following code is deprecated as of July 15, 2005 as it does not freeahteteemory This approach
still works as well as itver did. Ona auccessful return frordwar f _get _weaks() theDwar f _Weak
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA WEAK CONTEXT, (or DW DLA WEAK, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

rev 2.27, May 01, 2015 -54 -



-55-

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;
int res;

res = dwarf_get weaks(dbg, &weaks, &cnt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use weaks[i] */
dwar f _deal | oc(dbg, weaks[i], DWDLA WEAK CONTEXT);

}
dwar f _deal | oc(dbg, weaks, DWDLA LI ST);

5.11.1.2 dwarf_weakname()

i nt dwarf_weaknanme(
Dwar f _Weak weak,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _weakname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the weak name represented bwdané Weak descriptorweak. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

int dwarf_weak _die_of fset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _weak_di e_of f set () returnsDW DLV_OK and setsr et ur n_of f set to the
offset in the section containing DIEs, i.e. .dgbinfo, of the DIE representing the weak name that is
described by th®war f _Weak descriptorweak. It returnsDW DLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

5.11.1.3 dwarf_weak_cu_offset()

int dwarf_weak cu_offset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _weak _cu_of fset () returnsDW DLV_OK and sets r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the weak name described by Bwarf Wak descriptor, weak. It returns

DW DLV_ERROR 0N error It neve returnsDW DLV_NO_ENTRY.

5.11.1.4 dwarf_weak_name_offsets()

rev 2.27, May 01, 2015 -55-



-56 -

i nt dwarf_weak name_of f set s(
Dwar f _Weak weak,
char ** weak nane,
Dwarf O f *die_offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The functiondwar f _weak name_of f set s() returns DW DLV_OK and sets*weak name to a

pointer to a null-terminated string thaveg the name of the weak name described byDiher f _\V\eak
descriptorweak. It also returns in the locations pointed to tiye_ of f set, and cu_of f set, the

offsets of the DIE representing the weakname, and the DIE representing the compilation-unit containing the
weakname, respeedly. It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On

a accessful return fromdwar f _weak name_of f set s() the storage pointed to byweak nane

should be freed usindgwar f _deal | oc(), with the allocation typ@®W DLA STRI NG when no longer

of interest.

5.12 Static Function Names Operations
This section is SGI specific and is not part of standaM\RF version 2.

These function operate on the .debug funcnames section of the debugging infornigtien.
.delug_funcnames section contains the names of static functioimedléh the object, the offsets of the

Dl Es that represent the deftions of the corresponding functions, and the offsets of the start of the
compilation-units that contain the definitions of those functions.

5.12.1 Debugger Interface Operations

5.12.1.1 dwarf_get_funcs()

int dwarf_get funcs(
Dwar f _Debug dbg,
Dwar f _Func **funcs,
Dwar f _Si gned *func_count,
Dwarf _Error *error)

The functiondwar f _get _f uncs() returnsDW DLV_OK and set$ f unc_count to the count of static
function names represented in the section containing static function names, ug. faetnames. llso
stores, at f uncs, a inter to a list oDwar f _Func descriptors, one for each of the static functions in
the .debug_funcnames sectiofhe returned results are for the entire section. It reidvidDLV ERROR

on error It returnsDW DLV_NO_ENTRY if the .debug_funcnames section does not exist.

On a successful return frodwar f _get _funcs(), theDwar f _Func descriptors should be freed using
dwarf _funcs_deal | oc(). dwarf _funcs_deal | oc() is nev as of dily 15, 2005.

rev 2.27, May 01, 2015 -56 -



-57-

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

fres = dwarf_get funcs(dbg, &funcs, &cnt, &error);
if (fres == DWDLV_XK) {

for (i =0; i <cnt; ++i) {
/* use funcs[i] */
}

dwarf _funcs_deal | oc(dbg, funcs, cnt);

The following code is deprecated as of July 15, 2005 as it does not freeahteteemory This approach
still works as well as itver did. Ona successful return frordwar f _get _f uncs(), theDwar f _Func
descriptors should be individually freed usirdwarf_deal | oc() with the allocation type
DW DLA FUNC_CONTEXT, (or DW DLA FUNC, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

fres = dwarf_get _funcs(dbg, &funcs, &error);
if (fres == DWDLV_K) {

for (i =0; i <ecnt; ++i) {
/* use funcs[i] */
dwar f _deal | oc(dbg, funcs[i], DWDLA FUNC CONTEXT);

}
dwar f _deal | oc(dbg, funcs, DWDLA LIST);

5.12.1.2 dwarf_funcname()

i nt dwarf_funcnanme(
Dwar f _Func func,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _f uncname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the static function represented Byéing _Func descriptorf unc. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

5.12.1.3 dwarf_func_die offset()

rev 2.27, May 01, 2015 -57 -



-58 -

int dwarf_func_di e_of fset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _func_di e_of f set (), returnsDW DLV_OK and set$ r et ur n_of f set to the
offset in the section containing DIEs, i.e. .dgbinfo, of the DIE representing the static function that is
described by th®war f _Func descriptor,f unc. It returnsDW DLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

5.12.1.4 dwarf_func_cu_offset()

int dwarf_func_cu_offset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _func_cu_of fset () returnsDW DLV_OK and sets‘r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the static function described by Bharf Func descriptor,f unc. It returns

DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

5.12.1.5 dwarf_func_name offsets()

int dwarf_func_nanme_of fset s(
Dwar f _Func func,
char **func_nane,
Dwarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwarf _func_name_of fsets() returns DW DLV_OK and sets*func_nane to a
pointer to a null-terminated string thaveg the name of the static function described byDar f _Func
descriptorf unc. It aso returns in the locations pointed to tiye of f set, and cu_of f set, the

offsets of the DIE representing the static function, and the DIE representing the compilation-unit containing
the static function, respeetly. It returns DW DLV _ERROR on error It neve returns

DW DLV_NO ENTRY. On a siccessful return frondwarf func_nane_of f set s() the storage
pointed to by func_nane should be freed usinglwarf deal | oc(), with the allocation type

DW DLA STRI NGwhen no longer of interest.

5.13 User Defined Type Names Oper ations

Section "debug_typenames" is SGI specific and is not part of stantléddRP version 2.(However, an
identical section is part of\BARF version 3 named ".def pubtypes", seelwar f _get pubt ypes()
above.)

These functions operate on the ughtypenames section of the debugging informatiorhe
.delhug_typenames section contains the nameses$éope usedefined types, the offsets of tii@ Es that
represent the definitions of those types, and tfeetsf of the compilation-units that contain theirdébns
of those types.

5.13.1 Debugger Interface Operations

rev 2.27, May 01, 2015 -58 -



-59 -

5.13.1.1 dwarf_get_types()

int dwarf_get _types(
Dwar f _Debug dbg,
Dwar f _Type **types,
Dwar f _Si gned *typecount,
Dwarf _Error *error)

The functiondwar f _get _t ypes() returnsDW DLV_OXK and sets't ypecount to the count of user
defined type names represented in the section containinglefieed type names, i.e. .dalp typenames.

It also stores att ypes, a minter to a list oDwar f _Type descriptors, one for each of the udefined
type names in the .debug_typenames section. The returned results are for the entire Iseetioms
DW DLV_NOCOUNT on error It returnsDW DLV_NO_ENTRY if the .debug_typenames section does not
exist.

On a successful return frodwar f _get _t ypes(), theDwar f _Type descriptors should be freed using
dwarf _types_deal l oc(). dwarf_types_deal | oc() is nev as of dilly 15, 2005 and frees all
memory allocated bgiwar f _get _t ypes().

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get_types(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use types[i] */
}
dwarf _types_deal | oc(dbg, types, cnt);

The following code is deprecated as of July 15, 2005 as it does not free\ahtefeemory This approach
still works as well as itver did. Ona successful return fromdwar f _get _t ypes(), theDwarf _Type
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA TYPENANME_CONTEXT, (or DW DLA_TYPENAME, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation ti@éDLA LI ST when the descriptors
are no longer of interest.

rev 2.27, May 01, 2015 -59-



-60 -

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get _types(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use types[i] */
dwar f _deal | oc(dbg, types[i], DWDLA TYPENAME CONTEXT);

}
dwar f _deal | oc(dbg, types, DWDLA LIST);

5.13.1.2 dwarf_typename()

i nt dwarf_typenanme(
Dwar f _Type type,
char **return_narme,
Dwarf _Error *error)

The functiondwar f _t ypename() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the wdefned type represented by thear f _Type descriptorf ype.
It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

5.13.1.3 dwarf_type die offset()

int dwarf _type die offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _type_di e_of fset () returnsDW DLV_OK and set$r et urn_of f set to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing thdefised type that is
described by thé&war f _Type descriptort ype. It returnsDW DLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

5.13.1.4 dwarf_type cu_offset()

int dwarf_type cu_offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _type_cu_of fset () returnsDW DLV_OK and sets r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the usdefined type described by thewar f _Type descriptor,t ype. It returns

DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

5.13.1.5 dwarf_type name_offsets()

rev 2.27, May 01, 2015 - 60 -



-61 -

int dwarf_type_name_of f set s(
Dwar f _Type type,
char ** returned_nane,
Dwarf O f * die_offset,
Dwarf O f * cu_offset,
Dwarf _Error *error)

The functiondwar f _t ype_name_of f set s() returnsDW DLV_OK and set$r et ur ned_nane to a
pointer to a null-terminated string thatveg the name of the uselefined type described by the
Dwar f _Type descriptort ype. It also returns in the locations pointed to bye_of f set, and
cu_of f set, the offsets of the DIE representing the useined type, and the DIE representing the
compilation-unit containing the usdefined type, respestély. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO_ENTRY. On a successful return frodwar f _t ype_nane_of f set s() the
storage pointed to byet ur ned_narme should be freed usindwar f _deal | oc() , with the allocation
typeDW DLA_STRI NGwhen no longer of interest.

5.14 User Defined Static Variable Names Operations
This section is SGI specific and is not part of standaM\RF version 2.

These functions operate on the uagbarnames section of the deging information. The
.debug_warnames section contains the names of file-scope static variables, the offsetDioEghibat
represent the digfitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

5.14.1 Debugger Interface Operations

5.14.1.1 dwarf_get_vars()

i nt dwarf_get_vars(
Dwar f _Debug dbg,
Dwarf_Var **vars,
Dwar f _Si gned *var _count,
Dwarf _Error *error)

The functiondwar f _get _vars() returnsDW DLV_OK and sets*var _count to the count ofife-

scope static ariable names represented in the section containing file-scope static variable names, i.e.
.debug_wrnames. lalso stores, atvar s, a pointer to a list oDwar f _Var descriptors, one for each of

the file-scope static variable names in the udebarnames sectionThe returned results are for the entire
section. ItreturnsDW DLV_ERROCR on error It returnsDW DLV_NO_ENTRY if the .delug_varnames
section does not exist.

The following is nev as of dily 15, 2005. On a successful return fromwar f _get _vars(), the
Dwar f _Var descriptors should be freed usithgar f _vars_deal | oc() .

rev 2.27, May 01, 2015 -61-



-62 -

Dwar f _Si gned cnt;
Dwar f _Var *vars;
int res;

res = dwarf_get_vars(dbg, &vars, &nt &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use vars[i] */
}

dwarf _vars_deal | oc(dbg, vars, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhitredemory This approach
still works as well as itver did. Ona successful return frondwar f _get _vars(), the Dwarf_Var
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA VAR _CONTEXT, (or DW DLA VAR, an dder name, supported for compatibility) followed by the
deallocation of the list itself with the allocation tyP&/ DLA LI ST when the descriptors are no longer of
interest.

Dwar f _Si gned cnt;
Dwar f _Var *vars;
int res;

res = dwarf_get _vars(dbg, &vars, &nt &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use vars[i] */
dwar f _deal | oc(dbg, vars[i], DWDLA VAR CONTEXT);

}
dwar f _deal | oc(dbg, vars, DWDLA LIST);

5.14.1.2 dwarf_varname()

i nt dwarf_varnanme(
Dwarf_Var var,
char ** returned_nane,
Dwarf _Error *error)

The functiondwar f _var nane() returnsDW DLV_CK and setsr et ur ned_name to a pointer to a
null-terminated string that names the file-scope static variable representedwattfe Var descriptor,
var. It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a siccessful return
from this function, the string should be freed usiohgarf _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

5.14.1.3 dwarf_var_die offset()

rev 2.27, May 01, 2015 -62 -



-63 -

int dwarf_var_die_offset(
Dwar f _Var var,
Dwarf O f *returned of fset,
Dwarf _Error *error)

The functiondwar f _var _di e_of f set () returnsDW DLV_COK and set$ r et ur ned_of f set to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the file-scopeasialtie v
that is described by thBwar f _Var descriptor,var. It returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO _ENTRY.

5.14.1.4 dwarf_var_cu_offset()

int dwarf_var_cu_offset(
Dwarf_Var var,
Dwarf_ O f *returned_of fset,
Dwarf _Error *error)

The functiondwar f _var _cu_of f set () returnsDW DLV_COK and setsr et ur ned_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the file-scope static variable described biphef Var descriptoryvar . It returns

DW DLV_ERRORoON error It neve returnsDW DLV _NO_ENTRY.

5.14.1.5 dwarf_var_name_offsets()

int dwarf_var_name_of fset s(
Dwar f _Var var,
char **r et urned_nane,
Dwarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwar f _var _nane_of f set s() returnsDW DLV_OK and setsr et ur ned_nane to a
pointer to a null-terminated string thatveg the name of the file-scope static variable described by the
Dwar f _Var descriptorvar. It aso returns in the locations pointed to loy e of fset, and
cu_of f set, the offsets of the DIE representing the file-scope stati@able, and the DIE representing the
compilation-unit containing the file-scope static variable, resyabgti It returns DW DLV_ERROR on
error. It neve returns DWW DLV_NO ENTRY. On a  successful return  from
dwar f _var_nane_of f set s() the storage pointed to hyet ur ned_nane should be freed using
dwar f _deal | oc() , with the allocation typ®W DLA STRI NGwhen no longer of interest.

5.15 Macro Information Operations

5.15.1 General Macro Operations
5.15.1.1 dwarf_find_macro_value start()
char *dwarf_find nmacro_value_start(char * macro_string);

Given a macro string in the standard form defined in th&/ARF document ("name <spacealwe" or
"name(args)<spacealue") this returns a pointer to the first byte of the maatae: Itdoes not alter the
string pointed to by macro_string or goile string: it returns a pointer into the string whose addrass w
passed in.

5.15.2 Debugger Interface Macro Operations

Macro information is accessed from the .debug_info section viaWeAD macro_info attribute (whose
value is an offset into .debug_macinfo).

rev 2.27, May 01, 2015 -63-



-64 -

No Functions yet defined.

5.15.3 Low Level Macro Information Operations

5.15.3.1 dwarf_get_macro_details()

int dwarf_get macro_detail s(Dwarf_Debug /*dbg*/,

Dwar f O f nmacr o_of f set,
Dwar f _Unsi gned maxi mum count,
Dwar f _Si gned * entry_count,
Dwarf _Macro_Details ** details,

Dwarf Error * err);

dwarf _get macro_detail s() returnsDW DLV_OK and setsentry_count to the number of
det ai | s records returned through tldet ai | s pointer The data returned througtiet ai | s should

be freed by a call tdwar f _deal | oc() with the allocation typ®W DLA STRI NG. If DW DLV_Kis
returned, theent ry_count will be at least 1, since a compilation unit with macro information but no
macros will hae & least one macro data byte of 0.

dwarf _get macro_detail s() beagins at tharacr o_of f set offset you supply and ends at the end
of a compilation unit or atmaxi num count detail records (whicher comes frst). If
maxi mum _count is 0, it is treated as if it were the maximum possible unsigned integer.

dwarf _get macro_detail s() attempts to sednd fil ei ndex to the correct file in wery
det ai | s record. If it is unable to do so (or wheee the current file inde is unknaown, it sets
dnd_fil ei ndex to -1.

dwarf get macro_detail s() returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY
if there is no more macro information at tmatcr o_of f set . If macr o_of f set is passed in as 0, a
DW DLV_NO_ENTRY return means there is no macro information.

Dwar f _Unsi gned max = O;
Dwarf O f cur_off = 0;
Dwar f _Si gned count = O;

Dwarf _Macro_Details *nmaclist;
int errv;

/* Loop through all the conpilation units nacro info.
This is not guaranteed to work because DWARF does not
guarantee every byte in the section is neaningful:
there can be garbage between the macro info
for CUs. But this loop will usually work.

*/

while((errv = dwarf_get nacro_detail s(dbg, cur_off, max,

&count, &macl i st, &rror))== DWDLV_OK) {
for (i =0; i < count; ++i) {

/* use maclist[i] */
}
cur_off = maclist[count-1].dnmd_offset + 1;
dwar f _deal | oc(dbg, naclist, DWDLA STRI NG ;

5.16 Low Level Frame Operations

These functions pxade information about stack frames to be used to perform stack trddes.
information is an abstraction of a table with &/ nger instruction and a column per register and a column

rev 2.27, May 01, 2015 -64 -



-65 -

for the canonical frame address £CRvhich corresponds to the notion of a frame pointer), as well as a
column for the return address.

From 1993-2006 the interface we’ll here refer to #$ARF2 made the GFbe a olumn in the matrix, bt

left DW_FRAME_UNDEFINED ML, and DN_FRAME_SAME_\AL out of the matrix (giing them
high numbers). As of the\BARF3 interfaces introduced in this document in April 2006, there arg**tw
interfaces (the original set and annset). Seeral frame functions work transparently for either set, we will
focus on the ones that are not equally suitabke no

The original DVARF2 interface set still exists (dwi_get fde_info_for_reg(),
dwarf_get_fde_info_for_cfa_g€), and dwarf get fde_info_for_all_is()) and wrks adequately for
MIPS/IRIX DWARF2 and ABI/ISA sets that are figfently similar to MIPS.These functions not a good
choice for non-MIPS architectures nor wereytl'egood design for MIPS eitherlt’'s better to switch
entirely to the n& functions mentioned in the next paragraph. THRARF2 interface set assumes and
uses W_FRAME_CHA_COL and that is assumed when litatfvis configured with --enable-oldframecol

A new DWARF3 interface set of davf get fde info_for_ig3(), dwarf get fde_info_for_cfa_reg3(),
dwarf_get_fde_info_for_all_gs3(), dwarf _set frame_rule table size() adwset frame_cfa_value(),
dwarf_set_frame_samealue(), dvarf_set_frame_undefinedale(), and
dwarf_set_frame_rule_initialalue() is more flexible and will work for mgmore architectures. It is also
entirely suitable for use with \WARF2 and DVARF4. Thesetting of the 'frame c& mlumn number’
defaults to DW_FRAME_CFA_COL3 and it can be set at runtime with dwarf_set_frame_cfa_value().

Mixing use of the DVARF2 interface set with use of thewn®WARF3 interface set on a single open
Dwarf_Debug instance is a mise@akDonot do it.

We will pretend, from here on unless otherwise specified, thaV BRAME_CFA_ COL3,
DW_FRAME_UNDEFINED_ ML, and DN_FRAME_SAME_\AL are the synthetic column numbers.
These columns may be user-chosen by calls of ardwet frame_cfa_value()
dwarf_set frame_undefined_value(), and dwarf_set_frame_same_value() vespecti

Each cell in the table contains one of the following:
1. Aregister + offset(a)(b)

2. Aregister(c)(d)

3. Amarker (DW_FRAME_UNDEFINED_VAL) meaningegister value undefined

4. Amarker (DW_FRAME_SAME_VAL) meaningegister value same asin caller

(a old DNARF2 interface) When the column isSAD FRAME_CFA_COL: the rgister number is a real
hardware r@ister not a reference to W_FRAME_CIA_COL, not DW_FRAME_UNDEFINED_ VAL,
and not W_FRAME_SAME_\AL. The CFA rule value should be the stack pointer pldseifO when no
other value makes sensA.value of DN_FRAME_SAME_\AL would be semi-logical, it since the C&

is not a real rgister not really correct. A value of DNV_FRAME_UNDEFINED_ ML would imply the
CFA is uindeined --this seems to be a useless notion, as the i€B means to finding real registers, so
those real registers should be marked/ FRAME_UNDEFINED_M\AL, and the CR column content
(whatever regster it specifies) becomes unreferenced by anything.

(a nav April 2006 DNARF2/3 interface): The @¥is separately accessible and not part of the talblee
'rule number’ for the Ck is a rumber outside the table. So theACiE a marker not a register number
See DW_FRAME_CHA_COL3 in libdwarf.h and derf get fde_info_for _cfa g3() and

rev 2.27, May 01, 2015 - 65 -



-66 -

dwarf_set frame_rule_cfa_value().

(b) When the column is not W FRAME_CHA_COL3, the tegister will and must be
DW_FRAME_CFA_COL3(COL), implying that to get thenfal location for the column one must add the
offset here plus the DW_FRAME_CFA_COL3 rule value.

(c) When the column isW_FRAME_CFA_COL3, then therkgister’ number is (must be) a real haste
register . (This paragraph does not apply to the April 2006v rieterface). If it were
DW_FRAME_UNDEFINED ML or DW_FRAME_SAME_\AL it would be a markr, not a reister
number.

(d) When the column is not® _FRAME_CFA_COL3, the register may be a haahe rgister It will not
be DW_FRAME_CFA_COL3.

There is no 'column’ for W _FRAME_UNDEFINED VAL or DW_FRAME_SAME \AL. Nor for
DW_FRAME_CFA_COL3.

Figure 3 is machine dependent and represents MIPS CPU register assignniérgs.
DW_FRAME_CFA_COL define in dwarf.h is historical and really belongs in libdwarf.h, not dwarf.h.

NAME value PURPOSE
DW_FRAME_CFA_COL 0 column used for CFA
DW_FRAME_REG1 1 integer register 1
DW_FRAME_REG2 2 integer register 2

olvious names and values here
DW_FRAME_REG30 30 integer register 30
DW_FRAME_REG31 31 integer register 31
DW_FRAME_FREGO 32 floating point register O
DW_FRAME_FREG1 33 floating point register 1

olvious names and values here
DW_FRAME_FREG30 62 floating point register 30
DW_FRAME_FREG31 63 floating point register 31
DW_FRAME_RA COL 64  column recording ra
DW_FRAME_UNDEFINED ML 1034 rayister val undefined
DW_FRAME_SAME \AL 1035 register same as in caller

Figure4. Frame Information Rule Assignments MIPS

The following table shows SGI/MIPS specific special calues: these values mean that the cell has the
value undefined or same value respectiely, rather than containing ragister or register+offset. It assumes
DW_FRAME_CFA_COL is a table rule, which is not readily accomplished v@neensible for some
architectures.

NAME value PURPOSE

DW_FRAME_UNDEFINED_ ML 1034 meansindefined value.
Not a column or register value

DW_FRAME_SAME_\AL 1035 means 'same value’ as
caller had. Not a column or
register value

DW_FRAME_CHR_COL 0 means register zero is
usurped by the Gkcolumn.

Figure5. Frame Information Special Valuesyaarchitecture

The following table sh@s more general special celalues. Thesealues mean that the cell gister-

rev 2.27, May 01, 2015 - 66 -



-67 -

number refers to thefa-register or undefined-value or same-value respectrely, rather than referring to a
register in the table. The generality arises from making\D FRAME_CFA_COL3 be outside the set of
registers and making theacfule accessible from outside the rule-table.

NAME value PURPOSE

DW_FRAME_UNDEFINED ML 1034 meansindefined
value. Not a column or register value
DW_FRAME_SAME_\AL 1035 means 'same value’ as
caller had. Not a column or
register value
DW_FRAME_CFA_COL3 1436 means 'ch regster’
is referred to, not a real registeot
a wlumn, but the & (the ch does hae
avalue, but in the BVARF3 libdwarf interface
it does not hee a teal register number’).

5.16.0.1 dwarf_get_fde list()

int dwarf_get fde |ist(
Dwar f _Debug dbg,
Dwarf _Cie **cie_data,
Dwarf _Si gned *cie_el ement_count,
Dwarf _Fde **fde_data,
Dwarf _Si gned *fde_el ement _count,
Dwarf _Error *error);

dwarf get fde |ist() stores a pointer to a list &fvar f _Ci e descriptors irf ci e_dat a, and the
count of the number of descriptors*ini e_el ement _count . There is a descriptor for each CIE in the
.delug_frame sectionSimilarly, it stores a pointer to a list dwar f _Fde descriptors irff de_dat a,
and the count of the number of descriptorsfide el enent _count . There is one descriptor per FDE
in the .debug_frame sectionlwar f _get fde |ist() returnsDW DLV_ERRCR on error It returns
DW DLV_NO_ENTRY if it cannot find frame entries. It returii3v DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf _fde cie |ist _deall oc(). This dealloc approach iswes of dily 15, 2005.

Dwar f _Si gned cnt;
Dwarf_Cie *cie_data,;
Dwar f _Si gned ci e_count;
Dwarf _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get fde |ist(dbg, &i e_dat a, &i e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_K) {
dwarf fde cie |list _dealloc(dbg, cie data, cie_count,
fde_data, fde_count);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did.

rev 2.27, May 01, 2015 - 67 -



-68 -

Dwar f _Si gned cnt;

Dwarf _Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get _fde_list(dbg, &ci e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_XK) {

for (i =0; i < cie_count; ++i) {
/* use cie[i] */
dwarf _deal | oc(dbg, cie_data[i], DWDLA CIE);

}
for (i =0; i < fde_count; ++i) {

/* use fde[i] */

dwar f _deal | oc(dbg, fde_data[i], DWDLA FDE);
}

dwar f _deal | oc(dbg, cie_data, DWDLA LIST);
dwar f _deal | oc(dbg, fde_data, DWDLA LIST);

5.16.0.2 dwarf_get_fde list_eh()

int dwarf_get _fde |ist_eh(
Dwar f _Debug dbg,
Dwarf_Cie **cie_data,
Dwar f _Si gned *ci e_el ement _count,
Dwarf _Fde **fde_dat a,
Dwar f _Si gned *fde_el ement _count,
Dwarf_Error *error);

dwarf_get _fde_list_eh() is identical to dwarf_get fde list() except that
dwarf _get _fde_list_eh() reads the GNU gcc section named .eh_frame (C++ exception handling
information).

dwarf _get fde_list_eh() stores a pointer to a list @war f _Ci e descriptors in*ci e_dat a,
and the count of the number of descriptors @ e_el ement _count. There is a descriptor for each
CIE in the .debug_frame sectioigimilarly, it stores a pointer to a list dwar f _Fde descriptors in
*f de_dat a, and the count of the number of descriptors*inde_el ement _count. There is one
descriptor per FDE in the .debug_frame sectidnar f _get _fde_|i st () returnsDW DLV_ERROR

on error It returns DW DLV_NO ENTRY if it cannot find exception handling entries. It returns
DW DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf_fde_cie_list_deall oc(). This dealloc approach iswes of dily 15, 2005.

rev 2.27, May 01, 2015 - 68 -



-69 -

Dwar f _Si gned cnt;

Dwarf _Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get _fde_list(dbg, &ci e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_XK) {
dwarf_fde_ cie_list_deall oc(dbg, cie_data, cie_count,
fde_dat a, fde_count);

5.16.0.3 dwarf_get_cie of_fde()

int dwarf_get _cie_of_fde(Dwarf_Fde fde,
Dwarf_Cie *cie_returned,
Dwarf_Error *error);

dwarf _get _cie_of fde() stores &warf _Ci e into the Dwar f _Ci e thatci e_r et ur ned points
at.

If one has called darf get fde_list and does not wish to dwarf dealloc() all the individual FDEs
immediately one must alsowmid dwarf_dealloc-ing the CIEs for those FDEs not immediately dedlloc’
Faling to obsere this restriction will cause the FDE(s) not dealtbtd become inalid: an FDE contains

(hidden in it) a CIE pointer which will be bevalid (stale, pointing to freed memory) if the CIE is
deallocd. Theinvalid CIE pointer internal to the FDE cannot be detected aidnby libdwarf. If one

later passes an FDE with a stale internal CIE pointer to one of the routines taking an FDE as input the result
will be failure of the call (returning @W_DLV_ERROR) at best and it is possible a coredump or worse will
happen (eentually).

dwarf _get _cie_of fde() returnsDW DLV_OX if it is successful (it will be unless fde is the NULL
pointer). ItreturnsDW DLV_ERRORf the fde is ivalid (NULL).

EachDwar f _Fde descriptor describes information about the frame for a particular subroutine or function.

int dwarf_get _fde_for_dieis SGI/MIPS specific.

5.16.0.4 dwarf_get fde for_dig()

int dwarf_get fde for die(
Dwar f _Debug dbg,
Dwarf _Die die,
Dwarf Fde * return_fde,
Dwar f _Error *error)

When it succeedgjwarf _get fde for _die() returnsDW DLV_OK and setsreturn_fde to a
Dwar f _Fde descriptor representing frame information for thevegi die. It looks for the
DW AT_M PS_f de attribute in the gren di e. If it finds it, is uses thealue of the attribute as thefsdt
in the .debug_frame section where the FDHit® If there is noDW AT _M PS fde it returns
DW DLV_NO _ENTRY. Ifthere is an error it returidV DLV_ERROR.

rev 2.27, May 01, 2015 - 69 -



-70 -

5.16.0.5 dwarf_get_fde range()

int dwarf_get fde_range(
Dwar f _Fde fde,
Dwar f _Addr *I| ow_pc,
Dwar f _Unsi gned *func_I engt h,
Dwarf_Ptr *fde_bytes,
Dwar f _Unsi gned *fde_byte_| ength,
Dwarf_ O f *cie_offset,
Dwar f _Si gned *ci e_i ndex,
Dwarf_ O f *fde_offset,
Dwarf_Error *error);

On succesgjwar f _get _fde_range() returnsDW DLV_OK.
The location pointed to byow_pc is set to the lv pc value for this function.

The location pointed to bfyunc_| engt h is set to the length of the function in bytes. This is essentially
the length of the text section for the function.

The location pointed to bfyde_byt es is set to the address where the FDE begins in theigdélame
section.

The location pointed to by de _byte | ength is set to the length in bytes of the portion of
.debug_frame for this FDE. This is the same as the value returrthebloy get f de_range.

The location pointed to byi e_of f set is set to the offset in the .dedp frame section of the CIE used by
this FDE.

The location pointed to byi e_i ndex is set to the indeof the CIE used by this FDE. The indis the
index of the CIE in the list pointed to hyi e_dat a as set by the functiodwar f _get fde_list().
However, if the functiondwar f _get _fde_for _di e() was used to obtain the gén f de, this inde
may not be correct.

The location pointed to bfyde_of f set is set to the offset of the start of this FDE in the udelirame
section.

dwarf _get _fde_range() returnsDW DLV_ERROR on error.

5.16.0.6 dwarf_get_cie info()

int dwarf_get cie_info(

Dwarf _Ci e ci e,
Dwar f _Unsigned *bytes in_cie,
Dwar f _Smal | *version,

char **augnent er,

Dwar f _Unsi gned *code_al i gnnent _factor,

Dwarf _Si gned *data_al i gnment _factor,
Dwar f _Hal f *return_address _register_rule,
Dwarf _Ptr *initial _instructions,

Dwarf _Unsigned *initial _instructions_|ength,
Dwar f _Error *error);

dwarf _get cie_info() is primarily for Internal-lgel Interface consumers. If successful, it returns
DW DLV_OK and setg byt es_i n_ci e to the number of bytes in the portion of the frames section for
the CIE represented by thesgi Dwar f _Ci e descriptorci e. The other fields are directly tak from the

rev 2.27, May 01, 2015 -70-



-71-

cie and returned, via the pointers to the callereturnsDwW DLV_ERROR on error.

5.16.0.7 dwarf_get_cie index()

int dwarf_get_cie_index(
Dwarf_Cie cie,
Dwar f _Si gned *ci e_i ndex,
Dwarf_Error *error);

On success,dwar f_get _cie_i ndex() returns DWDLV_OK. On eror this function returns
DW DLV_ERROR.

The location pointed to byi e_i ndex is set to the indeof the CIE of this FDE. The indes the inde
of the CIE in the list pointed to iy e_dat a as set by the functiodwar f _get _fde_list().

So one must he wseddwar f _get _fde list() ordwarf_get _fde |ist_eh() togeta cie list
before this is meaningful.

This function is occasionally useful, but is little used.

5.16.0.8 dwarf_get_fde instr_bytes()

int dwarf_get fde_ instr_bytes(
Dwar f _Fde fde,
Dwarf Ptr *outinstrs,
Dwar f _Unsi gned *out | en,
Dwarf _Error *error);

dwarf _get fde_ instr_bytes() returnsDW DLV_CK and set$out i nstrs to a pointer to a set
of bytes which are the actual frame instructions for this ftlalso sets$ out | en to the length, in bytes,
of the frame instructions. It returi@N DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY.
The intent is to allw low-level consumers lik a dvarf-dumper to print the bytes in somashion. The
memory pointed to bput i nst r s must not be changed and there is nothing to free.

5.16.0.9 dwarf_get_fde info_for_reg()

This interface is suitable for WARF2 kit is not sufcient for DNARF3. See int
dwarf _get fde info for_reg3.

int dwarf_get fde info for_reg(
Dwar f _Fde fde,
Dwarf Hal f tabl e _col um,
Dwar f _Addr pc_requested,
Dwarf _Si gned *of fset rel evant,
Dwar f _Si gned *regi ster_num
Dwar f _Si gned *of fset,
Dwar f _Addr *row pc,
Dwarf Error *error);

dwarf get fde info for_reg() returnsDW DLV _CK and sets*of f set _rel evant to non-

zero if the offset is relent for the rov specified by pc_requested and column specified by

t abl e_col um, for the FDE specified bfyde. The intent is to return the rule for the/gi pc value and
register The location pointed to biyegi st er _numis set to the register value for the rule. The location
pointed to byof f set is set to the offset value for the rule. If offset is notvaie for this rule,

*of f set _rel evant is set to zero. Since more than one pc value wilthaws with identical entries,

the user may want to kmothe earliest pc value after which the rules for all the columns remained
unchanged. Recdlhat in the virtual table that the frame information represents there may be one or more

rev 2.27, May 01, 2015 -71-



-72 -

table ravs with identical data (each such tablevrat a dfferent pc alue). Gven a pc_request ed

which refers to a pc in such a group of identicatgothe location pointed to lyow pc is set to the
lowest pc value within the group of identicab@ The walue put in*regi st er _numary of the
DW FRAME_* table columns values specifiedlinbdwar f . h ordwar f . h.

dwarf _get fde_i nfo_for_regreturnsDW DLV_ERRORIf there is an error.
It is usable with eithedwar f _get _fde_n() ordwarf_get fde_at_pc().

dwarf _get fde_info_for_reg() is tailored to MIPS, please use
dwarf _get fde_info_for_reg3() instead for all architectures.

5.16.0.10 dwarf_get_fde info_for_all_regs()

int dwarf_get _fde_ info_for_all_regs(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwarf _Regtabl e *reg_table,
Dwar f _Addr *row_pc,
Dwarf_Error *error);

dwarf _get _fde_info_for_all _regs() returnsDW DLV_OK and set$r eg_t abl e for the rav
specified bypc_r equest ed for the FDE specified bfde.

The intent is to return the rules for decoding all the registeran gipc \alue. r eg_t abl e is an array of
rules, one for each gester specified indwar f . h. The rule for each register contains three items -
dw_r egnumwhich denotes the registealue for that ruledw_of f set which denotes the offset value for
that rule anddw_of f set _rel evant which is set to zero if offset is not retmt for that rule. See
dwarf _get _fde_info_for_reg() fora description of ow _pc.

dwarf _get _fde_info_for_all _regs returnsDW DLV_ERRORIf there is an error.

i nt dwarf_get fde_info_for_all _regs is tallored to SGI/MIPS, please use
dwarf_get_fde_info_for_all_regs3() instead for all architectures.

5.16.0.11 dwarf_set_frame rule table size()

This allows consumers to set the size of the (internal to &bjiwle table when using the3’ interfaces
(these interfaces are strongly preferredrdhe older feg’ interfaces). Itshould be at least as large as the
number of real registers in the ABI which is to be read in for tharfdget fde info for g3() or
dwarf_get_fde_info_for_all _regs3() functions to work properly.

The frame rule table size must be less than the marker valMésFRAME_UNDEFINED_ VAL,
DW_FRAME_SAME \AL, DW_FRAME_CRA _COL3 (dwarf_set_frame_rule_undefined_value()
dwarf_set frame_samealue() dvarf_set frame_cfaalue() efectively set these masgts so the frame
rule table size can actually beyavalue rgardless of the macro values in libdwarf.h as long as the table
size does notwvarlap these markers).

Dwar f _Hal f
dwarf _set franme_rul e_tabl e_size(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_tabl e _size() sets the alue val ue as the size of libdarf-internal
rules tables ofibg.

rev 2.27, May 01, 2015 -72-



-73-

The function returns the previous value of the rules table size setting (taken frdbgthucture).

5.16.0.12 dwarf_set_frame rule initial_value()

This allows consumers to set the initial value fovsdn the frame tables. By default it is taken from
libdwarf.h and is OV_FRAME_REG_INITIAL_\ALUE (which itself is either
DW_FRAME_SAME_MAL or DW_FRAME_UNDEFINED_ML). The MIPS/IRIX default is
DW_FRAME_SAME_\AL. Consumercode should set this appropriately and for ynachitectures (bt
probably not MIPS) B/ _FRAME_UNDEFINED_MAL is an appropriate setting. Note: an earlier spelling
of dwarf_set_frame_rule_initalalue() is still supported as an interface, but please change to usevthe ne
correctly spelled name.

Dwar f _Hal f
dwarf_set _frame_rule_initial _val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf_set _frame_rule_initial _val ue() setsthe alueval ue as the initial value for thidbg
when initializing rules tables.

The function returns the previous value of initial value (taken frondlblgestructure).

5.16.0.13 dwarf_set_frame cfa valueg()

This allows consumers to set the number of thA &fgster for rows in the frame tables. By default it is
taken from libdvarf.h and isDW FRAME_CFA COL. Consumer code should set this appropriately and for
nearly all architectureBW FRAMVE _CFA COL3 is an appropriate setting.

Dwar f _Hal f
dwarf _set frame_rul e_cfa val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e _cfa_val ue() sets the alueval ue as the number of the &fregister
rule’ for thisdbg when initializing rules tables.

The function returns the previous value of the pseudo-register (taken fralingtstructure).

5.16.0.14 dwarf_set_frame_same value()

This allovs consumers to set the number of the pseudo-register wénCPA same_alue is the
operation. Bydefault it is taken from libdwarf.h and BW FRAME_SAME VAL. Consumer code should
set this appropriatelyhough for man architecturedDW FRAME_SAME VAL is an appropriate setting.

Dwar f _Hal f
dwarf _set frame_rul e_same_val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_same_val ue() sets the &lueval ue as the number of the register that
is the pseudo-register set by the DW_CFA_same_value frame operation.

The function returns the previous value of the pseudstar (talken from thedbg structure).

5.16.0.15 dwarf_set_frame_undefined_value()

This allows consumers to set the number of the pseudo-register
when DWV_CFA_undefined alue is the operation. By default it is taken from libdwarf.h and is

rev 2.27, May 01, 2015 -73-



-74 -

DW FRAME_UNDEFI NED_VAL. Consumer code should set this appropriateayough for man
architecture®wW FRAME_UNDEFI NED_VAL is an appropriate setting.

Dwar f _Hal f
dwarf _set frame_rul e_undefi ned_val ue(Dwarf _Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_undefi ned_val ue() sets the alue val ue as the number of the
register that is the pseudo-register set by the DW_CFA_undefined_value frame operation.

The function returns the previous value of the pseudster (talen from thedbg structure).

5.16.0.16 dwarf_set_default_address size()

This allows consumers to set a default address size. When one has an object whesalttegldedss_size
does not match the frame address size where there is ng_digflo available to get a frame-spemf
address-size, this function is usefltor example, if an EIf64 object has a .debug_frame whose real
address_size is 4 (32 bits). This a very rare situation.

Dwar f _Smal |
dwarf _set _defaul t _address_si ze(Dwarf _Debug dbg,
Dwarf _Smal | val ue);

dwarf _set _default _address_si ze() sets the alueval ue as the default address size for this
activation of the readerbut only if val ue is greater than zero (otherwise the default address size is not
changed).

The function returns the previous value of the default address size (taken frdbgth&ucture).

5.16.0.17 dwarf_get_fde info for_reg3()

This interface is suitable for\MARF3 and DVARF2. Itreturns the values for a particular reajjister
(Not for the CR regster, see dvarf_get fde info_for_cfa_g3() belav). If the application is going to
retrieve the value for more than aviet abl e_col umm values at thispc_r equest ed (by calling this
function multiple times) it is much morefigient to call dvarf_get fde_info_for_all gs3() (in spite of the
additional setup that requires of the caller).

int dwarf_get fde info for_reg3(
Dwar f _Fde fde,
Dwarf Hal f tabl e _col um,
Dwar f _Addr pc_requested,
Dwarf_Smal|l *val ue_type,
Dwar f _Si gned *of fset _rel evant,
Dwar f _Si gned *regi ster_num
Dwarf _Si gned *of fset_or_bl ock | en,
Dwarf _Ptr *bl ock_ptr,
Dwar f _Addr *row_pc,
Dwarf Error *error);

dwarf _get fde info for_reg3() returnsDW DLV_OK on success. It setsval ue_type to
one of DW_EXPR_OFFSET (0), W_EXPR _\AL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_\AL EXPRESSION(3). Orzall, t abl e_col unm must be set to the register number of a
real rgister Not the ch register’ or DN_FRAME_SAME_\ALUE or
DW_FRAME_UNDEFINED_VALUE.

rev 2.27, May 01, 2015 -74 -



-75 -

if *val ue_t ype has the value DW_EXPR_OFFSET (0) then:

It sets*of f set _rel evant to non-zero if the offset is relant for the rov specified by
pc_request ed and column specified blyabl e_col um or, for the FDE specified bf/de.

In this casethe *regi ster _numwill be set to WW_FRAME_CIRA_COL3 (. This is an
offset(N) rule as specified in the VIARF3/2 documents. Adding the value of
*of f set _or _bl ock_I| en to the value of the GFkregster gives the address of a location
holding the previous value of registeaibl e_col um.

If offset is not relgant for this rule,* of f set _r el evant is set to zero.*r egi st er _num
will be set to the number of the reafjiger holding the value of thteabl e_col um register.
This is the register(R) rule as specified WBRF3/2 documents.

The intent is to return the rule for theven pc value and rgister The location pointed to by
regi st er _numis set to the register value for the rule. The location pointed tif bget is

set to the offset value for the rul&ince more than one pc value willearows with identical
entries, the user may want to knthe earliest pc value after which the rules for all the columns
remained unchangedRecall that in the virtual table that the frame information represents there
may be one or more table rows with identical data (each such tabk eodfferent pc alue).
Given apc_r equest ed which refers to a pc in such a group of identical rows, the location
pointed to byr ow_pc is set to the lowest pc value within the group of identical rows.

If *val ue_t ype has the value DW_EXPR_VAL_OFFSET (1) then:
This will be a +al ofiset(N) rule as specified in the VIARF3/2 documents so
*of fset _relevant will be non zero. The -calculation is identical to the
DW_EXPR_OFFSET (0) calculation withtof f set _rel evant non-zero, but the alue
resulting is the actualabl e_col unm value (rather than the address where the value may be
found).

If *val ue_t ype has the value DW_EXPR_EXPRESSION (1) then:
*of f set _or _bl ock_I en is set to the length in bytes of a block of memory withVdAIRF
expression in the block* bl ock_ptr is set to point at the block of memoryhe consumer
code shouldevduate the block as a\MARF-expression. The result is the address where the
previous value of the register may be found. This isNABF3/2 expression(E) rule.

If *val ue_t ype has the value DW_EXPR_VAL_EXPRESSION (1) then:
The calculation is exactly as for DW_EXPR_EXPRESSION (1) but the result of \WAeRDB-
expression ealuation is the value of thet abl e_col umm (not the address of theble). This
is a DNARF3/2 val_expression(E) rule.

dwarf _get fde_info_for_reg returnsDW DLV_ERRORf there is an error and if there is an error
only theer r or pointer is set, none of the other output arguments are touched.

It is usable with eithedwar f _get _fde_n() ordwarf_get fde_at_pc().

5.16.0.18 dwarf_get_fde info_for_cfa_reg3()

rev 2.27, May 01, 2015 -75-



-76 -

int dwarf_get fde_ info for_cfa reg3(Dwarf_Fde fde,

Dwar f _Addr pc_requested,

Dwarf _Smal | * val ue_type,

Dwar f _Si gned* of fset _rel evant,
Dwar f _Si gned* regi ster_num
Dwar f _Si gned* of fset _or_bl ock_I| en,
Dwarf Ptr * bl ock_ptr ,
Dwar f _Addr * row_pc_out,

Dwarf _Error * error)

This is identical todwar f _get _fde_i nfo_for_reg3() except the returned values are for theACF
rule. Soregister numberr egi st er _numwill be set to a real gister not one of the pseudogisters
(which are usually W/ _FRAME_CRA_COL3, DW_FRAME_SAME \ALUE, or
DW_FRAME_UNDEFINED_VALUE).

5.16.0.19 dwarf_get_fde info_for_all_regs3()

int dwarf_get _fde_info_for_all_regs3(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwar f _Regt abl e3 *reg_t abl e,
Dwar f _Addr *row_pc,
Dwarf _Error *error)

dwarf_get _fde_info_for_all_regs3() returnsDWDLV_CK and sets*reg_t abl e for the
row specified by pc_request ed for the FDE specified by de. The intent is to return the rules for
decoding all the gisters, gien a pc alue. r eg_t abl e is an array of rules, the array size specified by
the caller plus a rule for the G&. Therule for the cé returned in*r eg_t abl e defines the CR value

at pc_requested The rule for each ggster containsseveral values that enable the consumer to
determine the previous value of thegister (see the earlier documentation of @diwRegtable3).
dwarf_get _fde_info_for_reg3() and the Dwarf Retable3 documentation a® for a
description of the values for eaclwro

dwarf _get fde_info_for_all _regs3returnsDW DLV_ERRORIf there is an error.

It is up to the caller to allocate spaceforeg_t abl e and initialize it properly.

5.16.0.20 dwarf_get_fde n()

i nt dwarf _get fde n(
Dwarf _Fde *fde_dat a,
Dwar f _Unsi gned fde_i ndex,
Dwar f _Fde *returned_fde
Dwar f _Error *error)

dwarf _get fde_n() returnsDW DLV_OK and sets et ur ned_f de to theDwar f _Fde descriptor
whose inde isf de_i ndex in the table oDwar f _Fde descriptors pointed to Hyde dat a. The ind
starts with 0. The table pointed to by fde data is required to contain at least onelttig/table has no
entries at all the error checks may refer to uninitialized memBgturnsDW DLV_NO _ENTRY if the
index does not exist in the table Bfivar f _Fde descriptors. ReturnBW DLV_ERROR if there is an error
This function cannot be used unless the blockowdr f _Fde descriptors has been created by a call to
dwarf _get fde list().

rev 2.27, May 01, 2015 -76 -



-77 -

5.16.0.21 dwarf_get_fde at_pc()

i nt dwarf _get fde_at_pc(
Dwarf _Fde *fde_dat a,
Dwar f _Addr pc_of _interest,
Dwarf _Fde *returned_fde,
Dwar f _Addr *1 opc,
Dwar f _Addr *hi pc,
Dwarf _Error *error)

dwarf _get fde_at pc() returns DWDLV_OK and setsreturned_fde to a Dwarf_Fde
descriptor for a function which contains the pdue specified byc_of _i nt er est. In addition, it sets
the locations pointed to Hyopc andhi pc to the lav address and the high addressered by this FDE,
respectiely. The table pointed to by fde_data is required to contain at least onelettie/table has no
entries at all the error checks may refer to uninitialized memiomgturnsDW DLV_ERROR on error It
returnsDW DLV_NO _ENTRY if pc_of _i nt er est is not in ay of the FDEs represented by the block of
Dwar f _Fde descriptors pointed to biyde_dat a. This function cannot be used unless the block of
Dwar f _Fde descriptors has been created by a calviar f _get _fde_list().

5.16.0.22 dwarf_expand_frame_instructions()

int dwarf_expand franme_instructions(
Dwnarf _Cie cie,
Dwarf Ptr instruction,
Dwar f _Unsigned i | ength,
Dwarf _Frame_Op **returned_op_list,
Dwar f _Si gned * returned_op_count,
Dwarf Error *error);

dwar f _expand_frane_i nstructions() is a High-level interface function which expands a frame
instruction byte stream into an array Bfvar f _Fr ane_Qp structures. @ indicate success, it returns
DW DLV_OK. The address where the byte streamimeis specified by nst r uct i on, and the length of

the byte stream is specified by | engt h. The location pointed to byet urned_op_|i st is set to

point to a table ofr et urned_op_count pointers toDwar f _Franme_Op which contain the frame
instructions in the byte stream.lt returns DW DLV _ERROR on error It neve returns

DW DLV_NO ENTRY. After a successful return, the array of structures should be freed using
dwar f _deal | oc() with the allocation typeDW DLA FRAME BLOCK (when thg are no longer of
interest).

Not all CIEs hae the same address-size, so it is crucial that a CIE pointer to thedr@ifadde passed in.

Dwar f _Si gned cnt;

Dwarf _Franme_Qp *franmeops;
Dwarf _Ptr instruction;
Dwar f _Unsi gned | en;

int res;

res = expand_frame_instructions(dbg,instruction,len, & raneops, &nt, &error);
if (res == DWDLV_OK) {
for (i =0; i <ecnt; ++) {
/* use franeops[i] */
}
dwar f _deal | oc(dbg, franeops, DW DLA FRAME BLOCK) ;

rev 2.27, May 01, 2015 -77 -



-78 -

5.16.0.23 dwarf_get_fde exception_info()

int dwarf_get fde_exception_info(
Dwar f _Fde fde,
Dwarf _Signed * offset_into_exception_tables,
Dwarf _Error * error);

dwarf _get _fde_exception_info() is an IRIX specific function which returns an exception table
signed offset through of f set i nto_exception_tables. The function neer returns

DW DLV_NO_ENTRY. If DW DLV_NO ENTRY is NULL the function returndwW DLV_ERRCR. For
non-IRIX objects the offset returned willvedys be zero.For non-C++ objects the offset returned will
always be zero. The meaning of the offset and the content of the tables is not defined in this document.
The applicable CIE augmentation string (seevabdetermines whether the value returned has meaning.

5.17 Location Expression Evaluation

An "interpreter" which ealuates a location expression is required ig dabugger There is no integce
defined here at this time.

One problem with defining an interface is that operations are machine dependgrdefbad on the
interpretation of register numbers and the methods of getting values from the environment the expression is
applied to.

It would be desirable to specify an interface.

5.17.1 Location List Internal-level Interface

5.17.1.1 dwarf_get_loclist_entry()

int dwarf_get _loclist_entry(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Addr *hi pc_of f set,
Dwar f _Addr *| opc_of f set,
Dwarf_Ptr *data,
Dwar f _Unsi gned *entry_|en,
Dwar f _Unsi gned *next_entry,
Dwarf _Error *error)

The function reads a location list entry startingfat set and returns through pointers (when successful)
the high pchi pc_of f set, low pc| opc_of f set, a pointer to the location description datat a, the
length of the location description dagat ry_| en, and the offset of the next location description entry
next_entry.

This function will usually work correctly (meaning with most objects) but will netkwecorrectly (and can

crash an application calling it) if either some location list applies to a compilation unit with an address_size
different from the werall address_size of the object file being read or if theuglelbc section being read

has random padding bytes between loclists. Neither of these characteristics necessarily reprggémts a b
the compiler/linker toolset that produced the object file being read. WM&RF standard alles both
characteristics.

dwarf _dwarf_get | oclist_entry() returnsDW DLV_OK if successful.DW DLV_NO_ENTRY is
returned when the offset passed in is beyond the end of the .debug_loc section (expected if you start at
offset zero and proceed through all the entri€@)/ DLV_ERRCRIs returned on error.

rev 2.27, May 01, 2015 -78 -



-79-

Thehi pc_of f set, low pc| opc_of f set are offsets from the beginning of the current procedure, not
genuine pc values.

/* Loopi ng through the dwarf_loc section finding loclists:
an exanple. */

int res;

Dwar f _Unsi gned next _entry;

Dwar f _unsi gned of f set =0;

Dwar f _Addr hi pc_off;

Dwar f _Addr | opc_off;

Dwarf _Ptr dat a;

Dwar f _Unsi gned entry_I en;

Dwar f _Unsi gned next _entry;

Dwarf_ Error err;

for(;;) {
res = dwarf_get | oclist_entry(dbg, newof fset, &i pc_of f,
& owpc_off, &data, &entry_len, &ext_entry, &err);
if (res == DWDLV_OK) {
/* Avalid entry. */
newof f set = next_entry;
conti nue;
} else if (res ==DW DLV_NO ENTRY) {
/* Done! */
br eak;
} else {
[* Errorl */
br eak;

5.18 Abbreviations access

These are Internaldel I nterface functions. Debuggers can ignore this.

5.18.1 dwarf_get_abbrev()

i nt dwarf_get abbrev(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Abbr ev *returned_abbrev,
Dwar f _Unsi gned *I engt h,
Dwar f _Unsi gned *attr_count,
Dwarf _Error *error)

The function dwarf _get abbrev() returns DWDLV_OK and sets*returned_abbrev to
Dwar f _Abbr ev descriptor for an abbwation at ofset *of f set in the abbreviations section (i.e
.debug_abbrg on success. The user is responsible for making sure that a valid abbreviation begins at
of f set in the abbreiations section. The location pointed to lbgngt h is set to the length in bytes of

the abbreviation in the abbreviations section. The location pointed @t by count is set to the

rev 2.27, May 01, 2015 -79-



-80-

number of attributes in the abliration. Anabbreiation entry with a length of 1 is the 0 byte of the last
abbreviation entry of a compilation unitdwar f _get _abbr ev() returnsDW DLV_ERROR on error If

the call succeeds, the storage pointed to *hyet ur ned_abbrev should be freed, using
dwar f _deal | oc() with the allocation typ®W DLA ABBREV when no longer needed.

5.18.2 dwarf_get_abbrev_tag()

int dwarf_get abbrev_tag(
Dwar f _abbrev abbrev,
Dwarf Half *return_tag,
Dwarf _Error *error);

If successfuldwar f _get abbrev_tag() returnsDW DLV_OK and set$r et ur n_t ag to thetag of
the given abbreviation. ItreturnsDW DLV_ERRORon error It neve returnsDW DLV_NO_ENTRY.

5.18.3 dwarf_get_abbrev_code()

i nt dwarf_get abbrev_code(

Dwar f _abbr ev abbr ev,
Dwar f _Unsigned *return_code,
Dwar f _Error *error);

If successful,dwarf_get abbrev_code() returnsDW DLV_CK and sets*r et ur n_code to the
abbreviation code of the gen abreviation. It returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.18.4 dwarf_get_abbrev_children_flag()

int dwarf_get abbrev_children_fl ag(
Dwar f _Abbrev abbrev,
Dwarf _Signed *returned_flag,
Dwar f _Error *error)

The function dwarf _get abbrev_children_flag() returns DWDLV _OK and sets
returned flag to DWchildren_no (if the given abbreviation indicates that a die with that
abbreviation has no children) dW chi | dr en_yes (if the given abreviation indicates that a die with
that abbreviation has a child). It retuidd@/ DLV _ERROR on error.

5.18.5 dwarf_get_abbrev_entry()

i nt dwarf_get _abbrev_entry(
Dwar f _Abbrev abbrev,
Dwar f _Si gned i ndex,
Dwar f _Hal f *attr_num
Dwar f _Si gned *form
Dwarf O f *offset,
Dwarf _Error *error)

If successful,dwarf_get abbrev_entry() returnsDW DLV_CK and sets*attr_num to the
attribute code of the attribute whose imde seciied byi ndex in the given abbreviation. Theindex
starts at 0. The location pointed to bgr mis set to the form of the attrike. Thelocation pointed to by

of fset is set to the byte offset of the attribute in the abbreviations section. It returns
DW DLV_NO_ENTRY if the index specified is outside the range of attributes in this atibten. Itreturns

rev 2.27, May 01, 2015 -80 -



-81-

DW DLV_ERROR 0N error.

5.19 String Section Operations

The .debug_str section contains only string@ehuggers need wer use this interdice: it is only for
debugging problems with the string section itself.

5.19.1 dwarf_get_str()

int dwarf_get _str(
Dwar f _Debug dbg,
Dwar f _Of f of f set,
char **string,
Dwar f _Si gned *returned_str_| en,
Dwarf _Error *error)

The functiondwar f _get _str () returnsDW DLV_(K and setsr et urned_str _I en to the length
of the string, not counting the null termingtthat begins at the fsiet specified byof f set in the
.delug_str section. The location pointed tostyr i ng is set to a pointer to this strindhe next string in
the .debug_str section begins at thevjpesof f set + 1 +*returned_str _| en. A zero-length string
is NOT the end of the section. If there is no .debug_str sedihDLY_NO ENTRY is returned. If there
is an errorDW DLV_ERRCR is returned. If we are at the end of the section (thaifiset is one past
the end of the sectio®W DLV_NO_ENTRY is returned. If thef f set is some other too-large value then
DW DLV_ERRCRIs returned.

5.20 Address Range Operations

These functions provide information about address rangddress ranges map ranges of pc values to the
corresponding compilation-unit die thatvecs the address range.

5.20.1 dwarf_get_aranges()

i nt dwarf_get aranges(
Dwar f _Debug dbg,
Dwar f _Arange **aranges,
Dwarf _Signed * returned_arange_count,
Dwarf Error *error)

The functiondwar f _get aranges() returnsDW DLV_COK and setsr et ur ned_ar ange_count

to the count of the number of address ranges in theigdabanges section (for all compilation unit).
sets* ar anges to point to a block obwar f _Ar ange descriptors, one for each address range. It returns
DW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if there is no .debug_aranges section.

rev 2.27, May 01, 2015 -81-



-82-

Dwar f _Si gned cnt;
Dwar f _Arange *arang;
int res;

res = dwarf_get_aranges(dbg, &arang, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use arang[i] */
dwar f _deal | oc(dbg, arang[i], DWDLA ARANGE);

}
dwar f _deal | oc(dbg, arang, DWDLA LI ST);

5.20.2 dwarf_get_arange()

int dwarf_get arange(
Dwar f _Arange *aranges,
Dwar f _Unsi gned ar ange_count,
Dwar f _Addr address,
Dwar f _Arange *returned_arange,
Dwarf _Error *error);

The functiondwar f _get _ar ange() takes as input a pointer to a block fiar f _Ar ange pointers,
and a count of the number of descriptors in the bldtkhen searches for the descriptor thatecs the
given addr ess. Ifitfinds one, it returnBW DLV_OK and setgr et ur ned_ar ange to the descriptor

It returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if there is no .debug_aranges entry
covering that address.

5.20.3 dwarf_get_cu_die offset()

int dwarf_get _cu_die_offset(
Dwar f _Arange ar ange,
Dwarf O f *returned _cu_die_offset,
Dwarf _Error *error);

The functiondwar f _get _cu_di e_of f set () takes aDwar f _Ar ange descriptor as input, and if
successful returnrBW DLV_CK and set$r et ur ned_cu_di e_of f set to the offset in the .deig_info
section of the compilation-unit DIE for the compilation-unit represented by tlea gildress rangelt
returnsDW DLV_ERRCR on error.

5.20.4 dwarf_get_arange cu_header offset()

int dwarf_get arange cu_header offset(
Dwar f _Arange ar ange,
Dwarf O f *returned_cu_header_of fset,
Dwar f _Error *error)

The functiondwar f _get arange_cu_header _of fset () takes aDwarf _Ar ange descriptor as
input, and if successful retur@V DLV_CK and set$r et urned_cu_header _of f set to the ofset
in the .debug_info section of the compilation-unit header for the compilation-unit represented lbgrthe gi

rev 2.27, May 01, 2015 -82-



-83-

address range. It returb¥V DLV _ERRORon error.
This function added Rel.45, June, 2001.

This function is declared as 'optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if ¢hgian of libdwarf linked into an application has this
function.

5.20.5 dwarf_get_arange info()

int dwarf_get arange_i nfo(
Dwar f _Arange ar ange,
Dwar f _Addr *start,
Dwar f _Unsi gned *I engt h,
Dwarf O f *cu_die_ offset,
Dwar f _Error *error)

The functiondwar f _get arange_i nfo() returnsDW DLV_COK and stores the starting value of the
address range in the location pointed tcsbwar t , the length of the address range in the location pointed
to byl engt h, and the offset in the .debug_info section of the compilation-unit DIE for the compilation-
unit represented by the address range. It reDWwiDLV_ ERRORon error.

5.21 General Low Level Operations

This function is low-lgel and intended for use only by programs such as dwarf-dumpers.

5.21.1 dwarf_get_address size&()

int dwarf_get address_si ze(Dwarf _Debug dbg,
Dwarf Hal f *addr_si ze,
Dwar f _Error *error)

The function dwarf get address_si ze() returns DWDLV_OK on success and sets the
*addr _si ze to the size in bytes of an addres$s.case of errgit returnsDW DLV_ERROR and does not
set*addr _si ze.

The address size returned is thverall address size, which can be misleading if different compilation units
have dfferent address sizedMany ABIs hare mly a single address size peteeutable, but dfering
address sizes are becoming more common.

Usedwar f _get di e_address_si ze() instead whener possible.

5.21.2 dwarf_get_die address size()

int dwarf_get die_address_size(Dwnarf_Die die,
Dwarf _Hal f *addr_si ze,
Dwarf _Error *error)

The functiondwar f _get di e_address_si ze() returns DW DLV_OK on success and sets the
*addr _si ze to the size in bytes of an addre¢s.case of errgiit returnsDW DLV_ERROR and does not
set*addr _si ze.

The address size returned is the address size of the compilation unit owrdhg the

rev 2.27, May 01, 2015 -83-



-84 -

This is the preferred way to get address size whebhef _Di e is known.

5.22 Ranges Operations (.debug_ranges)

These functions pride information about the address ranges indicated BYV8AT r anges attribute
(the ranges are recorded in the debug_ranges section) of a DIE. Each call of
dwarf _get ranges_a() ordwarf_get ranges() returns a an array of Dwarf _Ranges structs,
each of which represents a single ranges enftiye struct is defined i i bdwar f . h.

5.22.1 dwarf_get_ranges()

This is the original call and it will erk fine when all compilation units ta the same address_siZ€here
is nodi e argument to this original version of the function. Otheguanents (and deallocation) match the
use ofdwar f _get _ranges_a() (described next).

5.22.2 dwarf_get_ranges a()

int dwarf_get ranges_a(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwarf _Die die,
Dwar f _Ranges **ranges,
Dwarf _Signed * returned_ranges_count,
Dwar f _Unsigned * returned_byte count,
Dwarf Error *error)

The functiondwar f _get ranges_a() returnsDW DLV_CK and set$ r et ur ned_r anges_count
to the count of the number of address ranges in the group of ranges in the .debug_ranges sdstibn at of
of f set (which ends with a pair of zeros of poirgtze). Thisfunction is n&v as of 27 April 2009.

The of f set amgument should be the value o8V AT _r anges attribute of a Debugging Information
Entry.

The di e agument should be the value ofDmar f _Di e pointer of aDwar f _Di e with the attrilute
containing this range setfeét. Becauseach compilation unit has itsva address_size field thisgament
is necessary to to correctly read ranges. (Mxatigables hae the same address_size wrery compilation
unit, ut some ABIs allw multiple address sized in arxeeutable). Ifa NULL pointer is passed in
libdwarf assumes a single address_size is appropriate for all ranges records.

The call setsranges to point to a block oDwar f _Ranges structs, one for each address range.
returns DW DLV_ERROR on error It returnsDW DLV_NO ENTRY if there is no. debug_r anges
section or ifof f set is past the end of thedebug_r anges section.

If the *r et ur ned_byt e_count pointer is passed as non-NULL the number of bytes that the returned
ranges were tan from is returned through the pointer (for example if the returned_ranges_count is 2 and
the pointer-size is 4, then returned_byte count will be 8). I*thet ur ned_byt e_count pointer is
passed as NULL the parameter is ignorddhe *r et ur ned_byt e_count is only of use to certain
dumper applications, most applications will not use it.

rev 2.27, May 01, 2015 -84 -



-85 -

Dwar f _Si gned cnt;
Dwar f _Ranges *ranges;
Dwar f _Unsi gned byt es;
int res;
res = dwarf_get_ranges_a(dbg, of f, di eptr, &r anges, &nt, &ytes, &error);
if (res == DWDLV_OK) {
Dwar f _Si gned i ;
for( i =0; i <cnt; ++i ) {
Dwar f _Ranges *cur = ranges+i;
/* Use cur. */
}

dwar f _ranges_deal | oc(dbg, ranges, cnt);

5.22.3 dwarf_ranges dealloc()

i nt dwarf_ranges_deal | oc(
Dwar f _Debug dbg,
Dwar f _Ranges *ranges,
Dwarf _Signed range_count,
);

The functiondwar f _ranges_deal | oc() takes as input a pointer to a blockdfar f _Ranges array
and the number of structures in the block. It frees all the data in the array of structures.

5.23 Gdb Index operations

These functions get access to the fast lookup tables defined by gdb and gcc and storegtlin thadex
section. Thesection is of sdifcient complexity that a number of function intarés are needed-or
additional information see "https://sounae.org/gdb/onlinedocs/gdb/Index-Section-Format.html#Index-
Section-Format".

5.23.1 dwarf_gdbindex_header ()

int dwarf_gdbindex_header(Dwarf_Debug dbg,
Dwarf_Gdbinde& * gdbindexptr,
Dwarf_Unsigned * version,
Dwarf_Unsigned * cu_list_offset,
Dwarf_Unsigned * types_cu_list_offset,
Dwarf_Unsigned * address_area_offset,
Dwarf_Unsigned * symbol_table offset,
Dwarf_Unsigned * constant_pool_offset,
Dwarf_Unsigned * section_size,
Dwarf_Unsigned * unused_reserved,
const char ** section_name,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_header () takes as input a pointer to a @ _Dehlug structure and
returns fields through various pointers.

If the function returns W/_DLV_NO_ENTRY there is no .gdb_indesection and none of the return-
pointer argument values are set.

If the function returns W/_DLV_ERRORer r or is set to indicate the specific errbut no other return-

rev 2.27, May 01, 2015 -85-



-86 -

pointer arguments are touched.

If successful, the function returnsWD DLV_OK and other values are set. The other values are set as
follows:

The feld *gdbi ndexpt r is set to an opaque pointer to a libdwarf_internal structure used aguameat
to other .gdbindefunctions belar.

The remainingi€lds are set to values that are mostly of interest to a pretty-printer application. See the
detailed layout specification for speacdg. Thevalues returned are recorded in the &fvGdbind& opaque
structure for the other gdbindéunctions documented b&lo

The field *ver si on is set to the version of the gdb ind®ader (2)..

The field *cu_l i st _of f set is set to the offset (in the .gdb_indgection) of the cu-list.

The field *t ypes_cu_Il i st _of f set is set to the offset (in the .gdb_indgction) of the types-list.
The field *addr ess_ar ea_of f set is set to the offset (in the .gdb_indgction) of the address area.
The field *synbol _t abl e_of f set is set to the offset (in the .gdb_indgction) of the symbol table.

The feld *constant _pool _of f set is set to the offset (in the .gdb_indsection) of the constant
pool.

The field *sect i on_si ze is set to the length of the .gdb_imxdgction.
The field *unused_r eserved is set to zero.

The feld *secti on_nane is set to the EIf object file section name (.gdb_ix)ddf a non-ElIf object fle
has such a section the value set might be NULL or might point to an empty string (NUL terminated), so
code to account for NULL or empty.

The field *er r or is not set.

Here we she a use of the set of cu_list functions (using all the functions in one example makes it rather
too long).

rev 2.27, May 01, 2015 - 86 -



-87-

Dwar f _Gdbi ndex gi ndexptr;

Dwar f _Unsi gned version = 0;

Dwar f _Unsigned cu_list_offset = 0;

Dwar f _Unsi gned types_cu_list_offset = 0;

Dwar f _Unsi gned address_area_of f set

Dwar f _Unsi gned synbol _t abl e_of f set ;

Dwar f _Unsi gned const ant_pool _offset = 0;

Dwar f _Unsi gned section_size = 0;

Dwar f _Unsi gned reserved = O;

Dwarf Error error = 0;

const char ** section_nane = O;

int res;

res = dwarf _gdbi ndex_header ( dbg, &gi ndexptr,
&version, &u_list_offset, & ypes_cu_list_offset,
&address_area_of fset, &ynbol _tabl e_of f set,
&const ant _pool _of fset, &section_size,
&r eserved, &ecti on_nane, &error);

if (res == DWDLV_NO ENTRY) {

0;
0

return;

} else if (res == DWDLV_ERROR) {
return;

}

{

/* do sonething with the data */
Dwar f _Unsi gned | ength = O;
Dwar f _Unsi gned typesl ength = 0;
res = dwarf_gdbi ndex_cu_list_array(gindexptr,
&l engt h, &error);
/* Exanpl e actions. */
if (res == DWDLV_OK) {
for(Dwarf_Unsigned i = 0; i I ength; ++i) {
Dwar f _Unsi gned cuof f set 0;
Dwar f _Unsi gned cul ength = 0;
res = dwarf _gdbi ndex_cul i st_entry(gi ndexptr,
i, &uof f set, &cul engt h, &error);
if (res == DWDLV_OK) {
/* Do sonething with cuoffset, culength */
}

N

}
}
res = dwarf _gdbi ndex_types_cu_list_array(gi ndexptr,
&t ypesl engt h, &rror);
if (res == DWDLV_OK) {
for(Dwarf_Unsigned i = 0; i < typeslength; ++i) {
Dwar f _Unsi gned cuof fset = 0;
Dwar f _Unsi gned cul ength = 0;
res = dwarf_gdbi ndex_types_culist_entry(gi ndexptr,
i, &uof f set, &cul engt h, &error);
if (res == DWDLV_OK) {
/* Do sonething with cuoffset, culength */
}

}

}
dwar f _gdbi ndex_free(gi ndexptr);

rev 2.27, May 01, 2015 -87 -



-88 -

5.23.2 dwarf_gdbindex_culist_array()

int dwarf_gdbindex_culist_array(Dwarf_Gdbindgdbindexptr,
Dwarf_Unsigned  1ist_length,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cul i st _array() takes as input valid Dwarf_Gdbindpointer.

While currently only W DLV _OK is returned one should test forWDDLV_NO_ENTRY and
DW_DLV_ERROR and do something sensible if either is returned.

If successful, the function returndAD DLV_OK and returns the number of entries in the culist through
thd i st _| engt h pointer.

5.23.3 dwarf_gdbindex_culist_entry()

int dwarf_gdbindex_culist_entry(Dwarf_Gdbindgdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * cu_offset,
Dwarf_Unsigned * cu_length,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cul i st _entry() takes as input valid Darf_Gdbinde pointer and
an inde into the culist arrayValid indexes ae O through i st _ ength -1.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind and the error is indicated by the vale returned throughrtbe pointer.

On success it returnsVd DLV_OK and returns theu_of f set (the section global offset of the CU in
.debug_info)) andu_I| engt h (the length of the CU in .debug_info) values through the pointers.

5.23.4 dwarf_gdbindex_types culist_array()

int dwarf_gdbindex_types_culist_array(Dwarf_Gdbixdgdbindexptr*/,
Dwarf_Unsigned ¥*types_list_length*/,
Dwarf_Error *[*error*/);

The functiondwar f _gdbi ndex_types_cul i st_array() takes as input valid Darf Gdbindex
pointer.

While currently only W _DLV_OK is returned one should test forWDDLV_NO_ENTRY and
DW_DLV_ERROR and do something sensible if either is returned.

If successful, the function returnsAD DLV_OK and returns the number of entries in the types culist
through théi st _| engt h

5.23.5 dwarf_gdbindex_types culist_entry()

rev 2.27, May 01, 2015 -88 -



-89 -

int dwarf_gdbindex_types_culist_entry(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * cu_offset,
Dwarf_Unsigned * tu_offset,
Dwarf_Unsigned * type_signature,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_types_cul i st _entry() takes as input valid Darf_Gdbindex
pointer and an indeinto the types culist arrayvalid indexes ae 0 throught ypes_list_length -1.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

On success it returnsVD DLV_OK and returns théu_of f set (the section global offset of the CU in
.delug_types)) and u_I engt h (the length of the CU in .debug_typesllues through the pointerst
also returns the type signature (a 64bit value) throutht §hyge _si gnat ur e pointer.

5.23.6 dwarf_gdbindex_addressarea()

int dwarf_gdbindex_addressarea(Dwarf_Gdbinttgdbindexptr*/,
Dwarf_Unsigned ¥*addressarea_list_length*/,
Dwarf_Error *[*error*/);

The functiondwar f _addr essar ea() takes as input valid Darf _Gdbind& pointer and returns the
length of the address area throwglhdr essarea_| i st _| engt h.

If it returns DNV_DLV_NO_ENTRY there is a coding errorif it returns W_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returndAD DLV_OK and returns the number of entries in the address area
through theaddr essarea_| i st _| engt h pointer.

5.23.7 dwarf_gdbindex_addressarea_entry()

int dwarf_gdbindex_addressarea_entry(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * low_adddress,
Dwarf_Unsigned * high_address,
Dwarf_Unsigned * cu_index,
Dwarf_Error *error);

The functiondwar f _addr essarea_entry() takes as input valid Darf_Gdbinde& pointer and an
index into the address area (valid imde ae zero througladdr essarea_|list_length - 1.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returndAD DLV _OK and returns Théow_addr ess hi gh_addr ess and
cu_i ndex through the pointers.

Given an gpen Dwarf_Gdbindeone uses the function as follows:

rev 2.27, May 01, 2015 -89 -



-90 -

Dwarf_Unsigned list_len = 0;
Dwarf_Unsigned i;
int res = dwarf_gdbindex_addressarea(gdbindex,
&list_len,err);
if (res != DW_DLV_OK) {
/* Something wrong, ignore the addressarea */
}
[* Iterate through the address area. */
for(i =0;i<list_len; i++) {
Dwarf_Unsigned lowpc = 0;
Dwarf_Unsigned highpc = 0;
Dwarf_Unsigned cu_index,
res = dwarf_gdbindex_addressarea_entry(gdbindex,i,
&lowpc,&highpc,
&cu_index,
err);
if (res = DW_DLV_OK) {
/* Something wrong, ignore the addressarea */
}
/* We havea valid address area entdo smething
with it. */

5.23.8 dwarf_gdbindex_symboltable array()

int dwarf_gdbindex_symboltable_array(Dwarf_Gdbixddbindexptr,
Dwarf_Unsigned symtab_list_length,
Dwarf_Error *error);

One can look at the symboltable as a-tevel table (with The outer el indexes through symbol names
and the inner leel indexes through all the compilation units that aef that symbol (each symbol having a
different number of compilation units, this is not a simple rectangular table).

The functiondwar f _gdbi ndex_synbol t abl e_array() takes as input alid Dwarf Gdbindex
pointer.

If it returns DNV_DLV_NO_ENTRY there is a coding errorif it returns W_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returnsAD DLV_OK and returns Theynt ab_| i st _| engt h through the
pointer.

Given a walid Dwarf_Gdbinde& pointer, one can access the entire symbol table aswsllifusing return’
here to indicate we are giving up due to a problem while keeping the example code fairly short):

rev 2.27, May 01, 2015 -90 -



-91 -

Dwarf_Unsigned symtab_list_length = 0;
Dwarf_Unsigned i = 0;
int res = dwarf_gdbindex_symboltable_array(gdbindex,
&symtab_list_length,err);
if (res != DW_DLV_OK) {
return;
}
for(i =0;i<symtab_list_length; i++) {
Dwarf_Unsigned symnameoffset = 0;
Dwarf_Unsigned cuvecoffset = 0;
Dwarf_Unsigned ii = 0;
const char *name = 0;
res = dwarf_gdbindex_symboltable_entry(gdbindex,i,
&symnameoffset,&cuvecoffset,
err);
if (res = DW_DLV_OK) {
return;
}
res = dwarf_gdbindex_string_by_offset(gdbindex,
symnameoffset,&name,err);
if(res != DW_DLV_OK) {
return;
}
res = dwarf_gdbindex_cuvector_length(gdbindex,
cuvecoffset,&cuvec_len,err);
if( res = DW_DLV_OK) {
return;
}
for(ii = 0; ii < cuvec_len; ++ii ) {
Dwarf_Unsigned attributes = 0;
Dwarf_Unsigned cu_inde= 0;
Dwarf_Unsigned reservedl = 0;
Dwarf_Unsigned symbol_kind = 0O;
Dwarf_Unsigned is_static = 0;

res = dwarf_gdbindex_cuvector_inner_attributes(
gdbindex,cuvecoffset,ii,
&attributes,err);

if(res != DW_DLV_OK) {
return;

}

[* "attributes’ is a value with various internal
fields so we expand the fields. */

res = dwarf_gdbindex_cuvector_instance_expand_value(gdbindex,
attributes, &cu_index,&reservedl,&symbol_kind, &is_static,
err);

if(res '= DW_DLV_OK) {
return;

}

/* Do something with the attributes. */

rev 2.27, May 01, 2015 -91-



-02 -

5.23.9 dwarf_gdbindex_symboltable entry()

int dwarf_gdbindex_symboltable_entry(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * string_offset,
Dwarf_Unsigned * cu_vector_offset,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_synbol t abl e_entry() takes as input alid Dwarf Gdbindex
pointer and an entry index(valid indealues being zero througtyntab_|i st _| ength -1).

If it returns DNV_DLV_NO_ENTRY there is a coding errorif it returns W_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returns WODLV_OK and returns Thestring_of fset and
cu_vect or _of f set through the pointers. See the examplevabshich uses this function.

5.23.10 dwarf_gdbindex_cuvector_length()

int dwarf_gdbindex_cuvector_length(
Dwarf_Gdbinde gdbindex,
Dwarf_Unsigned cuesctor_offset,
Dwarf_Unsigned * innercount,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cuvect or _I engt h() takes as input valid Darf_Gdbinde& pointer
and an a cu vector offset.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returnd\D DLV_OK and returns thenner _count through the pointerThe
i nner _count is the number of compilation unit vectors for this arrayesturs. Se¢he example abh@
which uses this function.

5.23.11 dwarf_gdbindex_cuvector_inner_attributes()

int dwarf_gdbindex_cuvector_inner_attributes(
Dwarf_Gdbinde gdbindex,
Dwarf_Unsigned cusctor_offset,
Dwarf_Unsigned innerinde
[* The attr_value is a field of bits. For expanded version

use dvarf_gdbindex_cuvector_expand_value() */

Dwarf_Unsigned * attr_value,
Dwarf_Error *error);

The function dwarf _gdbi ndex_cuvector inner_attributes() takes as input alid
Dwarf_Gdbinde pointer and an a cu vector offset andrener _i ndex (validi nner _i ndex values are
zero through nner _count - 1.

If it returns DNV_DLV_NO_ENTRY there is a coding errorf it returns W_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returnd\D DLV_OK and returns That t r _val ue through the pointerThe
attr_val ue is actually composed of w&ral fields, see the next function which expands thiee: See

rev 2.27, May 01, 2015 -92-



-03-

the example ah@ which uses this function.

5.23.12 dwarf_gdbindex_cuvector_instance expand_valug()

int dwarf_gdbindex_cuvector_instance_expand_value(
Dwarf_Gdbinde gdbindex,
Dwarf_Unsigned attr alue,
Dwarf_Unsigned * cu_index,
Dwarf_Unsigned * reservedl,
Dwarf_Unsigned * symbol_kind,
Dwarf_Unsigned * is_static,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cuvect or _i nstance_expand_val ue() takes as input alid
Dwarf_Gdbinde pointer and amt t r _val ue.

If it returns DNV_DLV_NO_ENTRY there is a coding errorf it returns W_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returns DW_DLV_OK and returns the following values through the pointers:
The cu_i ndex field is the inde in the applicable CU list of a compilation unit. For the purpose of

indexing the CU list and the types CU list form a single array sathd ndex can be indicating either
list.

Thesynbol ki nd field is a small integer with the symbol kind( zero is reserved, one is a tyhpe, 2 is a
variable or enum value, etc).

Thereservedl field shouldhave the value zero and is the value of a bit field defined as es$dor
future use.

Thei s_stati c field is zero if the CU inded is gobal and one if the CU inded is datic.

See the example ab®which uses this function.

5.23.13 dwarf_gdbindex_string_by offset()

int dwarf_gdbindex_string_by_offset(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned stringddet,
const char ** string_ptr,
Dwarf_Error * error);

The function dwar f _gdbi ndex_string_by_ of fset() takes as input alid Dwarf _Gdbindex
pointer and &t ri ngof f set If it returns DNV_DLV_NO_ENTRY there is a coding errodf it returns
DW_DLV_ERROR there is an error of some kindnd the error is indicated by the value returned through
theer r or pointer.

If it succeeds, the call returns a pointer to a string from the 'constant pool’ througthrtheg _pt r. The
string pointed to must mer be free()d.

See the example ab®which uses this function.

rev 2.27, May 01, 2015 -93-



-94 -

5.24 Debug Fission (.debug_tu_index, .debug_cu_index) operations

We rame things "xu" as these sectionséhtne same format so we let "x" stand for either sectiimese
functions get access to thedex functions needed to access and print the contents of an object file which is
an aggrgae of .dwo objects. Thesaections are implemented in gcc/gdb and are proposed to be part of
DWARF5 (As of July 2014 W/ARF5 is not inished). Thedea is that much dely information can be
separated 6finto individual .dve Ef objects and then agggaed simply into a single .dwp object so the
executable need not kia the complete debug information in it at runtime yetalimod debugging.

For additional information, see "https://gcc.gnghbwiki/DebugFissionDWP",
"https://gcc.gnu.org/wiki/DealgFission”, and
"http://www.bayarea.net/"cary/dsf/Accelerated%20Access%20Diagram.png” and sometime in 2015, the
DWARFS5 standard.

There are FORM access functions related to Debug Fisstbee dwarf fornmaddr() and
dwar f _get debug_addr i ndex() anddwarf_get debug str_i ndex().

The FORM with the hash value (for a referenceatype unit ) isDW FORM r ef _si g8.

In a compilation unit of Dehug Fission object (or a .dwpafkage Flle)DW AT _dwo_i d the hash is
expected to bW FORM dat a8.

The DWARF5 standard defines the hash as an 8 bweev which we could usBwar f _Unsi gned.
Instead (and mostly for type safety) we define the valua sigicture whose type namelwar f _Si g8.

To look up a name in the hash (toind which CU(s) it exists in). use
dwar f _get debugfission _for_key()fP, defined bel ow

The second group of i nterfaces here begi nni ng with
dwarf _get xu_i ndex_header() are useful iif one wants to print a
.debug_tu_index or .debug cu_ index section.

To access DIE, nmmcro, etc information the support is built into D E,
Macro, etc operations so applications usually won't need to use these
operations at all.

5.24.1 Dwarf_Debug_Fission_Per_CU

rev 2.27, May 01, 2015 -94 -



-05-

#define DW_FISSION_SECT_COUNT 12
struct Dwarf_Dehg_Fission_Per_CU_s {
/* Do not free the string. It contains "cu" or "tu". */
[* If this is not set (ie, not a CU/TU iBWP Package File)
then pcu_type will be NULL. */
const char * pcu_type;
[* pcu_indec is the inde (range 1 to N )
into the tu/cu table of offsets and the table
of sizes.1to N as he zero indeis reserved
for special purposes. Not a value one
actually needs. */
Dwarf_Unsigned pcu_index;
Dwarf_Sig8 pcu_hashi* 8 byte */
/* [0] has offset and size 0.
[1]-[8] are DW_SECT _* indees and the
values are the offset and size
of the respectie £ction contribution
of a single .dw object. When pcu_size[n] is
zero the corresponding section is not present. */
Dwarf_Unsigned pcu_offset[DW_FISSION_SECT_COUNT];
Dwarf_Unsigned pcu_size[DW_FISSION_SECT_COUNT];
Dwarf_Unsigned unused1,
Dwarf_Unsigned unused?;
¥
The structure is used to return data to callers with the data from eitheg .tlebinde or .debug_cu_index
that is applicable to a single compilation unit or type unit.

Callers to the applicable functions (see below) should allocate the structure and zero all the byfé=in it.
structure has aWefields that are presently unused. These are regdor future use since it is impossible
to alter the structure without breaking binary compatibility.

5.24.2 dwarf_die from_hash_signature()

int dwarf_die_from_hash_signature(Dwarf_Debug dbg,
Dwarf_Sig8 * hash_sig,
const char *  sig_type,
Dwarf_Die*  returned_die,
Dwarf_Error*  error);

The functiondwar f _di e_from hash_si gnat ur e() is the most direct way to go from the hash data
from aDW FORM ref _si g8 or aDW AT _dwo_i d (form DW FORM dat a8) to a DIE from a .dwp
package file or a .daobject file ( .dwo access not supported yet).

The caller passes ilbg which should beDbwar f _Debug open/initialized on a .dwp package file (or a
.dwo object file).

The caller also passeslimsh_si g, a pointer to the hash signature for which the caller wishemtbd
DIE.

The caller also passes @i g_t ype which must contain either "tu" (identifying the hash referring to a
type unit) or "cu" (identifying the hash as referring to a compilation unit).

On success the function retud@/ DLV_OK and set$ r et ur ned_di e to be a pointer to a valid DIE for

the compilation unit or type unit. If the type is "tu" the DIE returned is the spégife DIE that the hash
refers to. If the type is "cu" the DIE returned is the compilation unit DIE of the compilation unit referred
to.

rev 2.27, May 01, 2015 -95-



-06 -

When appropriate the caller should free the space of the returned DIE by a call something like
dwarf_dealloc(dbg,die,DW_DLA_DIE);

If there is no DWP &ckage File section or the hash cannot be found the function returns
DW DLV_NO _ENTRY and le@esr et ur ned_di e untouched. Onlydwo objects and .dwp packagiet
have the package file indesections.

If there is an error of some sort the function retiMs DLV _ERROR, learesr et ur ned_di e untouched,
and setg er r or to indicate the precise error encountered.

5.24.3 dwarf_get_debugfission_for_die()

int dwarf_get_debugfission_for_die(Dwarf_Die die,
Dwarf_Debug_Fission_Per_CU * percu_out,
Dwarf_Error * error);

The functiondwar f _get debugfi ssi on_for _di e() returns the delg fission for the compilation
unit the DIE is a part of. AnDIE in the compilation (or type) unit will get the same result.

On a call to this function ensure the pointed-to space is fully initialized.
On success the function retum@/ DLV_OK and fills in the fields of per cu_out for which it has data.

If there is no DWP &ckage File section the function returibsv DLV_NO ENTRY and leaes
*per cu_out untouched. Onlydwp package files lva the package file indesections.

If there is an error of some sort the function retuddg DLV _ERROR, leares * per cu_out untouched,
and setg er r or to indicate the precise error encountered.

5.24.4 dwarf_get_debugfission_for_key()
int dwarf_get_debudfission_forel(Dwarf Debug dbg,

Dwarf_Sig8 * key,

const char * key type,
Dwarf_Debug_Fission_Per_CU * percu_out,
Dwarf_Error * error);

The function dwar f _get _debugfi ssi on_for_key() returns the debug fission data for the
compilation unit in a .dwp package file.

If there is no DWP Package File section the function retubdg¢ DLV _NO ENTRY and leaes
*per cu_out untouched. Onlydwp package files lwva the package file indesections.

If there is an error of some sort the function retuddg DLV_ERROR, leares * per cu_out untouched,
and setg er r or to indicate the precise error encountered.

5.24.5 dwarf_get xu_index_header()

rev 2.27, May 01, 2015 -96 -



-97-

int dwarf_get_xu_index_header(Dwarf_Debug dbg,
const char * section_type, /* "tu" or "cu" */
Dwarf_Xu_Index_Header *  xuhdr,

Dwarf_Unsigned * version_number,
Dwarf_Unsigned * dkets _count /1%,
Dwarf_Unsigned * units_count  /*N*/,
Dwarf_Unsigned * hash_slots_count /* M*/,
const char ** sect_name,

Dwarf_Error * err);

The functiondwar f _get xu_i ndex_header () takes as input a valid Davf_Delug pointer and an
sect i on_t ype vaue, which must one of the strings or cu.

It returns DW_DLV_NO_ENTR if the section requested is not in the object file.

It returns DW_DLV_ERROR there is an error of some kind. and thegor is indicated by thealue
returned through ther r or pointer.

If successful, the function returns DW_DLV_OK and returns the following values through the pointers:
Thexuhdr field is a pointer usable in other operations (see below).

Thever si on_nunber field is a the indeversion numberFor gcc before WARF5 the version number
is 2. For DWARFS5 the version number is 5.

Theof f sets_count field is a the number of columns in the table of sectitsetsf. Sometimelsnown
aslL.

The uni ts_count field is a the number of compilation units or type units in thexindgometimes
known as\.

Thehash_sl ot s_count field is a the number of slots in the hash table. Sometimes kndwn as

Thesect _nane field is the name of the section in the objdet fBecauseion-Elf objects may not use
section names callers must recognize that the sect_name may be set to NULL (zero) or to point to the
empty string and this is not considered an error.

An example of initializing and disposing oDaar f _Xu_| ndex_Header follows.

rev 2.27, May 01, 2015 -97 -



-08 -

intres =0;
Dwarf_Xu_Index_Header xuhdr = 0;
Dwarf_Unsigned version_number = 0;
Dwarf_Unsigned offsets_count = 0; /*L */
Dwarf_Unsigned units_count = 0; /* M */
Dwarf_Unsigned hash_slots_count = 0; /* N */
Dwarf_Error err = 0;
const char * ret_type = 0;
const char * section_name = 0;
const char *type = "cu"; /* For example. Or "tu" */
res = dwarf_get xu_index_header(dbg,

type,

&xuhdr,

&version_number,

&offsets_count,

&units_count,

&hash_slots count,

&section_name,

&err);
if (res == DW_DLV_NO_ENTRY) {

/* No such section. */

return;
}
if (res == DW_DLV_ERROR) {

[* Something wrong. */

return;

}

if (res == DW_DLV_ERROR) {
[* Impossible errar*/
dwarf_xu_header_free(xuhdr);
return;

}

/* Do something with the xuhdr here . */

dwarf_xu_header_free(xuhdr);

5.24.6 dwarf_get xu_index_section_type()

int dwarf_get_xu_index_section_type(
Dwarf_Xu_Index_ Header xuhdr,
const char ** typename,
const char ** sectionname,
Dwarf_Error * error);

The function  dwarf_get xu_section_type() takes as input a alid
Dwar f _Xu_| ndex_Header . It is only useful when one already as an operhdr but one does not
know if this is a type unit or compilation unit indeection.

If it returns DN_DLV_NO_ENTRY something is wrong (should wer happen). If it returns
DW_DLV_ERROR something is wrong and ther or field is set to indicate a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:
typenane is set to the stringt u or cu to indcate the indeis of a type unit or a compilation unit,
respectiely.

rev 2.27, May 01, 2015 -98 -



-99 -

secti onnane is set to name of the object file section. Because non-Elf objects may not use section
names callers must recognize that the sect_name may be set to NULL (zero) or to point to the empty string
and this is not considered an error.

Neither string should be free()d.

5.24.7 dwarf_get xu_header freg()
void dwarf_xu_header_free(Dwarf_Xu_Index_Header xuhdr);

The functiondwar f _get xu_header free() takes as input aalid Dwar f _Xu_| ndex_Header
and frees all the special data allocated for this access @mpee called, anpointers returned by use of the
xuhdr should be considered stale and unusable.

5.24.8 dwarf_get_xu_hash_entry()

int dwarf_get_xu_hash_entry(
Dwarf_Xu_Index_Header xuhdr,
Dwarf_Unsigned inde
Dwarf_Sig8 * hash_value,
Dwarf_Unsigned *  index_to_sections,
Dwarf_Error * error);

The functiondwar f _get _xu_hash_entry() takes as input aalid Dwar f _Xu_I| ndex_Header
and an index of a hash slot entry (valid hash slot iRdevalues are zero (0) through
hash_sl ots_count -1 (M-1)).

If it returns DW_DLV_NO_ENTR something is wrong

If it returns DW_DLV_ERROR something is wrong and ére or field is set to indicate a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:
hash_val ue is set to the 64bit hash of of the symbol name.

i ndex_t o_secti ons is set to the indeinto offset-size tables of this hash entry.

If both hash_val ue and i ndex_to_sections are zero (0) then the hash slot is unused.
i ndex_t o_secti ons is used in calls to the functialwar f _get _xu_secti on_of f set () as the
row_ i ndex.

An example of use follows.

rev 2.27, May 01, 2015 -99-



- 100 -

/* hash_slots_couneturned by
dwarf_get_xu_index_header(), seeabd/
Dwarf_Unsigned h = 0;
for( h = 0; h < hash_slots_count; h++) {
Dwarf_Unsigned hashval = 0;
Dwarf_Unsigned inde= 0;
Dwarf_Unsigned col = 0;
res = dwarf_get_xu_hash_entry(xuhdr,h,
&hashval,&index,&err);
if (res == DW_DLV_ERROR) {
/* Oops. hash_slots_count wrong. */
return;
}else if (res == DW_DLV_NO_ENTRY) {
/* Impossible */
return;
} else if (hashval == 0 && inde==10) {
/* An unused hash slot, we do not print them */
continue;
}
[* Here,hashval and inde(a row index into offsets and lengths)
are valid. */

5.24.9 dwarf_get xu_section_names()

int dwarf_get_xu_section_names(
Dwarf_Xu_Index_ Header xuhdr,
Dwarf_Unsigned column_inde
Dwarf_Unsigned*  number
const char ** name,
Dwarf_Error * err);

The function dwarf _get xu_section_nanmes() takes as input a alid
Dwarf _Xu_| ndex_ Header and acol unm_i ndex of a hash slot entry (valid column_indealues
are zero (0) througbf f set s_count -1 (L-1)).

If it returns DW_DLV_NO_ENTR something is wrong
If it returns DW_DLV_ERROR something is wrong and ¢hie or field is set to indicate a specific error.
If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

nunber is set to a number identifying which section this column applies to. For example, if the value is
DW SECT | NFO (1) the column came frona debug_info.dw section. Seehe table ofDW SECT _
identifiers and asigned numbers ilVBRF5.

nane is set to the applicable spelling of the section identifi@rexampleDW SECT | NFO.

5.24.10 dwarf_get_xu_section_offset()

rev 2.27, May 01, 2015 - 100 -



-101 -

int dwarf_get_xu_section_offset(
Dwarf_Xu_Index_Header xuhdr,
Dwarf_Unsigned re_index,
Dwarf_Unsigned column_inde
Dwarf_Unsigned*  sec_#det,
Dwarf_Unsigned*  sec_size,
Dwarf_Error * error);

The function dwarf_get xu_section_of fset () takes as input a alid
Dwar f _Xu_Il ndex_Header and arow_i ndex (seedwarf _get xu_hash_entry() above) and
a colum_i ndex. Valid rov_index values are one (1) througlni ts_count (N) but one uses
dwarf _get xu_hash_entry() (above) to get rov index. Valid column_indg values are zero (0)
throughof f set s_count -1 (L-1).

If it returns DW_DLV_NO_ENTR something is wrong.
If it returns DW_DLV_ERROR something is wrong and ére or field is set to indicate a specific error.
If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

sec_offset, (base of fset) is st to the base fifet of the initial compilation-unit-header section
taken froma dwo object. The baseffset is the data from a single section of aaahject.

sec_si ze is set to the length of the original section taken from a.dwect. Thisis the length in the
applicable section in the .dwp@ which the base offset applies.

An example of use of dwar f _get xu_section_nanes() and
dwarf _get xu_section_of fset () follows.

/* We wse ’'of'sets_count’ returned by

a dvarf_get_xu_index_header() call.

We wse 'index’ returned by a

dwarf_get xu_hash_entry() call. */

for (col = 0; col < offsets_count; col++) {

Dwarf_Unsigned df= 0;

Dwarf_Unsigned len = 0;

const char * name = 0;

Dwarf_Unsigned num = 0;

res = dwarf_get_xu_section_names(xuhdr,

col,&num,&name,&err);

if (res '= DW_DLV_OK) {
break;

}

res = dwarf_get_xu_section_offset(xuhdr,

index,col,&off,&len,&err);

if (res '= DW_DLV_OK) {
break;

}

/* Here we hae the DW_SECT_ name and number
and the base offset and length of the
section data applicable to the hash
that got us here.

Use the values.*/

rev 2.27, May 01, 2015 -101 -



-102 -

5.25 TAG ATTR etc names as strings

These functions turn aalue into a string. So applications wanting the stringV'OAG_compile_unit"
given the value 0x11 (the value defined for thisd) can do so easily.

The general form is

i nt dwarf_get <sonet hi ng>_nane(
unsi gned val ue,
char **s_out,

)

If the val ue passed in is known, the function retuB\ DLV_OK and places a pointer to the appropriate
string into *s_out . The string is in static storage and applications mugérrfeee the string. If the
val ue is not knavn, DW DLV_NO _ENTRY is returned andis_out is not set.DW DLV_ERRORs never
returned.

Li bdwar f generates these functions at libdwarf build time by reading dwarf.h.
All these follaw this pattern rigidlyso he details of each are not repeated for each function.

The choice of 'unsigned’ for the value type argument (the code value) argument is somewhat, airititrary
could hae teen used.

The library simply assumes the value passed in is applic8blefor example, passing &G value code to
dwar f _get ACCESS nane() is a coding error which libdwarf will process as if iisvan accessibility
code alue. Examplesf bad and good usage are:

const char * out;
int res;
/* The following is wong, do not do it! */
res = dwarf_get ACCESS nane(DW TAG entry_poi nt, &ut);
/* Nothing one does here with 'res’ or ’'out’
i s nmeani ngful. */

/* The follow ng is meaningful.*/
res = dwarf_get TAG nanme(DW TAG entry_poi nt, &ut);
if( res == DWDLV_OK) {
/* Here 'out’ is a pointer one can use which
points to the string "DWTAG entry_point". */
} else {
/* Here 'out’ has not been touched, it is
uninitialized. Do not use it. */

5.25.1 dwarf_get ACCESS name()

Returns an accessibility code name througtstheut pointer.

rev 2.27, May 01, 2015 -102 -



- 103 -

5.25.2 dwarf_get AT _name()

Returns an attribute code name throughstheut pointer.
5.25.3 dwarf_get ATE_name()

Returns a base type encoding name through tloeit pointer.

5.25.4 dwarf_get ADDR_name()

Returns an address type encoding name throughstheut pointer As of this writing only
DW ADDR_none is defined indwar f . h.

5.25.5 dwarf_get_ ATCF_name()

Returns a SUN code flag encoding natheough thes_out pointer This code flag is entirely a\MARF
extension.

5.25.6 dwarf_get CHILDREN_name()

Returns a child determination name (which is seen in the abbreviations section data) threugiuthe
pointer The only value this recognizes for a 'yes’ value isAk. a flag value this is not quite correctyan
non-zero value means yesjtlgealing with this is left up to client code (normally compilers really do emit
a\alue of 1 for a flag).

5.25.7 dwarf_get_children_name()

Returns a child determination name throughgheut pointer though this ersion is really a libderf
artifact. Thestandard function isdwar f _get _CHI LDREN _nane() which appears just ake As a
flag value this is not quite correct ganon-zero alue means yes) but dealing with this is left up to client
code (normally compilers really do emit a value of 1 for a flag).

5.25.8 dwarf_get CC_name()

Returns aalling covention case code name through sheout pointer.
5.25.9 dwarf_get CFA_name()

Returns aall frame information instruction name through sheut pointer.
5.25.10 dwarf_get DS name()

Returns a decimal sign code name througtstheut pointer.

5.25.11 dwarf_get_DSC_name()

Returns aliscriminant descriptor code name throughsheut pointer.
5.25.12 dwarf _get EH_name()

Returns aGNU exception header code name througlstheut pointer.
5.25.13 dwarf_get END_name()

Returns an endian code name throughstheut pointer.

5.25.14 dwarf _get FORM _name()

Returns an form code name throughsheut pointer.

5.25.15 dwarf_get FRAME_name()

Returns a frame code name through sh@ut pointer These are dependent on the particular ABI, so
unless thedwar f . h used to generate libdwarf matches your ABI these names arelyrtiik be ‘ery

rev 2.27, May 01, 2015 - 103 -



-104 -

useful and certainly wohbe entirely appropriate.

5.25.16 dwarf _get ID_name()

Returns andentifier case code name through sheout pointer.

5.25.17 dwarf_get INL_name()

Returns annline code name through tise out pointer.

5.25.18 dwarf _get LANG_name()

Returns danguage code name through theout pointer.

5.25.19 dwarf_get LNE_name()

Returns dine table extended opcode code name through tlo@it pointer.
5.25.20 dwarf _get LNS name()

Returns dine table standard opcode code name through tloeit pointer.
5.25.21 dwarf_get MACINFO_name()

Returns anacro information macinfo code name throughsheut pointer.
5.25.22 dwarf_get OP_name()

Returns &DWARF expression operation code name througlstheut pointer.
5.25.23 dwarf_get ORD_name()

Returns ararray ordering code name through sheout pointer.

5.25.24 dwarf _get TAG_name()

Returns a&AG name through the_out pointer.

5.25.25 dwarf_get VIRTUALITY_name()

Returns avirtuality code name through tise out pointer.

5.25.26 dwarf _get VIS name()

Returns a visibility code name through theout pointer.

5.26 Section Operations

In checking DVARF in linkonce sections for correctness it has been found usefuveoddrdain section-
oriented operations when processing objéesf Normallythese operations are not needed or useful in a

fully-linked executable or shared library.

While the code is written with EIf sections in mind, it is quite possible to process non-EIf objects with code
that implements certain function pointers (seeuct Dwarf_Obj Access_i nterface_s).

So far no one with such non-elf code has come forward to open-source it.

5.26.1 dwarf_get_section_count()

rev 2.27, May 01, 2015 -104 -



- 105 -

int dwarf_get_section_count (
Dwar f _Debug dbg)

Returns a count of the number of object sections found.

5.26.2 dwarf_get_section_info_by name()

int dwarf_get section_info_by namg(
const char *section_nane,
Dwar f _Addr *secti on_addr,
Dwar f _Unsi gned *section_size,
Dwar f _Error *error)

The functiondwar f _get _secti on_i nfo_by name() returnsDW DLV_CK if the section gien by
section_nane was ®en by libdvarf. Onsuccess it set§secti on_addr to the virtual address
assigned to the section by the linker or compiler*aseict i on_si ze to the size of the object section.

It returns DW_DLV_ERROR on error.

5.26.3 dwarf_get_section_info_by_index()

int dwarf_get _section_info_by index(
i nt section_index,
const char **section_nane,
Dwarf _Addr *section_addr,
Dwar f _Unsi gned *section_size,
Dwarf _Error *error)

The functiondwar f _get secti on_i nfo_by_i ndex() returnsDW DLV_OK if the section gien by
secti on_i ndex was ®en by libdvarf. *sect i on_addr to the virtual address assigned to the section
by the linker or compiler antisect i on_si ze to the size of the object section.

No free or deallocate of information returned should be done by callers.

5.27 Utility Operations

These functions aid in the management of errors encountered when using functiorgdwtré library
and releasing memory allocated as a resultldfdsvarf operation.

For clients that wish to encode LEB numberotimterfaces are provided to the producer cedefernal
LEB function.

5.27.1 dwarf_errno()

Dwar f _Unsi gned dwarf _errno(
Dwarf _Error error)

The functiondwar f _errno() returns the error number corresponding to the error specified bgr .

5.27.2 dwarf_errmsg()

rev 2.27, May 01, 2015 - 105 -



- 106 -

const char* dwarf_errmsg(
Dwarf _Error error)

The functiondwar f _errmsg() returns a pointer to a null-terminated error message string corresponding
to the error specified bgr r or . The string should not be deallocated usimgr f _deal | oc() .

The string should be considered to be a temporary string. That is, the returned pointer may become stale if
you do libdwarf calls on theDwarf_Debug instance other thandwarf _errnmsg() or
dwarf_errno(). So copy the errmsg string ( or print it)ub do not depend on the pointer remaining

valid past other libdwarf calls to tHanar f _Debug instance that detected an error

5.27.3 dwarf_get_harmless error_list()

int dwarf_get harmess _error_I|ist(Dwarf_Debug dbg,
unsi gned count,
const char ** errnsg_ptrs_array,
unsi gned * newerr_count);

The harmless errors are not denoted by error returns from the other libdwarf functions. Instead, this
function returns strings of grharmless errors that @ been seen in the current object. Clientgen@eed
call this, but if a client wishes to reportyasuch errors it may call.

Only a fxed number of harmless errors are recorded. It is a circular list, so if more than the current
maximum is encountered older harmless error messages are lost.

The caller passes in a pointer to an array of pointer-to-char agtheeter rnsg_ptrs_array. The
caller must provide this arrajibdwarf does not provide it.The caller need not initialize the array
elements.

The caller passes in the number of elements of the array of pointer-to-chaotimtu. Since the

If there are no unreported harmless errors the function remMWABLY_NO ENTRY and the function
arguments are ignored. Otherwise the function retbdDLV_OK and uses the arguments.

I i bdwar f assigns error strings to the errmsg_ptrs_arfidye MININUM(count-1, number of messages
recorded) pointers are assigned to the arfidhe array is terminated with a NULL pointgfThat is, one
array entry is reserved for a NULL pointer). Sedunt is 5 up to 4 strings may be returned through the
array and one array entry is set to NULL.

Because the list is circular and messages mag been dropped the function also returns the actual error
count of harmless errors encountered throngher r _count (unless the argument is NULL, in which
case it is ignored).

Each call to this function resets the circular erroffds and the error count. So think of this call as
reporting harmless errors since the last call to it.

The pointers returned through r nsg_pt rs_array are only valid till the next call to libdavf. Donot
save the pointers, thebecome inalid. Copy the strings if you wish to sa them.

Calling this function neither allocatesyegpace in memory nor freesyagpace in memory.

rev 2.27, May 01, 2015 - 106 -



- 107 -

5.27.4 dwarf_insert_harmless error()

void dwarf_insert_harmless_error(Dwarf_Debug dbg,
char * newerror);

This function is used to testwarf get harm ess_error _|i st. It simply adds a harmless error
string. Thereis little reason client code should use this function. xiste so that the harmless error
functions can be easily tested for correctness and leaks.

5.27.5 dwarf_set_harmless error_list_size()

unsi gned dwarf_set _harm ess_error_Ilist_size(Dwarf_Debug dbg,
unsi gned maxcount)

dwarf _set _harm ess_error_I|ist_si ze returns the number of harmless error strings the library
is currently set to holdlf maxcount is non-zero the library changes the maximum it will record to be
maxcount .

It is extremely unwise to makmaxcount large becauséi bdwar f allocates space faraxcount
strings immediately.

The set of errors enumerated in Figure 3 Wwelere defined in Dwarf 1. These errors are not used by the
I i bdwar f implementation for Dwarf 2 or later.

SYMBOLIC NAME DESCRIPTION
DW_DLE_NE Noerror (0)
DW_DLE_VMM Version of DNVARF information newer
than libdwarf
DW_DLE_MAP Memorymap failure
DW_DLE_LEE Propagtion of libelf error
DW_DLE_NDS Nodebug section
DW_DLE_NLS Noline section
DW_DLE_ID Requestethformation not associated
with descriptor
DW_DLE_IOF I/Ofailure
DW_DLE_MAF Memoryallocation failure
DW_DLE_IA Invalid argument
DW_DLE_MDE Mangleddebugging entry
DW_DLE_MLE Mangledine number entry
DW_DLE_FNO Filedescriptor does not refer
to an open file
DW_DLE_FNR Fileis not a regular file
DW_DLE_FWA File is opened with wrong access
DW_DLE_NOB Fileis not an object file
DW_DLE_MOF Mangledbbiject file header
DW_DLE_EOLL Endof location list entries
DW_DLE_NOLL Nolocation list section
DW_DLE_BADOFF Invalid offset
DW_DLE_EOS Enaf section
DW_DLE_ATRUNC Abbreviations section appears
truncated
DW_DLE_BADBITC  Addresssize passed to
dwarf bad

Figure 6. Dwarf Error Codes

rev 2.27, May 01, 2015 - 107 -



- 108 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_DBG_ALLOC
DW_DLE_FS®T_ERFOR
DW_DLE_FS®T_MODE_ERFOR
DW_DLE_INIT_ACCESS_WRNG
DW_DLE_ELF_BEGIN_ERRR
DW_DLE_ELF_GETEHDR_ERRR
DW_DLE_ELF_GETSHDR_ERBR
DW_DLE_ELF_STRPTR_ERBR
DW_DLE_DEBUG_INFO_DUPLICAE
DW_DLE_DEBUG_INFO_NULL
DW_DLE_DEBUG_ABBREV_DUPLICAE

DW_DLE_DEBUG_ABBREV_NULL
DW_DLE_DEBUG_ARANGES_DUPLICAE

DW_DLE_DEBUG_ARANGES_NULL
DW_DLE_DEBUG_LINE_DUPLICAE
DW_DLE_DEBUG_LINE_NULL
DW_DLE_DEBUG_LOC_DUPLICAE
DW_DLE_DEBUG_LOC_NULL
DW_DLE_DEBUG_MACINFO_DUPLICAE

DW_DLE_DEBUG_MACINFO_NULL
DW_DLE_DEBUG_PUBNAMES_DUPLICAE

DW_DLE_DEBUG_PUBMMES_NULL

DW_DLE_DEBUG_STR_DUPLICAE
DW_DLE_DEBUG_STR_NULL
DW_DLE_CU_LENGTH_ERRR
DW_DLE_VERSION_STAMP_ERRR
DW_DLE_ABBREV_OFFSET_ERBR
DW_DLE_ADDRESS_SIZE_ERBR
DW_DLE_DEBUG_INFO_PTR_NULL

DW_DLE_DIE_NULL
DW_DLE_STRING_OFFSET_AD
DW_DLE_DEBUG_LINE_LENGTH_B\D
DW_DLE_LINE_PROLOG_LENGTH_BD
DW_DLE_LINE_NUM_OPERANDS_BD

DW_DLE_LINE_SET_ADDR_ERRR

Couldnot allocate Dwarf_Debug stru
Errorin fstat()-ing object
Errorin mode of object file
Incorrectaccess to dwarf_init()
Errorin elf_begin() on object
Errorin elf_getehdr() on object
Errorin elf_getshdr() on object
Errorin elf_strptr() on object
Multiple .debug_info sections
Nodata in .debug_info section
Multiple .debug_abbrev

sections

Nodata in .debug_abbreection
Multiple .debug_arange

sections

Nodata in .debug_arange section
Multiple .debug_line sections
Nodata in .debug_line section
Multiple .debug_loc sections
Nodata in .debug_loc section
Multiple .debug_macinfo

sections

Nodata in .debug_macinfo section
Multiple .debug_pubnames

sections

Nodata in .debug_pubnames

section

Multiple .debug_str sections
Nodata in .debug_str section
Lengthof compilation-unit bad
IncorrectVersion Stamp

Ofset in .debug_abbvebad
Sizeof addresses in target bad
Pointeinto .debug_info in

DIE null

Null Dwarf_Die

Offset in .debug_str bad

Lengthof .debug_line

segment bad

Lengthof .debug_line

prolog bad

Numberof operands to line

instr bad

Errorin DW_LNE_set_address
instruction

9

rev 2.27, May 01, 2015

Figure 7. Dwarf 2 Error Codes (continued below)

- 108 -

The set of errors returned by bdwar f functions is listed bels. Some of the errors are SGI specific.

—



- 109 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_LINE_EXT_OPCODE_BD

DW_DLE_DWARF_LINE_NULL
DW_DLE_INCL_DIR_NUM_BAD

DW_DLE_LINE_FILE_NUM_BAD
DW_DLE_ALLOC_FAIL
DW_DLE_DBG_NULL
DW_DLE_DEBUG_FRAME_LENGTH_BD
DW_DLE_FRAME_VERSION_BD
DW_DLE_CIE_RET_ADDR_REG_ERBR

DW_DLE_FDE_NULL
DW_DLE_FDE_DBG_NULL
DW_DLE_CIE_NULL
DW_DLE_CIE_DBG_NULL
DW_DLE_FRAME_TABLE_COL_B\D

DW_DLE_PC_NO_IN_FDE_RANGE
DW_DLE_CIE_INSTR_EXEC_ERBR
DW_DLE_FRAME_INSTR_EXEC_ERBR
DW_DLE_FDE_PTR_NULL
DW_DLE_RET_OP_LIST_NULL
DW_DLE_LINE_CONTEXT_NULL
DW_DLE_DBG_NO_CU_CONTEXT
DW_DLE_DIE_NO_CU_CONTEXT
DW_DLE_FIRST_DIE_NT_CU
DW_DLE_NEXT_DIE_PTR_NULL
DW_DLE_DEBUG_FRAME_DUPLICAE
DW_DLE_DEBUG_FRAME_NULL
DW_DLE_ABBREV_DECODE_ERRR
DW_DLE_DWARF_ABBREV_NULL
DW_DLE_ATTR_NULL
DW_DLE_DIE_BAD
DW_DLE_DIE_ABBREV_BAD
DW_DLE_ATTR_FORM_B\D
DW_DLE_ATTR_NO_CU_CONTEXT
DW_DLE_ATTR_FORM_SIZE_BD
DW_DLE_ATTR_DBG_NULL
DW_DLE_BAD_REF_FORM
DW_DLE_ATTR_FORM_OFFSET_BD
DW_DLE_LINE_OFFSET_BD
DW_DLE_DEBUG_STR_OFFSET 4D
DW_DLE_STRING_PTR_NULL
DW_DLE_PUBNAMES_VERSION_ERBR
DW_DLE_PUBNAMES_LENGTH_BD
DW_DLE_GLOBAL_NULL
DW_DLE_GLOBAL_CONTEXT_NULL
DW_DLE_DIR_INDEX_BAD

Errorin DW_EXTENDED_OPCODE
instruction
Null Dwarf_line argument
Errorin included directory for
given line
File number in .debug_line bad
Failed to allocate required structs
Null Dwarf_Debug argument
Errorin length of frame
Bad version stamp for frame
Badregister specified for
return address
NullDwarf_Fde argument
NoDwarf_Debug associated with FDE
Null Dwarf_Cie argument
NoDwarf_Debug associated with CIE
Bad column in frame table
specified
PQequested not in address range of FDE
Errorin executing instructions in CIE
Errorin executing instructions in FDE
NullPointer to Dwarf_Fde specified
Ndocation to store pointer to Dwarf_Frame_C
Dwarf_Line has no context
dbfas no CU context for dwarf_siblingof()
Dwrf _Die has no CU context
FirstDIE in CU not DW_TRG_compilation_unit
Erroin moving to next DIE in .debug_info
Multiple .debug_frame sections
Nodata in .debug_frame section
Errorin decoding abbreviation
Null Dwarf_Abbres specified
Null Dwarf_Attribute specified
DIE bad
No abbreviation found for code in DIE
Inappropriateattribute form for attribute
NdCU context for Dwarf_Attribute struct
Sizeof block in attribute value bad
NoDwarf_Debug for Dwarf_Attribute struct
Inappropriatorm for reference attribute
Offset reference attribute outside current CU
Offset of lines for current CU outside .debug_|
Offset into .debug_str past its end
Pointeto pointer into .debug_str NULL
\ersion stamp of pubnames incorrect
Readpubnames past end of .debug_pubname
Null Dwarf_Global specified
No context for Dwarf_Global gen
Errorin directory inde read

Figure 8. Dwarf 2 Error Codes (continued below)

rev 2.27, May 01, 2015

- 109 -



-110 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_LOC_EXPR_B\D
DW_DLE_DIE_LOC_EXPR_BD

DW_DLE_OFFSET_BD

DW_DLE_MAKE_CU_CONTEXT_RIL
DW_DLE_ARANGE_OFFSET_BD

DW_DLE_SEGMENT_SIZE_BD
DW_DLE_ARANGE_LENGTH_B\D
DW_DLE_ARANGE_DECODE_ERRR

DW_DLE_ARANGES_NULL
DW_DLE_ARANGE_NULL
DW_DLE_NO_FILE_NAME
DW_DLE_NO_COMP_DIR

DW_DLE_CU_ADDRESS_SIZE_BD

DW_DLE_ELF_GETIDENT_ERRR
DW_DLE_NO_AT_MIPS_FDE

DW_DLE_NO_CIE_FOR_FDE
DW_DLE_DIE_ABBREV_LIST_NULL

DW_DLE_DEBUG_FUNCNAMES_DUPLICAE
DW_DLE_DEBUG_FUNCMMES_NULL
DW_DLE_DEBUG_FUNCNAMES_VERSION_ERBR

DW_DLE_DEBUG_FUNCNAMES_LENGTH_BD

DW_DLE_FUNC_NULL
DW_DLE_FUNC_CONTEXT_NULL
DW_DLE_DEBUG_TYPENAMES_DUPLICAE
DW_DLE_DEBUG_TYPEMMES_NULL
DW_DLE_DEBUG_TYPENAMES_VERSION_ERBR

DW_DLE_DEBUG_TYPENAMES_LENGTH_BD

DW_DLE_TYPE_NULL
DW_DLE_TYPE_CONTEXT_NULL
DW_DLE_DEBUG_VARNAMES_DUPLICAE
DW_DLE_DEBUG_VARNAMES_NULL
DW_DLE_DEBUG_VARNAMES_VERSION_ERBR

DW_DLE_DEBUG_VARNAMES_LENGTH_RD

Badoperator read for location expressig
Expectedblock value for attribute
not found
Offset for next compilation-unit in
.debug_info bad
Could not male CU mntext
Offset into .debug_info in
.debug_aranges bad
Segment size will be 0 for MIPS
processorsand shouldralys be < 8.
Lengthof arange section in
.debug_arange bad
Arangeslo not end at end
of .debug_aranges
NULL pointer to Dwarf_Arange specifie
NULL Dwarf_Arange specified
No file name for Dwarf_Line struct
NdaCompilation directory for
compilation-unit
CU header address size not
match EIf class
Errorin elf_getident() on object
DIEdoes not hee
DW_AT_MIPS_fde attribute
NEIE specified for FDE
Noabbreviation for the code
in DIE found
Multiple .debug_funcnames sections
Nodata in .debug_funcnames section
\ersion stamp in
.debug_funcnames bad
Lengtherror in reading
.debug_funcnames
NULL Dwarf_Func specified
Nacontext for Dwarf_Func struct
Multiple .debug_typenames sections
Nodata in .debug_typenames section
\ersion stamp in
.debug_typenames bad
Lengtherror in reading
.debug_typenames
NULL Dwarf_Type specified
Nacontext for Dwarf_Type gien
Multiple .debug_varnames sections
No data in .debug_varnames section
\ersion stamp in
.debug_varnames bad
Lengtherror in reading
.debug_varnames

Figure 9. Dwarf 2 Error Codes (continued below)

rev 2.27, May 01, 2015 -110 -

n



-111 -

SYMBOLIC NAME DESCRIPTION
DW_DLE_VAR_NULL NULL Dwarf_Var specified
DW_DLE_VAR_CONTEXT_NULL Nocontext for Dwarf_Var gien
DW_DLE_DEBUG_WEAKNAMES DUPLICAE Multiple .debug_weaknames sectipn
DW_DLE_DEBUG_WEAKNAMES NULL Nodata in .debug_varnames sectipn

DW_DLE_DEBUG_WEAKNAMES_VERSION_ERBR  \krsion stamp in
.debug_varnames bad

DW_DLE_DEBUG_WEAKNAMES LENGTH_BD Lengtherror in reading
.debug_weaknames

DW_DLE_WEAK_NULL NULL Dwarf_Weak specified

DW_DLE_WEAK_CONTEXT_NULL Nocontext for Dwarf_Weak géen

Figure 10. Dwarf 2 Error Codes

This list of errors is not complete; additional errorsehbeen added. Some of the &boarors may be
unused. Errorsnay not hae the same meaning in different releases. Since most error codes are returned
from only one place (or a very small number of places) in the source it is normally very useful to simply
search thé i bdwar f source to find out where a particular error code is generated.

5.27.6 dwarf_seterrhand()

Dwar f _Handl er dwarf _set errhand(
Dwar f _Debug dbg,
Dwar f _Handl er errhand)

The functiondwar f _set er r hand() replaces the error handler (sbsar f _i ni t () ) with er r hand.
The old error handler is returned. This function is currently unimplemented.

5.27.7 dwarf_seterrarg()

Dwarf Ptr dwarf_seterrarg(
Dwar f _Debug dbg,
Dwarf _Ptr errarg)

The functiondwar f _set errar g() replaces the pointer to the error handler communication area (see
dwarf _init()) with errarg. A pointer to the old area is returned. This function is currently
unimplemented.

5.27.8 dwarf_dealloc()

voi d dwarf _deal | oc(
Dwar f _Debug dbg,
voi d* space,
Dwar f _Unsi gned type)

The functiondwar f _deal | oc frees the dynamic storage pointed tosipace, and allocated to the gén
Dwar f _Debug. The agumentt ype is an integer code that spee#f the allocation type of thegien
pointed to by thespace. Refer to section 4 for details dibdwarf memory management.

5.27.9 dwarf_encode |eb128()

rev 2.27, May 01, 2015 -111 -



-112 -

int dwarf_encode_leb128(Dwarf_Unsigned val,

int * nbytes,

char * space,

int splen);
The functiondwar f _encode_| eb128 encodes thealueval in the callerprovided huffer thatspace
points to. The caller-provided buffer must be at lsgdten bytes long.

The function return®W DLV_XK if the encoding succeedsf spl en is too small to encode thalue,
DwW DLV_ERRCORwill be returned.

If the call succeeds, the number of bytespéce that are used in the encoding are returned through the
pointernbyt es

5.27.10 dwarf_encode signed_|eb128()

int dwarf_encode_signed_leb128(Dwarf_Signed val,
int * nbytes,
char * space,
int splen);

The functiondwar f _encode_si gned_I| eb128 is the same adwar f _encode_| eb128 except that
the argumentval is signed.

rev 2.27, May 01, 2015 -112 -



-113 -

rev 2.27, May 01, 2015 -113 -



CONTENTS

1. INTRODUCTION  iiiiiiiei e ettt e e e e e e st e e e e e e e ettt e e e e e e e aanssaseeaeeaeeaaassnssaeaaaeeeesansssnees 1
S R ©7o] )/ ([0 | 1| AP P PP PPPPPPRPPPPP 1
1.2 PUIMPOSE ANA SCOPE.....euiiiiiiieeiiiiiitte et e e e ettt e e e e st et e e e e s e s e e e e e e s s snbbrneeeeaeeeans 1
S I I o Tod [ 4 1=T o[ B o 11 (o Y PP PP 1
R I = 1 0 T1 (o] o PP OTPUPPPRPRR 2
T O 1Y = V= PP 2
1.6 IEMS CRANGEA ...ttt e et e e e e e e e e e e e s e reeeeeaaans 3
1.7 HemMS REMMEA oo 4
1.8 REVISION HISTOIY oottt e e e e e e e e e s et r e e e e e e e nns 4

B Y o LTS B L= i1 T (o] g < TP 4
2.1 General DESCHPLION .......ccoo i —— 4
A o= 1= | Y/ o 1= TR 5
ARG I e To [ 12 = (I 1Y/ 12U TUUUPPPPTPRRTT 5

P2 T80 R I Tor= 4T ] o TN =T o o o [ 6
2.3.2  LOCALiON DESCIIPLION ....uviiiiiieeiiiiiiiiiiee e e e ettt e e e s e e e e e e e e e e e e e aae 6
2.3.3  DAt@ BIOCK ..o 7
2.3.4 Frame Operation COdeSMBRF 2 ....oviiiiieiiiiieeeeeeeeeeeeeeeeeeeeee e 7
2.3.5 Frame RegtableMIARF 2 ... 8
2.3.6 Frame Operation CodeSMBRF 3 (and WVARF2) ........ovvviiiiviviiiiiiiiieiieenee. 9
2.3.7 Frame RegtableMARF 3 . 9
2.3.8 Macro Details RECOId..........covviiiiiiiiiiii 11
A O o TV U Y/ o1 S PP 11

B (0T o = T To | T o R 14
3.1 Returned values in the functional interface............cccc 15
. MeMOry MaNAGEIMENT ...ttt e e e e e e et it r e e e e e e e e eebbana e e eeeas 15
4.1 Read-0Only PrOPertieS........c.uuiiiiiieeiiiiittee ettt e e e e e e 16
4.2 Storage DealloCaAtiON ........c..uiiiiiiiieiiiie e 16
. FUNCHONAI INTEITACE ...t e e et e e e e e e e e e 17
5.1 Initialization OPEIatiONS ........cuuveiiiiieeeiiiiiiiiiee e e e e e e e e e s e e e e e e s s ssbrareeeeeeesannnes 17

o0t 00 Ao 1117 U 11 S 17
5.1.2  dwarf_elf_init() ..ooooorrrriii 18
5.1.3  dwarf_get_eIf() ...ccceeeeiieieeii e 18
5.1.4  dwarf_fiNISN() ..eeeeeiieeiiiiii e 19
5.1.5 dwarf_set _stringCheCk().........cooieiiiiiiiiii e 19
5.1.6 dwarf_set _reloc_application()..........ccoevveeiiiiiiiii . 19
5.1.7 dwarf_record_cmdline_optioNS()........cccererriiiiiiieeeirceeiiee e e 20
5.2 SECLION SIZE OPEIALIONS.......uuieiiiieeiiiiiiei et e e e e e e e r e e e e e e s e e e e e e enneees 20
5.2.1 dwarf_get_section_max_offSets_D().........uuuurrurrmmmiimiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeee 20
5.2.2 dwarf_get_section_max_OffSELS()........uuereeerriririiiiiiieeeiiriiiiieee e 20
5.3 Printf CallDACKS .......oeeiiiiiiiii e 21
5.3.1 dwarf_register_printf_callback.................c.oee i, 21
5.3.2 Dwarf _Printf_Callback InfO_S .....cccccooiiiiiiiiici e, 21



5.4

5.5

5.6

5.3.3 dwarf_printf_callback_function_type........ccccooumiiiiiiiiiiiiiie e 22
5.3.4 Example of printf callback use in a C++ application using libdwatf........ 22
Debugging Information Entry Deliry Operations ...........cccccevvveiiiiiiii, 22
5.4.1 dwarf _get_die_sSection_Name()......ccceiiieeeriiieiiiiiiei e e e e 22
5.4.2 dwarf_next_ cu_header_C()......cccooouummummmiiimiiiiiiiiiiiiiiiieeieeeieeeeeeeeeeeeeeeeeeeeeeeeees 23
5.4.3 dwarf_next_ cu_header _C()......ccccouurmmuummiiiniiiiiiiiieiieeiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeees 24
5.4.4 dwarf_next_cu_header_D().....cccccoiuiimiiiieiii e 24
5.4.5 dwarf_next_ cu_header()........cccoceiiiiiiii i 25
5.4.6 dwarf _siblingof b() ... ——— 25
5.4.7 dwarf_sibliNgOf() ...ocovviiiiiiii i 26
5.4.8 dwarf_Child() .oooooeeiiiiieie e 26
5.4.9 dwarf_Offdie_D() .ooooiiiiiiiiiiiie e 27
5.4.10 dWAIT_OffAIE() ..vvveeeeeeiiiiiiiiiiii e 27
5.4.11 dwarf _validate_die_sSibling()...........ooooiieiiiiiii e 27
Debugging Information Entry Query OperationS...............uveveeeeeereeereeereeereeereeereeeee. 28
5.5.1 dwarf _get_die_infotypes _flag()....cccccoeeiiiiriiiiiiiiiiiii e, 28
5.5.2  dWarf_tag() -oooeeeeeeeeeeeiee e 28
5.5.3  dwarf_di€OMSEL() ....vvvrrriiieiiiiiiiiiii e 29
554 dwarf_die_CU_OMSEL() ...uerreeiiiiiiiiiiiiiieee e 29
5.5.5 dwarf _die_OffSELS() ..uuririiiiiiiiiiiiiiiieeeeeeee 29
5.5.6 dwarf ptr_ CU _OffSEL() ...uvvvrrriiiiiiiiiiiiiiiiiiiiiiieeieiieeeeee e eee e s eee e e e e e e e e e eeaeees 29
5.5.7 dwarf_CU_dieoffset @Bn_die() .....oooovrirriiiiiiiii e e 30
5.5.8 dwarf_die_CU_offset_range().......cccoeerrreiiieiii 30
5.5.9  dwarf_diename() ....cooiieiiiiiiii e 31
5.5.10 dwarf_die_abbrev_code()........ccouriiiiiiiiiiiiie e 31
5.5.11 dwarf_die_abbrev_children_flag(}.......ccccceeeerir 31
5.5.12 dwarf_get version_of die().....ccccceriiiiii 31
5.5.13 dwarf_attrliSt() .....ccooviiiiiiiiii i 31
5.5.14 dWAIT_NASALI() ..eererreeiiiiiiiiiiiiiiiiee ettt a e e e e e e e e e e e e e e e 32
5.5.15 AWAIT_ALII() oooooeeeeeieeeeee it 32
5.5.16 AWAIT_TOWPC() -ervvreieeeeiiiiiiiiiiiee ettt e e e e e e e e e eaeeeeas 33
5.5.17 dwarf_highpc B() ..o 33
5.5.18 dwarf_highpC() ..oooovviviiii 33
5.5.19 dwarf DYIESIZE() ..oevveeeiiiiei i 34
5.5.20 dWAIT_DItSIZE() .evvrrerreerieiiiiiiiiiiiiei ettt 34
5.5.21 dwarf_DItOfFSEL() ...eeoiioeeiiiiiie e 34
5.5.22 dWAIT_SICIANG() +.uuvveereeeeeeeiiiiiie et 34
5.5.23 dWarf_arrayOrder() ..........uuuuuuuuummuriuiiiiieeiirseseessrrsrerreeerreerereeerr e 34
ALTIDULE QUETIES ...ttt et e e e e e e et et e e e e e e e e e e e s et e e eeeaeeeeeees 35
5.6.1 dwarf_hasfOrm() ....cooeuuiiiiiii e e 35
5.6.2  dwarf_whatform() ... 35
5.6.3 dwarf_whatform_dir€Ct() .......ceeerriiiiriiiiiee e 35
5.6.4  dwarf_Whatattr() .......cocvvriiiiieeeii e 36
5.6.5 dwarf _formref() ......ooooiiiiiiiii 36
5.6.6 dwarf_global _formref() ... 36
5.6.7 dwarf_cowert to_global _offSet() ....cccccviiiiiiiiiiiiii s 37
5.6.8 dwarf_formaddr() .......oooooiiiiiiii e 37
5.6.9 dwarf_get_debug_Str_indeX()........uureieeeiiiiiiiiiiiiee e 38



5.6.10 dwarf_fOrmflag() ..eeeeeeeeeeoiiiiiiii e 38

5.6.11 dwarf _fOrmudata() ...........eeerrurmmmmmmiiiiiiiniiiseiieeireeeeereeeeeeeeereeereeeererrrrrrrrrreeeeaaees 38
5.6.12 dwarf_fOrmSAAtA() ........uuvrrruiiuiiiiiiiiiiiiiiiiisiiieeressreerreeeeeerereeere e rrrrerrrrrreeeeaeees 39
5.6.13 dwarf _formbIOCK() ...oevveeiiiiiiiiie e 39
5.6.14 dwarf_fOrmMSIHNG() ..eeeeeeeemmiiiiiiiiiiiii e 39
5.6.15 dWarf_fOrMSIG8() ...uvvverereeeiiiiiiiiiiiii e 39
5.6.16 dWarf_fOrMSIGB() ..uvvvreeriieiiiiiiiiiiiiie et 40
5.6.17 dwarf_get_form_class().......ccvvvriiiiiiiiiiiiiiii 40
5.6.18 dwarf _l0CliSt_ N() eevvreiiieiiiiiieie 40
5.6.19 dwarf IOCHSI() .ooooeeiiiiiiiici e 42
5.6.20 dwarf_loclist_from_eXpr() .....ccoeeerrieeeeeee e 42
5.6.21 dwarf_loclist_from_expr_D().....coooeriiiiii e 43
5.6.22 dwarf_loclist_from_eXpr_a() .. ...coouumrmmmiiiieeeeiiiiieeee e 44
5.7 Line NUMDEr OPEratioNS............uuuuuuuuuiuuiiiuiiuuiiusiunnianeernresrerrrerererrrerr——————————————. 44
5.7.1 Gt A St Of LINES oottt 44
5.7.1.1  dwarf _SICliNES() uueueiiieeiiiieeiiiiei e e e e e e e e 44
5.7.2 Get the set of Source File Names..............uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeee. 45
5.7.3 Get information about a Single Table LiNe...........ccccviiiiiiiiiniiiiiieeeeeeee 46
5.7.3.1 dwarf_linebeginstatement()............cuvveeiiiiiiiiiiiiiee e 46
5.7.3.2 dwarf_lineendsequencCe()......ccccveviiriiiiiiiiiiiiiiii e, 46
ARG TG T o 11V T o N [T =T o (o () PP 46
5.7.3.4 dwarf_line_srcfileno() .......ceeeeiiiiiiiiiiies e, 47
5.7.3.5 dwarf_liN€addr() ........cccccuuummmmmmmiiiiiiiiiiiiieiiiiiiieieeeieee e a7
5.7.3.6  dwarf_lIN€OT() ...ccevereeiiieeieei e 47
5.7.3.7  dwWarf_lINESIC() .ocuveeeiiiieeiieiee e 47
5.7.3.8 dwarf _lineblock() ..., 48
5.7.3.9 dwarf_is_addr_Set().......ccccceveiiiiiiiii 48
5.7.3.10 dwarf_prologue_end_etC()....cccceeririeiriimiiiiiiiiii et e e e eeeeens 48
5.8 Global Name Space OPEratiONS..........coiviiiiiiiiiiiiiiiiiiiieei ettt 49
5.8.1 Debugger Interface OPerationS............ueviieeiiiiiiiiiiiieee e 49
5.8.1.1 dwarf_get_globalS() ......ccuuumriiiieiiiiiiiieeeee e 49
5.8.1.2 dwarf_globname() ......cccoooeiuuiiniiiiiiiiii e 50
5.8.1.3 dwarf_global _die_offset().....cccccceviiiiiiiiiiii 50
5.8.1.4 dwarf_global _cu_offSet()......cccccuiiiiiiiiiiice e 50
5.8.1.5 dwarf_get cu_die_offsetvgn_cu_header_offset() ..................... 50
5.8.1.6 dwarf_get _cu_die_offsetvgn_cu_header_offset() ...........c.c....... 51
5.8.1.7 dwarf_global_name_offSEetS()........uuurreeeiiiiiiiiiiiiieeeeiiiieieee e 51
5.9 DWARF3 Type Names Operations..........cooviiiiiiiiiesieieieeseeeeeese s 52
5.9.1 Debugger Interface Operations............oooeieeiii i 52
5.9.1.1 dwarf_get pubtypes().....ccccieeiiiiiiiiiiiiir e 52
5.9.1.2 dwarf_pubtypename()........coooiiiiiiiiiiee i 52
5.9.1.3 dwarf_pubtype_die_OffSEt()........uuueeeermiiiiiiiiiiiee e 53
5.9.1.4 dwarf_pubtype_cu_oOffSEt()........ccurrrrreeeiiiiiiiiiiiiee e 53
5.9.1.5 dwarf_pubtype_name_offSetS().......ccceerrrirririiiiiiiiis 53
5.10 User Defined Static Variable Names Operations.................uveuveeveeereerreeeeeeeeeeeeeeeen. 53
5.11Weak Name SPace OPeratiONS.......ciieeeeiieeeiiiiseeeeeeeeeeesiiiiaseeeeseeeeasnnnsnseeeeeeenssnnnnnnns 54
5.11.1 Debugger Interface OPerations............coooeieeiiiiiiiii e 54
5.11.1.1 dwarf_get_ WEEKS(). ... ueeeeeeriiiiiiiiiieeee et 54



5.11.1.2 dwarf_weakname()........eeeuriumimiiieeeee it 55

5.11.1.3 dwarf_ weak cu_offSet().....coeveiiiiiiiii 55
5.11.1.4 dwarf_weak name_offSets()..........ccceeevieiiiiiiiiii e 55
5.12 Static Function Names OPEeratiOns............uieiiiieeiiieeeiiiiinn e e e e eeeerss e e e e e e eeeeran 56
5.12.1 Debugger Interface Operations............coooveeeiiiiiiiii e 56
5.12.1.1 dwarf_get_fuNCS() .....ooovrriiiiieeii e 56
5.12.1.2 dwarf_funcname() .......c.uveeieeeeeiiiiiiiiie e 57
5.12.1.3 dwarf_func_die_offset()......ccccccerrriiiii 57
5.12.1.4 dwarf_func_cu_offSet()....ccccccevviiiiiiiiiiiiii 58
5.12.1.5 dwarf _func_name_offSets()......cccccrriiiiiiiiiiiiiiic e 58
5.13 User Defined Type Names OpPerationS..........ccuueeiiieiieiiieiiieiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeees 58
5.13.1 Debugger Interface OPErations.............cuuuieiriiiiiiiiiiieeee i 58
5.13.1.1 dwarf_get _tyPesS() ...ccooourrrreeeeeeeiiiiiiiee e 59
5.13.1.2 dwarf _typename() ......ccccoeeeuuuruuniiiiiiniiitiiiiiiriere e 60
5.13.1.3 dwarf_type_die_offset()......cccceveririiiiii 60
5.13.1.4 dwarf _type cu_0OffSEL()....cceriiiiiiiiiiiiiiiii e 60
5.13.1.5 dwarf_type_name_OffSEtS().......uuururemmermmemeiiiiiiiiiieiieeeeeeieeeeeee e 60
5.14 User Defined Static Variable Names Operations............ccccuvvevieeeiniiiiiieieeeeeeeniee 61
5.14.1 Debugger Interface OPErations............uueivieeiiiiiiiiiiiiee e 61
5.14.1.1 dwarf get Vars() .ccccccevveeeiiiiiieiiieeeeeee e, 61
5.14.1.2 dwarf varname() .....ccceevvieiiiiiiiiie 62
5.14.1.3 dwarf var_die_offSet().......cccccrriiiiiiiii e 62
5.14.1.4 dwarf_var_cu_offSet().........cooriiiiiirii e 63
5.14.1.5 dwarf_var_name_offSets().......ccouuriiiiiiiiiieiii 63
5.15 Macro INformation OPEratiONS...........couiuuririieieeeiiiiiiieeee e e e e e e e e s e e e e e e e e 63
5.15.1 General Macro OPeratiOnS............uuuuuuuuuumruuirunrnienrreerrrrererrrrsrreeree————. 63
5.15.1.1 dwarf_find_macro_value_start().........ccccccccoriviiiiiiinn 63
5.15.2 Debugger Interface Macro Operations............cccuuvviiiieieeeeeeeeniiiiinneeeeeeeeeennns 63
5.15.3 Lav Levd Macro Information OperationsS..................ueeeeeeueeeeeeeemeeeeeeeeeeenenne. 64
5.15.3.1 dwarf_get_macro_detailS().........uuurrreeerimiiiiiiiiieee e 64
5.16 Lov Levd Frame OPEratiONS .........cccuvveriiieeeiiiiiiiiieeee e e s siiieeee e e e e s s ssisbrseea e e e s s nnsneneees 64
5.16.0.1 dwarf _get fde liSt() ........cooieeiieeiiiiiecee e 67
5.16.0.2 dwarf_get fde list €n()e.ccoeeeeeiiiiiii 68
5.16.0.3 dwarf _get_cie_0of fde()..ccceriiriiiiiiiiiiiiiiii e 69
5.16.0.4 dwarf_get _fde_for_die().......ccoeeeaeeoeaiiie e 69
5.16.0.5 dwarf_get_fde_range(}......ccccurrummmmmieeeiiiiiiiiiee e 70
5.16.0.6 dwarf_get_Cie_iNFO() ....uvrreeeiiiiiiiiiieiiee e 70
5.16.0.7 dwarf_get cie_iNdeX() .....ccoeeeeummurrnriinniinriiiiiiiiiiniineeneeeeneeneeanennnnn 71
5.16.0.8 dwarf_get fde_instr_bytesS(}........coooeiiiiiiii i 71
5.16.0.9 dwarf _get fde info_for reg(}....cccccceeeiiiriiiiiieiiiiiiiiie e, 71
5.16.0.10dwarf_get_fde_info_for_all_regs()........cceveeereeeeeeeieeeeeeeeeee 72
5.16.0.11dwarf_set_frame_rule_table_sSize()..........ccceeeeieeiieiiiciiecieeccns 72
5.16.0.12dwarf_set_frame_rule_initial_value(}..........ccccceeeerriiiiiiineeeennns 73
5.16.0.13dwarf_set_frame_cfa_value()........ccccvvverrreerrrerieiiieeieeeeeeeeeeeeeeeee 73
5.16.0.14dwarf_set_frame_same_value()........ccccvvvrervrerviiiiiiiiieiiieiieeeeeeeee, 73
5.16.0.15dwarf_set_frame_undefined_value()............ccccevevrvceiiiiieeiiinennnnns 73
5.16.0.16dwarf_set_default_addresSs_SiZe()........uuweeereereemmeeeeeeeeiiieeeeeeeeeeenn. 74
5.16.0.17dwarf_get_fde_info_for_reg3().......cceeeeereeereiiiee 74



5.16.0.18dwarf_get_fde_info_for_cfa_reg3()........ooovvmmmvereriiiiiiiiiiieeeeneas 75

5.16.0.19dwarf_get fde_info_for_all_regS3()......ccevvrreevrierreeviieiiiiiiiiiiennenn, 76
5.16.0.20dwarf_get fde N()...cccooeiiiii 76
5.16.0.21dwarf_get fde_at PC()......evmmmriiiiiriiiece e e 77
5.16.0.22dwarf_expand_frame_iNStruCtionS().........ccvveeeeeereeereeeieeeieeneennen.. 77
5.16.0.23dwarf_get_fde_exception_info().........uvmrrreeeriiiiiiiiiiiee e 78
5.17 Location EXpression EVAIUALION. .........coui it 78
5.17.1 Location List Internald@ Interface ........ccccooviiiiiiiiiieeeee 78
5.17.1.1 dwarf_get_loclist_entry().....ccceeeveeriieiiiiiiiiiiiiiiee 78
5.18 ADDIEVIAtIONS BICCESS. ... uuututiuuiiitiiuiiitiiiiiettieeteetteeeeeeeeeeseeeseeeseeeseesseeseeeeeeeeeeeeeeeeeeeeeeeeees 79
5.18.1 dwarf_get_abbrev().... .. 79
5.18.2 dwarf_get_abbrev_tag(}.......cccovrrrriieeeiiiie e 80
5.18.3 dwarf_get_abbrev_cCode()........cccuumriiieiiiiiiiiiie e 80
5.18.4 dwarf_get_abbrev_children_flag()......ccccccoeeerr 80
5.18.5 dwarf_get_abbrev_entry()........cccco i 80
5.19 String SeCtioN OPeratiONS.......ciiieeeiiieeeiiiiis e e e e e e eeeee e e e e e e e e e e e e e e e e e e eearan e aeeees 81
5.19.1 dwarf_get Str() .oveeeeriiiiieeie 81
5.20 Address RaANGE OPEIALIONS........cuiieeiiiiiitiiiieeeee e ittt e e e e s e e e e e e s asbrnreeeeeesaannes 81
5.20.1 dwarf_get_aranges()........uuueerreeeiimiiiiiiieee e 81
5.20.2 dwarf_get_ arange()......ueeeeeeieeiiieiiiiiieeieeee e 82
5.20.3 dwarf_get_cu_die_OffSEt()......cceeeiiiiiii i 82
5.20.4 dwarf_get arange_cu_header_offSet()........ccccccrrriiiiiiiiiiiiiiiiiiiiin e 82
5.20.5 dwarf_get_arange iNfO()..........uuuuuuuummmmmmimniiiiiiiiiieiiieiieeeeeeeeeeeeee e e e eeeeeeeeeeeeeeas 83
5.21 General Ly Levd OPEIatiONS  .....ccoiiiiuiiiiiiiieee ettt e e e e e e e e e e 83
5.21.1 dwarf_get_addresSs_SIiZE()........ccuurrrrrieeiiiiiiiiiiee e 83
5.21.2 dwarf_get _die_address _SiZ€().......ccccciiiiiiiiiiii e, 83
5.22 Ranges Operations (.debuUg_raNgES).........uuuurrririiieriieiieerieereeeereeereeereeeeerreeeeeeereeeeees 84
5.22.1 dwarf _get rangeS()...cceuuruiieirieeiiieeiiiii e e et 84
5.22.2 dwarf_get_ranges_a(). ... 84
5.22.3 dwarf_ranges_dealloC()........ccourrrrriieeiiiiiiieie e 85
5.23 GdD INAR OPEIALIONS  ....eeiiiiieeiiiiiiee et e e e e reeeeeas 85
5.23.1 dwarf_gdbindeX header(}...........uuuueeiieeeiiiiiiiiiiiiieiieeieeeeeeee e 85
5.23.2 dwarf_gdbindeX_ Culist_array()........cccccuuuuruumrrmrrrmmrrnrirerrrersreereeereerreeerer.. 88
5.23.3 dwarf_gdbindex_CulisSt_entry()......ccceeeeiiieriiiieiiiiii e 88
5.23.4 dwarf_gdbindex_types_CuliSt_array().............eueeeeeemueemrmmmrmmeeneeneneeneeeneeeeeens 88
5.23.5 dwarf_gdbindex_types_CuUliSt_entry()..........ccccurmmrreeeiiiiiiiiiiieeeee e 88
5.23.6 dwarf_gdbindex_addressar€a()............uuvueeeeriiiiiiiiiiiieee e 89
5.23.7 dwarf_gdbindex_addressarea _entry().........cccccuuvrrrrrrerrerrrererrnernrnreereneeeeeen. 89
5.23.8 dwarf_gdbindex_symboltable_array()...........cccccvvvrrrrerrrnrrmmirereieeereereeeeeeene. 90
5.23.9 dwarf_gdbindex_symboltable_entry().......cccccoceeeiiiirriiiiiiiii e, 92
5.23.10 dwarf_gdbindex_cuvector_length()..........cccccouuiimiiiiiiiiiiiiiiiiieiieeieeeieeeeeeeee 92
5.23.11 dwarf_gdbindex_cuvector_inner_attributes()...........cccevvvveeiieiiieiiieeieeeeeee. 92
5.23.12 dwarf_gdbindex_cuvector_instance_expand_value()........c..ccccccvvvvvvereennn. 93
5.23.13 dwarf_gdbindex_string_by_ 0OffSet()..........uuvrrririiiiiiiiiiiiiiiiiieiieeeeeeeeeeeee e 93
5.24 Debug Fission (.debug_tu_index, .debug_cu_index) operations......................... 94
5.24.1 Dwarf_Debug Fission_Per ClU.......ccccooiiiiiiiiiiiiiiiii e eeeeenen 94
5.24.2 dwarf_die_from_hash_Signature()................ueeeeeeeeeeiiieiiiiiieiiieiieeeeeeeeeeeeeeeee 95
5.24.3 dwarf_get_debudfiSSion_for_di€().........ccvrmmriiieiiiiiiiii e 96



5.24.4 dwarf_get_debudfiSSiON_fORYK) ....cooviiiiiiiiiiiee e 96

5.24.5 dwarf_get xu_index_header().......ccccccvveiiiiiiiii . 96
5.24.6 dwarf_get xu_index_section_type().......cccccvriiiiiiiiiiiii, 98
5.24.7 dwarf_get xu_header fre€()....ccccuiiieiiiiiiiiiiii e 99
5.24.8 dwarf_get_Xu_hash_entry()........ccveeriiiiiii e 99
5.24.9 dwarf_get Xu_SeCtion_NamMES().......uuurrrrrrrurmrreerieeieieeeeeeeereeeeeeereeereereeeeeeeees 100
5.24.10 dwarf_get_Xu_SecCtion_OffSEL().........ocurrrririeeiiiiiiiiiiee e 100
5.25TAG ATTR €tC NAmeES as SINGS......ccceiiieiieei e, 102
5.25.1 dwarf_get ACCESS NAME()....cciieeiieiiieiieeii e eneannennnes 102
5.25.2 dwarf_get AT _NamE()....cccoiiiieeiiiii e e e e e e e e e e e e s 103
5.25.3 dwarf_get_ATE_NAME() ...cuurrrriieeeiiiiiiieie e e 103
5.25.4 dwarf_get_ ADDR_NAME() . .uereiieiiiiiiiiiiiiie ettt 103
5.25.5 dwarf_get_ ATCF_NAME()......ciiurrririieeeiiiiiiiiiiee e e e e e e e e 103
5.25.6 dwarf_get CHILDREN_Nname().........ccccoeeiiiiiiiie e 103
5.25.7 dwarf_get_children_name()......ccccvveeviiiiiiiiiii 103
5.25.8 dwarf_get CC NamME()..u.ciieieiiiiiiiiiiii i et e e e e e e e e e 103
5.25.9 dwarf_get_CFA_NAME()......uurmiiieeeiiiiiiiieie e 103
5.25.10 dwarf_get_DS_NamE()......uuumreiieeeiiiiiiieie et 103
5.25.11 dwarf_get_DSC_NAME()....uuuurriieeeiiiiiiiiiiiee et 103
5.25.12 dwarf_get EH _NAME()....uuuurruririiiiiiiiiiiiiiiiiieiiieiiesieessssssssssesssesssessessseeseeeeee. 103
5.25.13 dwarf_get END_NAME()....uuuuuuuuurriuiinninnriiurineinrinernesrrsrrrssrssermssssesse—————. 103
5.25.14 dwarf_get FORM_NamME().....cuuuuruiiiiieieiieeiiiiiie e e e eeeeeevnn e e e e e e e eeannn e 103
5.25.15dwarf_get FRAME_NamMe().......cceviiiiiiiiiieeeee e, 103
5.25.16 dwarf_get_ID_NameE() ....ccuuvrreieieeeiieiie e 104
5.25.17 dwarf_get_INL_NAME() ....ceiiiiiieiiiieeee ettt e e 104
5.25.18 dwarf_get LANG_Name().....cccoveeiieeiieiiee e, 104
5.25.19dwarf_get LNE _Name().......ccooeeiiiiiiiee oo 104
5.25.20 dwarf_get LNS NAME()....ccuuuuuiiiiieeiiieeiiiii s ee et s e e e e e ee et e e e e eeenees 104
5.25.21 dwarf_get MACINFO_NAME() ...uurrrrrrrrrrrnnieneiieeiieeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeees 104
5.25.22 dwarf_get_OP_Name().......uuuriiieeiiiiiiie e 104
5.25.23 dwarf_get_ORD_NAME()...uurteiieiiiiiiiiiiiieee et 104
5.25.24 dwarf_get AG_Name() ....ooooviiiiiiiii i 104
5.25.25dwarf_get VIRTUALITY_name() ....ccccccevviiiiiiiiii 104
5.25.26 dwarf_get VIS NaME().....uuuiiiiiiieiiiieiiiiii e et e e e e e e e e eeaenes 104
5.26 SECHON OPEIALIONS .....eveiiiiiiiiiiiieiee ettt ettt ettt et ettt ettt ettt et et e et et e et aaaaaaaetaaaaaaaaaaaaaaaaaaaans 104
5.26.1 dwarf_get_SeCtion_COUNT()....uueeeuiiiiuriiiiieeeee it 104
5.26.2 dwarf_get_section_info_by Name()..........cccvrmreereeiiiiiiiiiiiee e 105
5.26.3 dwarf_get_section_info_by indeX()........cccveereereeeeiiiiiiiiieiiieeiieeeeeeeeee e 105
5.27 Utility OPErationNS ......ccoooiiiiiii i 105
A 5 o Y= U =T 1 1 T (S 105
5.27.2 dwarf_ermsg() .o 105
5.27.3 dwarf_get_harmless_error_list()........cccoeeieeeeiiie e 106
5.27.4 dwarf_insert_harmless_error().........cccueeirieeeiiiiiiiiiiieeee e 107
5.27.5 dwarf_set_harmless_error_list_Size().........cceeeeeieeiieeeecieeecccccccc s 107
5.27.6 dwarf_Seterrhand().........cccccuuuuuumrimiiiiiiiiiiiiiierirrirerrrrrrerre .. ——————————————. 111
5.27.7 dwarf _Seterrarg() .....cooverriuiiiii i 111
5.27.8 dwarf_dealloC() ....covvvveiiiieiieeee 111
5.27.9 dwarf_encode_[ED128().........cccuurimiiiiieiiiii e 111

Vi



5.27.10 dwarf_encode_signed_1eD128()........cuuueeriiiiiiiiiiiieeiiiiiirieee e 112

Vii



LIST OF FIGURES

[0 10 = S To= F= LG 1Y o =2 5
Figure 2. Error INAICALIONS ........oiiiiiiiiiiiiii ettt e s e e e e e e e e e e e anes 15
Figure 3. Allocation/Deallocation [deNtifierS.........c..uuviiiiieeiiiiiieeie e 17
Figure 4. Frame Information Rule Assignments MIPS...........ccoooiiiiiiiiiiiiiceaes 66
Figure 5. Frame Information Special Valueg architecture ...........cccccvvvvvveeiieeiiieiieeieennennn. 66
Figure 6. DWarf Error COUES .....cooviiiiiiiei et e e e e e et e e e e e e e eeeaaan s 107
Figure 7. Dwarf 2 Error Codes (continued below)..............ooooiiiiii e 108
Figure 8. Dwarf 2 Error Codes (continued DelOW)..............ovvviieiiiiiiiiiiiiceeeeee 109
Figure 9. Dwarf 2 Error Codes (continued DelOW)..............uevviiiiiiiiiiiiiiiiieeeeee 110
Figure 10.Dwarf 2 Error COUES........coveiieeeeeeeeeee e, 111

viii



A Consumer Library Interfaceto DWARF

David Anderson

ABSTRACT

This document describes an interface to a library of functions to aca&ARP delugging
information entries and WARF line number information (and other WARF2/3/4/5
information). It does not mak recommendations as to wathe functions described in this
document should be implemented nor does it suggest possible optimizations.

The document is oriented to readingVBRF version 2 and version 3. There are certain sections
which are SGI-specific (those are clearly identified in the document).

rev2.27, May 01, 2015

0. UNIX s a registered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

iX



