
A Producer Library Interface to DWARF

David Anderson

1. INTRODUCTION

This document describes an interface to libdwarf, a library of functions to provide creation of DWARF
debugging information records, DWARF line number information, DWARF address range and pubnames
information, weak names information, and DWARF frame description information.

1.1 Copyright

Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2010 David Anderson.

Permission is hereby granted to copy or republish or use any or all of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that it would be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to propose a library of functions to create DWARF debugging information.
Reading (consuming) of such records is discussed in a separate document.

The functions in this document have mostly been implemented at Silicon Graphics and are being used by
the code generator to provide debugging information. Some functions (and support for some extensions)
were provided by Sun Microsystems.

Example code showing one use of the functionality may be found in the dwarfgen dwarfgen application
(provided in the source distribution along with libdwarf).

The focus of this document is the functional interface, and as such, implementation and optimization issues
are intentionally ignored.

Error handling, error codes, and certain Libdwarf codes are discussed in the "A Consumer Library
Interface to DWARF", which should be read (or at least skimmed) before reading this document.

However the general style of functions here in the producer library is rather C-traditional with various types
as return values (quite different from the consumer library interfaces). The style generally follows the style
of the original DWARF1 reader proposed as an interface to DWARF. When the style of the reader
interfaces was changed (1994) in the dwarf reader (See the "Document History" section of "A Consumer
Library Interface to DWARF") the interfaces here were not changed as it seemed like too much of a change
for the two applications then using the interface! So this interface remains in the traditional C style of
returning various data types with various (somewhat inconsistent) means of indicating failure.

The error handling code in the library may either return a value or abort. The library user can provide a
function that the producer code will call on errors (which would allow callers avoid testing for error returns

rev 1.30, 12 June 2011 - 1 -

- 2 -

if the user function exits or aborts). See the dwarf_producer_init_c() description below for more
details (possibly the older forms dwarf_producer_init_b() and dwarf_producer_init()
may be of interest).

1.3 Document History

This document originally prominently referenced "UNIX International Programming Languages Special
Interest Group " (PLSIG). Both UNIX International and the affiliated Programming Languages Special
Interest Group are defunct (UNIX is a registered trademark of UNIX System Laboratories, Inc. in the
United States and other countries). Nothing except the general interface style is actually related to anything
shown to the PLSIG (this document was open sourced with libdwarf in the mid 1990’s).

See "http://www.dwarfstd.org" for information on current DWARF standards and committee activities.

1.4 Definitions

DWARF debugging information entries (DIEs) are the segments of information placed in the
.debug_info and related sections by compilers, assemblers, and linkage editors that, in conjunction
with line number entries, are necessary for symbolic source-level debugging. Refer to the document
"DWARF Debugging Information Format" from UI PLSIG for a more complete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information Format" version 2.
and the "A Consumer Library Interface to DWARF".

In addition, this document refers to Elf, the ATT/USL System V Release 4 object format. This is because
the library was first developed for that object format. Hopefully the functions defined here can easily be
applied to other object formats.

1.5 Overview

The remaining sections of this document describe a proposed producer (compiler or assembler) interface to
Libdwarf, first by describing the purpose of additional types defined by the interface, followed by
descriptions of the available operations. This document assumes you are thoroughly familiar with the
information contained in the DWARF Debugging Information Format document, and "A Consumer Library
Interface to DWARF".

The interface necessarily knows a little bit about the object format (which is assumed to be Elf). We make
an attempt to make this knowledge as limited as possible. For example, Libdwarf does not do the writing of
object data to the disk. The producer program does that.

1.6 Revision History

March 1993 Work on dwarf2 sgi producer draft begins

March 1999 Adding a function to allow any number of trips through the dwarf_get_section_bytes()
call.

April 10 1999 Added support for assembler text output of dwarf (as when the output must pass through
an assembler). Revamped internals for better performance and simpler provision for
differences in ABI.

rev 1.30, 12 June 2011 - 2 -

- 3 -

Sep 1, 1999 Added support for little- and cross- endian debug info creation.

May 7 2007 This library interface now cleans up, deallocating all memory it uses (the application
simply calls dwarf_producer_finish(dbg)).

September 20 2010 Now documents the marker feature of DIE creation.

2. Type Definitions

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects of Libdwarf . The types defined by typedefs contained in libdwarf.h all use the
convention of adding Dwarf_ as a prefix to indicate that they refer to objects used by Libdwarf. The prefix
Dwarf_P_ is used for objects referenced by the Libdwarf Producer when there are similar but distinct
objects used by the Consumer.

2.2 Namespace issues

Application programs should avoid creating names beginning with Dwarf_ dwarf_ or DW_ as these are
reserved to dwarf and libdwarf.

3. libdwarf and Elf and relocations

Much of the description below presumes that Elf is the object format in use. The library is probably usable
with other object formats that allow arbitrary sections to be created.

3.1 binary or assembler output

With DW_DLC_STREAM_RELOCATIONS (see below) it is assumed that the calling app will simply write
the streams and relocations directly into an Elf file, without going through an assembler.

With DW_DLC_SYMBOLIC_RELOCATIONS the calling app must either A) generate binary relocation
streams and write the generated debug information streams and the relocation streams direct to an elf file or
B) generate assembler output text for an assembler to read and produce an object file.

With case B) the libdwarf-calling application must use the relocation information to change points of each
binary stream into references to symbolic names. It is necessary for the assembler to be willing to accept
and generate relocations for references from arbitrary byte boundaries. For example:

.data 0a0bcc #producing 3 bytes of data.

.word mylabel #producing a reference

.word endlabel - startlable #producing absolute length

rev 1.30, 12 June 2011 - 3 -

- 4 -

3.2 libdwarf relationship to Elf

When the documentation below refers to ’an elf section number’ it is really only dependent on getting (via
the callback function passed by the caller of dwarf_producer_init_c() and the older forms,
dwarf_producer_init_b() or dwarf_producer_init()) a sequence of integers back (with 1
as the lowest).

When the documentation below refers to ’an Elf symbol index’ it is really dependent on Elf symbol
numbers only if DW_DLC_STREAM_RELOCATIONS are being generated (see below). With
DW_DLC_STREAM_RELOCATIONS the library is generating Elf relocations and the section numbers in
binary form so the section numbers and symbol indices must really be Elf (or elf-like) numbers.

With DW_DLC_SYMBOLIC_RELOCATIONS the values passed as symbol indexes can be any integer set or
ev en pointer set. All that libdwarf assumes is that where values are unique they get unique values.
Libdwarf does not generate any kind of symbol table from the numbers and does not check their uniqueness
or lack thereof.

3.3 libdwarf and relocations

With DW_DLC_SYMBOLIC_RELOCATIONS libdwarf creates binary streams of debug information and
arrays of relocation information describing the necessary relocation. The Elf section numbers and symbol
numbers appear nowhere in the binary streams. Such appear only in the relocation information and the
passed-back information from calls requesting the relocation information. As a consequence, the ’symbol
indices’ can be any pointer or integer value as the caller must arrange that the output deal with relocations.

With DW_DLC_STREAM_RELOCATIONS all the relocations are directly created by libdwarf as binary
streams (libdwarf only creates the streams in memory, it does not write them to disk).

3.4 symbols, addresses, and offsets

The following applies to calls that pass in symbol indices, addresses, and offsets, such as
dwarf_add_AT_targ_address() dwarf_add_arange_b() and
dwarf_add_frame_fde_b().

With DW_DLC_STREAM_RELOCATIONS a passed in address is one of: a) a section offset and the (non-
global) symbol index of a section symbol. b) A symbol index (global symbol) and a zero offset.

With DW_DLC_SYMBOLIC_RELOCATIONS the same approach can be used, or, instead, a passed in
address may be c) a symbol handle and an offset. In this case, since it is up to the calling app to generate
binary relocations (if appropriate) or to turn the binary stream into a text stream (for input to an assembler,
if appropriate) the application has complete control of the interpretation of the symbol handles.

4. Memory Management

Several of the functions that comprise the Libdwarf producer interface dynamically allocate values and
some return pointers to those spaces. The dynamically allocated spaces can not be reclaimed (and must
not be freed) except by dwarf_producer_finish(dbg).

rev 1.30, 12 June 2011 - 4 -

- 5 -

All data for a particular Dwarf_P_Debug descriptor is separate from the data for any other
Dwarf_P_Debug descriptor in use in the library-calling application.

4.1 Read-only Properties

All pointers returned by or as a result of a Libdwarf call should be assumed to point to read-only memory.
Except as defined by this document, the results are undefined for Libdwarf clients that attempt to write to a
region pointed to by a return value from a Libdwarf call.

4.2 Storage Deallocation

Calling dwarf_producer_finish(dbg) frees all the space, and invalidates all pointers returned from
Libdwarf functions on or descended from dbg).

5. Functional Interface

This section describes the functions available in the Libdwarf library. Each function description includes its
definition, followed by a paragraph describing the function’s operation.

The functions may be categorized into groups: initialization and termination operations, debugging
information entry creation, Elf section callback function, attribute creation, expression creation, line
number creation, fast-access (aranges) creation, fast-access (pubnames) creation, fast-access (weak
names) creation, macro information creation, low level (.debug_frame) creation, and location list
(.debug_loc) creation.

The following sections describe these functions.

5.1 Initialization and Termination Operations

These functions setup Libdwarf to accumulate debugging information for an object, usually a
compilation-unit, provided by the producer. The actual addition of information is done by functions in the
other sections of this document. Once all the information has been added, functions from this section are
used to transform the information to appropriate byte streams, and help to write out the byte streams to
disk.

Typically then, a producer application would create a Dwarf_P_Debug descriptor to gather debugging
information for a particular compilation-unit using dwarf_producer_init_c(). (Older code may
use dwarf_producer_init_b() or dwarf_producer_init()). The producer application would
use this Dwarf_P_Debug descriptor to accumulate debugging information for this object using functions
from other sections of this document. Once all the information had been added, it would call
dwarf_transform_to_disk_form() to convert the accumulated information into byte streams in
accordance with the DWARF standard. The application would then repeatedly call
dwarf_get_section_bytes() for each of the .debug_* created. This gives the producer
information about the data bytes to be written to disk. At this point, the producer would release all resource
used by Libdwarf for this object by calling dwarf_producer_finish().

It is also possible to create assembler-input character streams from the byte streams created by this library.
This feature requires slightly different interfaces than direct binary output. The details are mentioned in the
text.

rev 1.30, 12 June 2011 - 5 -

- 6 -

5.1.1 dwarf_producer_init()

Dwarf_P_Debug dwarf_producer_init(
Dwarf_Unsigned flags,
Dwarf_Callback_Func func,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Error *error)

This is the oldest form and code should migrate to the newest form, dwarf_producer_init_c().

The function dwarf_producer_init() returns a new Dwarf_P_Debug descriptor that can be used
to add Dwarf information to the object. On error it returns DW_DLV_BADADDR. flags determine
whether the target object is 64-bit or 32-bit. func is a pointer to a function called-back from Libdwarf
whenever Libdwarf needs to create a new object section (as it will for each .debug_* section and related
relocation section).

errhand is a pointer to a function that will be used as a default fall-back function for handling errors
detected by Libdwarf.

errarg is the default error argument used by the function pointed to by errhand.

For historical reasons the error handling is complicated and the following three paragraphs describe the
three possible scenarios when a producer function detects an error. In all cases a short error message is
printed on stdout if the error number is negative (as all such should be, see libdwarf.h). Then further action
is taken as follows.

First, if the Dwarf_Error argument to any specific producer function (see the functions documented below)
is non-null the errhand argument here is ignored in that call and the specific producer function sets the
Dwarf_Error and returns some specific value (for dwarf_producer_init it is DW_DLV_BADADDR as
mentioned just above) indicating there is an error.

Second, if the Dwarf_Error argument to any specific producer function (see the functions documented
below) is NULL and the errarg to dwarf_producer_init() is non-NULL then on an error in
the producer code the Dwarf_Handler function is called and if that called function returns the producer
code returns a specific value (for dwarf_producer_init it is DW_DLV_BADADDR as mentioned just above)
indicating there is an error.

Third, if the Dwarf_Error argument to any specific producer function (see the functions documented
below) is NULL and the errarg to dwarf_producer_init() is NULL then on an error
abort() is called.

The flags values are as follows:
DW_DLC_WRITE is required. The values DW_DLC_READ DW_DLC_RDWR are not supported by
the producer and must not be passed.

If DW_DLC_SIZE_64 is not ORed into flags then DW_DLC_SIZE_32 is assumed. Oring in
both is an error.

If DW_DLC_OFFSET_SIZE_64 is not ORed into flags then 64 bit offsets (as defined in the
1999 DWARF3) may be used (see next paragraph) to generate DWARF (if and only if
DW_DLC_SIZE_64 is also ORed into flags).

If HAVE_STRICT_32BIT_OFFSET is set at configure time only 32bit DWARF offsets are
generated (use configure option --enable-dwarf-format-strict-32bit) and
DW_DLC_OFFSET_SIZE_64 is ignored. If HAVE_SGI_IRIX_OFFSETS is set at configure
time SGI IRIX offsets (standard 32bit, a special 64bit offset for 64bit address objects) are

rev 1.30, 12 June 2011 - 6 -

- 7 -

generated (use configure option --enable-dwarf-format-sgi-irix) and
DW_DLC_OFFSET_SIZE_64 is ignored. If neither HAVE_STRICT_32BIT_OFFSET nor
HAVE_SGI_IRIX_OFFSETS is set at configure time then standard offset sizes are used (and
HAVE_DWARF2_99_EXTENSION is set) and DW_DLC_OFFSET_SIZE_64 is honored.

If DW_DLC_ISA_IA64 is not ORed into flags then DW_DLC_ISA_MIPS is assumed. Oring
in both is an error.

If DW_DLC_TARGET_BIGENDIAN is not ORed into flags then endianness the same as the
host is assumed.

If DW_DLC_TARGET_LITTLEENDIAN is not ORed into flags then endianness the same as
the host is assumed.

If both DW_DLC_TARGET_LITTLEENDIAN and DW_DLC_TARGET_BIGENDIAN are or-d in
it is an error.

Either one of two output forms is specifiable: DW_DLC_STREAM_RELOCATIONS or
DW_DLC_SYMBOLIC_RELOCATIONS .

The default is DW_DLC_STREAM_RELOCATIONS . The DW_DLC_STREAM_RELOCATIONS
are relocations in a binary stream (as used in a MIPS Elf object).

The DW_DLC_SYMBOLIC_RELOCATIONS are the same relocations but expressed in an array of
structures defined by libdwarf, which the caller of the relevant function (see below) must deal
with appropriately. This method of expressing relocations allows the producer-application to
easily produce assembler text output of debugging information.

If DW_DLC_SYMBOLIC_RELOCATIONS is ORed into flags then relocations are returned not
as streams but through an array of structures.

The function func must be provided by the user of this library. Its prototype is:

typedef int (*Dwarf_Callback_Func)(
char* name,
int size,
Dwarf_Unsigned type,
Dwarf_Unsigned flags,
Dwarf_Unsigned link,
Dwarf_Unsigned info,
int* sect_name_index,
int* error)

For each section in the object file that libdwarf needs to create, it calls this function once (calling it from
dwarf_transform_to_disk_form()), passing in the section name, the section type, the section
flags, the link field, and the info field. For an Elf object file these values should be appropriate Elf
section header values. For example, for relocation callbacks, the link field is supposed to be set (by the
app) to the index of the symtab section (the link field passed through the callback must be ignored by the
app). And, for relocation callbacks, the info field is passed as the elf section number of the section the
relocations apply to.

On success the user function should return the Elf section number of the newly created Elf section.

rev 1.30, 12 June 2011 - 7 -

- 8 -

On success, the function should also set the integer pointed to by sect_name_index to the Elf symbol
number assigned in the Elf symbol table of the new Elf section. This symbol number is needed with
relocations dependent on the relocation of this new section. Because "int *" is not guaranteed to work with
elf ’symbols’ that are really pointers, It is better to use the dwarf_producer_init_c() interface.

For example, the .debug_line section’s third data element (in a compilation unit) is the offset from the
beginning of the .debug_info section of the compilation unit entry for this .debug_line set. The
relocation entry in .rel.debug_line for this offset must have the relocation symbol index of the
symbol .debug_info returned by the callback of that section-creation through the pointer
sect_name_index.

On failure, the function should return -1 and set the error integer to an error code.

Nothing in libdwarf actually depends on the section index returned being a real Elf section. The Elf section
is simply useful for generating relocation records. Similarly, the Elf symbol table index returned through
the sect_name_index must simply be an index that can be used in relocations against this section. The
application will probably want to note the values passed to this function in some form, even if no Elf file is
being produced.

5.1.2 dwarf_producer_init_c()

i

