A Consumer Library Interfaceto DWARF
David Anderson

1. INTRODUCTION

This document describes an interfacelitmiwarf, a library of functions to pndde access to WARF
delugging information records, \MARF line number information, WARF address range and global
names information, weak names informationVARF frame description information, IARF static
function names, WARF static variables, andARF type information.

The document has long mentioned the "Unix International Programming Languages Special Interest
Group" (PLSIG), under whose auspices th&V/ARF committee was formed around 1991Unix
International” was disbanded in the 1990s and no longer exists.

The DNARF committee published\WARF2 July 27, 1993.

In the mid 1990s this document and the library it describes (which the commiteeeemdorsed, hang
decided not to endorse or appeoay particular library interface) was madgadable on the internet by
Silcon Graphics, Inc.

In 2005 the DVARF committee bgen an dfiliation with FreeStandardsar In 2007 FreeStandardsgor
merged with The Linux Bundation. Th®WARF committee dropped itsfdfation with FreeStandardsgr
in 2007 and established the alfistd.og website. Seéhttp://www.dwarfstd.og" for current information
on standardization activities and a gaf the standard.

1.1 Copyright
Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2009 David Anderson.

Permission is hereby granted to gap republish or use gnor dl of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that dud be useful, but WITHOUT ANY WRRANTY;
without esen the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to act®8KRMP dehlugging
information. There is no effort made in this document to address the creation of these records as those
issues are addressed separately (see "A Producer Library Interfadé RMAD).

Additionally, the focus of this document is the functional irded, and as such, implementation as well as
optimization issues are intentionally ignored.

1.3 Document History

A document vas written about 1991 which had similar layout and iat&$. Writterby people from Hal

rev 1.83, 17 Neember 2009 -1-

Corporation, That document described a library for readifgARF1. Theauthors distributed paper
copies to the committee with the clearly expressed intent to propose the document as a suppa@ted interf
definition. Thecommittee decided not to pursue a library definition.

SGI wrote the document you arewnoeading in 1993 with a similar layout and content argirgration,

but it was complete documentwsdte with the intent to read WARF2 (the DVARF version then in
existence). Thantent was (and is) to also s future revisions of B/ARFE All the function interdces
were changed in 1994 to uniformly return a simple integer success-codéNs&d ¥ OK etc), generally
following the recommendations in the chapter titled "Candy Machine dne='f of "Writing Solid Code",
a book by Stge Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIEs) are thgnsents of information placed in thelebug_*

sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source4t debugging. Referto the latest DWARF Debugging Information

Format" from www.dwarfstd.ay for a more complete description of these entries.

This document adopts all the terms and definition©WARF Debugging Information Format" versions 2
and 3. It originally focused on the implementation at Silicon Graphics, lucndy attempts to be more
generally useful.

1.5 Overview

The remaining sections of this document describe the proposed interfadedwar f , first by describing

the purpose of additional types ihefd by the interface, followed by descriptions of theilable
operations. Thiglocument assumes you are thoroughly familiar with the information contained in the
DWARF Debugging Information Format document.

We eparate the functions intoseal categories to emphasize that not all consumart to use all the
functions. V¢ all the catgories Dehgger Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the ratlyer $at of function calls easier to
understand.

Unless otherwise specified, all functions and structures should ée takbeing designed for Dejyer
consumers.

The Debugger Interface of this library is intended to be used hygdels. Theanterface is lov-level
(close to dwarf) but suppresses irvale detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sectigosp at need. Andven then will probably
want to absorb only the information in a single compilation unit at a tifndebugger does not care about
implementation details of the library.

The Internal-lgel Interface is for a WARF prettyprinter and cheek A thorough prettyprinter will ant

to know al kinds of internal things (lie ectual FORM numbers and actual offsets) so it can check for
appropriate structure in theVBARF data and print (on request) all that internal information for human
users and libdwarf authors and compileiters. Callsin this interface provide data a debugger does not
care about.

The High-level Interface is for higher kel access (it is not really a highvd interface!). Programsuch as
disassemblers will want to be able to displayvaieinformation about functions and line numbers without
having to ivest too much effort in looking at\BARF.

The miscellaneous interface is just what is lgfirothe error handler functions.

The following is a brief mention of the changes in this libdwarf from the Eivfldraft for DVARF \ersion
1 and recent changes.

rev 1.83, 17 Newember 2009 -2-

1.6 Items Changed

Added dwarf_set_reloc_application() and the default automatic application of EIf 'rela’ relocations to
DWARF sections (such rela sections appear irileg,fnot in &ecutables or shared objects, in general).
The dwarf_set reloc_application() routine lets a consumer tufrth&f automatic application ofela’
relocations if desired (it is not clear wlnyone would really want to do that, but possibly a consumer
could write its own relocation application). An example application the¢rses a set of DIEsas added

to the nev dwarfexample directory (not in this libdwarf directobyt in parallel to it). (July 10, 2009)

Added dvarf_get ARG _name() (and the FORMTAand so on) interface functions so applications can get
the string of the AG, Attribute, etc as needed. (June 2009)

Added dwarf_get ranges_a() andafvloclist from_e&pr_a() functions which add guments allowing a
correct address_size when the address_sidesvby compilation unit (a varying address_size is quite rare
as of May 2009). (May 2009)

Added dvarf_set frame_sameale(), and darf_set frame_undefinedale() to complete the set of

frame-information functions needed to all@n aplication get all frame information returned correctly
(meaning that it can be correctly interpreted) for all ABBocumented darf _set frame cfa value().

Corrected spelling to dwarf_set_frame_rule_initialue(). (April2009).

Added support for various\BARF3 features, but primarily awdrame-information interface tailorable at
run-time to more than a single ABl. See dwarf _set frame_rule_initial_value(),
dwarf_set frame_rule_table_size(), ailv set_frame_cfa alue(). Sealso dvarf_get fde info_for_reg3()

and dwarf_get fde info_for_cfa g®). (April 2006)

Added support for B/ARF3 .debug_pubtypes section. Corrected various leakisi(rg dealloc() calls,
adding n& functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the previous deallocation method documented for data returned by
dwarf_srclines() was incapable of freeing all the allocated storage (14 July 2005).

dwarf_netglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pomiareats.
This males writing safe and correct library-using-code far eadter justification for this approach, see
the chapter titled "Candy Machine Interfaces" in the book "Writing Solid Code" og Bleguire.

1.7 Items Removed

Dwarf_Type was remeed snce types are no longer speciawarf_typeof() was remad snce types are
no longer special.

Dwarf_Ellist was remeed since element lists no longer are a special format.
Dwarf_Bounds was remved snce bounds hae been generalized.

dwarf_netdie() was replaced by édwf net _cu_header() to reflect the real wayVBRF is oganized.
The dvarf_netdie() was only useful for getting to compilation uniglmnings, so it does not seem harmful
to remave it in favar of a more direct function.

dwarf_childcnt() is remeed on gounds that no good use was apparent.

dwarf_prerline() and dvarf_netline() were remeed on grounds this is better left to a debugger to do.
Similarly, dwarf_dieline() was remeed.

dwarf_islstline() was renved as it was not meaningful for the reviseMIB\RF line operations.

Any libdwarf implementation might well decide to support all the reddunctionality and to retain the
DWARF Version 1 meanings of that functionalityhis would be dificult because the original libcf
draft specification used traditional C library interfaces which confuse ahees returned by successful

rev 1.83, 17 Newember 2009 -3-

calls with exceptional conditions Bkfailures and 'no more data’ indications.

1.8 Revision History

March 93 Work on DWARF2 SGI draft begins
June 94 The function returns are changed to return an error/success code only.
April 2006: Support for BVARF3 consumer operations is close to completion.

2. Types Definitions

2.1 General Description

Thelibdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects dibdwarf. The types defined by typedefs containedlilodwarf.h all use the
convention of addingDwar f _ as a prefix and can be placed in three categories:

« Scalar types : The scalar typesidedl inlibdwarf.h are defined primarily for notational coenience
and identiication. Dependingn the individual defition, they are interpreted as a value, a pointer
or as a flag.

« Aggregae types : Some alues can not be represented by a single scalar type;ntbst be
represented by a collection of, or as a union of, scalar and/ogaiggrgoes.

« Opaque types : The complete idéfon of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opaque type to be used in another
guery or an nstance of a scalar or aggae type, which is the actual result.

2.2 Scalar Types
The following are the defined bibdwarf.h:

typedef int Dwar f _Bool ;

typedef unsigned long | ong Dwarf O f;

typedef unsigned | ong | ong Dwarf_Unsi gned;

t ypedef unsi gned short Dwar f _Hal f;

t ypedef unsi gned char Dwar f _Smal | ;

typedef signed |long |ong Dwar f _Si gned;

typedef unsigned | ong | ong Dwarf _Addr;

typedef void *Dwarf_Ptr;

typedef void (*Dwarf _Handl er) (Dwarf_Error *error, Dwarf_ Ptr errarg);

Dwarf _Ptr is an address for use by the host program calling the Jibmatryfor representing pc-
values/addresses within the target objelet. f Dwarf Addr is for pc-values within the target objeibe.f
The sample scalar type assignmentsvabae for alibdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machine. The types mustdéfned appropriately for each
implementation of libdwarf. A description of these scalar types in the SGI/MIPS environmentes mji
Figure 1.

rev 1.83, 17 Neember 2009 -4 -

NAME SIZE ALIGNMENT PURPOSE
Dwarf_Bool 4 4 Boolean states
Dwarf_ Off 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Sgned large integer
Dwarf_Addr 8 8 Program address
(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer
(host program)
Dwarf_Handler 4|8 4|8 Pointeto
error handler function

Figurel. Scalar Types

2.3 Aggregate Types

The following aggrgate types are defed by libdwarf.h: Dwarf_Loc, Dwarf_Locdesc,
Dwar f _Bl ock, Dwarf _Frame_Op. Dwarf_Regtabl e. Dwarf_Regtabl e3. While most of

I i bdwar f acts on or returns simple values or opaque pointer types, this small set of structures seems
useful.

2.3.1 Location Record

TheDwar f _Loc type identifies a single atom of a location description or a location expression.

typedef struct {

Dwar f _Smal | I r_atom

Dwar f _Unsi gned I r _nunber;

Dwar f _Unsi gned I r_nunber2;

Dwar f _Unsi gned Ir_offset;
} Dwarf_Loc;

Thel r _at omidentifies the atom corresponding to tB&/ OP_* definition in dwarf.h and it represents
the operation to be performed in order to locate the item in question.

Thel r _nunber field is the operand to be used in the calculation spddify thel r _at omfield; not all
atoms use thisidld. Someatom operations imply signed numbers so it is necessary to cast this to a
Dwar f _Si gned type for those operations.

Thel r _nunber 2 field is the second operand specified byltheat omfield; onlyDW OP_BREGX has
this field. Someatom operations imply signed numbers so it may be necessary to cast this to a
Dwar f _Si gned type for those operations.

Thelr _of fset field is the byte déet (within the block the location record came from) of the atom

specifed by thel r _at omfield. Thisis set on all atoms. This is useful for operatidig OP_SKI P and
DW OP_BRA.

2.3.2 Location Description

The Dwar f _Locdesc type represents an ordered listiyfar f _Loc records used in the calculation to

rev 1.83, 17 Neember 2009 -5-

locate an item. Note that in marases, the location can only be calculated at runtime of the associated
program.

typedef struct {

Dwar f _Addr I d_I opc;
Dwar f _Addr [d_hi pc;
Dwar f _Unsi gned | d_cents;
Dwarf _Loc* I d_s;

} Dwarf_Locdesc;

Thel d_I opc andl d_hi pc fields provide an address range for which this location descriptatids v
Both of these fields are set zero if the location descriptor is valid throughout the scope of the item it is
associated with. These addresses are virtual memory addressedsetstfaim-something. Thertual
memory addresses do not account for dseement (none of the pcalues from libdwarf do that, it is up to
the consumer to do that).

Thel d_cent s field contains a count of the numbeDsfar f _Loc entries pointed to by tHed_s field.

Thel d_s field points to an array @war f _Loc records.

2.3.3 Data Block

The Dwarf Bl ock type is used to contain the value of an attribute whose form is either
DW FORM bl ock1, DW FORM bl ock2, DW FORM bl ock4, DW FORM bl ock8, or
DW FORM bl ock. Its intended use is to dedr the value for an attribute of wof these forms.

t ypedef struct {
Dwar f _Unsi gned bl | en;
Dwarf _Ptr bl dat a;
} Dwarf Bl ock;

Thebl _| en field contains the length in bytes of the data pointed to blgltheat a field.

The bl _dat a field contains a pointer to the uninterpreted data. Since wealxaarf _Ptr here one
must cop the pointer to some other type (typicallyamsi gned char *) so ae can add increments to
index through the data. The data pointed tdiby dat a is not necessarily at gruseful alignment.

2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable fotMBRF3
and for DNARF2 is described belo

The DNARF2Dwar f _Fr ame_Qp type is used to contain the data of a single instruction of an instruction-
sequence of le-level information from the section containing frame information. This is ordinarily used
by Internal-leel Consumers trying to printverything in detail.

rev 1.83, 17 Neember 2009 -6-

typedef struct {
Dwarf_Small fp_base_ op;
Dwarf_Smal |l fp_extended_op;
Dwar f _Hal f fp_register;
Dwar f _Si gned fp_offset;
Dwarf_Offset fp_instr_offset;
} Dwarf_Frane_Op;

f p_base_op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tBal | Franme Instruction
Encodi ngs figure in thedwar f document. lfhot used with the Op it is 0.

fp_offset is the address, delta, offset, or second register as defined irCahk Frane
I nstruction Encodi ngs figure in thedwar f document. Ifthis is anaddr ess then the walue
should be cast tbDwar f _Addr) before being used. In wmmplementation this field *must* be as dar
as the larger of Dwarf_Signed and Dwarf_Addr for this to work propdirlyot used with the op it is 0.

fp_instr_of fset is the byte dbet (within the instruction stream of the frame instructions) of this
operation. lIstarts at O for a gen frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable foMBRF3
and for DNARF2 is described belo

The Dwar f _Regt abl e type is used to contain thegisterrestore information for all registers at aayi
PC walue. Normallyused by debuggers.

/* DW_REG_TABLE_SIZE must reflect the number of registers
*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h

*

#define DW_REG_ABLE_SIZE <fill in size here, 66 for MIPS/IRIX>
typedef struct {

struct {
Dwar f _Smal | dw of fset _rel evant;
Dwar f _Hal f dw_r eghum
Dwar f _Addr dw of f set;

} rul es[DW REG TABLE Sl ZE] ;
} Dwarf _Regtabl e;

The array is indeed by regster number The field values for each indere described ne. For clarity we
describe the field values for indeules[M] (M being ag legd array element index).

dw of fset _rel evant is non-zero to indicate théw _of f set field is meaningful. If zero then the
dw_of f set is zero and should be ignored.

dw_r egnum is the register number applicabléf. dw of f set _rel evant is zero, then this is the
register number of the gister containing the value for register M. dw_of f set _r el evant is non-
zero, then this is the gisster number of the register to use as a base (M maybe-FRAME_CFA_COL,
for example) and thdw_of f set vaue applies. The value of register M is therefore the valuegidtesr
dw_regnum

dw_of f set should be ignored dlw_of f set _rel evant is zero. If dw_of f set _rel evant is non-
zero, then the consumer code should add the value to the value dfiserdev r egnumto produce the
value.

rev 1.83, 17 Newember 2009 -7-

2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2)

This interface is adequate foMARF3 and for DVARF2. Itis newv in libdwarf in April 2006. The
DWARF2 Dwar f _Franme_Qp3 type is used to contain the data of a single instruction of an instruction-
sequence of le-level information from the section containing frame informatidthis is ordinarily used

by Internal-le#el Consumers trying to printverything in detail.

typedef struct {

Dwar f _Smal | fp_base_op;
Dwar f _Smal | f p_ext ended_op;
Dwar f _Hal f fp_register;

/* Val ue may be signed, depends on op.

Any applicable data_alignnment_factor has

not been applied, this is the raw offset. */
Dwarf _Unsigned fp_offset _or_block |en;
Dwar f _Smal | *f p_expr_bl ock;

Dwarf O f fp_instr_offset;
} Dwarf_ Frane_Op3;

fp_base _op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tBal | Frane Instruction
Encodi ngs figure in thedwar f document. Ifhot used with the Op itis 0.

fp_offset or_ bl ock | en is the address, delta, offset, or second register as defined Cakhe
Frame Instruction Encodi ngs figure in thedwar f document. Or (depending on the op, it may
be the length of the davf-expression block pointed to Byp_expr _bl ock. If this is anaddr ess then
the value should be cast f®war f _Addr) before being usedln ary implementation this field *must*
be as large as the ¢gar of Dwarf_Signed and Dwarf_Addr for this to work propeifynot used with the
opitis 0.

fp_expr_bl ock (if applicable to the op) points to a drfrexpression block which is
fp_offset or bl ock | en bytes long.

fp_instr_of fset is the byte dbet (within the instruction stream of the frame instructions) of this
operation. lIsstarts at O for a gen frame descriptor.

2.3.7 Frame Regtable: DWARF 3

This interface is adequate foMARF3 and for BVARF2. Itis newv in libdwarf as of April 2006.The
Dwar f _Regt abl e3 type is used to contain thegisterrestore information for all registers at aayi PC
value. Normallyused by debuggers.

rev 1.83, 17 Neember 2009 -8-

typedef struct Dwarf_Regtable Entry3 s {

Dwar f _Smal | dw of fset _rel evant;
Dwar f _Smal | dw val ue_type;
Dwar f _Hal f dw_r egnum

Dwar f _Unsi gned dw of fset _or_ bl ock | en;
Dwarf Ptr dw_bl ock_ptr;

} Dwar f _Regt abl e_Entry3;

typedef struct Dwarf_Regtabl e3_s {
struct Dwarf_Regtable Entry3_s rt3 _cfa rule;

Dwar f _Hal f rt3_reg_table_size;
struct Dwarf_Regtable Entry3_ s * rt3_rules;
} Dwarf_Regtabl e3;

The array is indeed by regster number The field values for each ind@re described n¢. For clarity we
describe the field values for inderules]M] (M being ay legd array element inde.
(DW_FRAME_CHA_COL3 DW_FRAME_SAME_\AL, DW_FRAME_UNDEFINED_MAL are not lgd
array indees, nor is ap index < 0 or > it3_rey_table_size); The caller of routines using this struct must
create data space for rt3gréable_size entries of struct Brvf Regtable Entry3_s and arrange that
rt3_rules points to that space and that rt3_reg_table_size is set corfidatlycaller need not (but may)
initialize the contents of the rt3 acfrule or the rt3_rules arrayrhe following applies to each rt3_rules rule
M:

dw_regnum is the rgister number applicable. If dw_regnum is
DW_FRAME_UNDEFINED ML, then the register | has undefinedlve. Ifdw_r egnumis
DW_FRAME_SAME_VAL, then the register | has the same value as in the previous frame.

If dw_r egnhumis neither of these two, then the following apply:

dw_val ue_t ype determines the meaning of the othetds. Itis one of W _EXPR_OFFSET
(0), DW_EXPR_\AL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_VAL_EXPRESSION(3).

If dw_val ue_t ype is DW_EXPR_OFFSET (0) then this is as ilVBRF2 and the dfet(N)
rule orthe register(R) rule of the\WARF3 and DVARF2 document applies. The value is either:
If dw_of f set _r el evant is non-zero, thedw_r egnumis efectively ignored ut
must be identical to W_FRAME_CFA_COL3 and thedw of f set value applies.
The value of rgister M is therefore the value of Eplus the value oflw_of f set .
The result of the calculation is the address in memory where the value of register M
resides. Thiss the offset(N) rule of the WARF2 and MVARF3 documents.

dw_of f set _rel evant is zero it indicates théw_of f set field is not meaningful.
The value of rgister M is the value currently in gister dw_r egnum (the \alue
DW_FRAME_CF_COL3 must not appeaonly real rgisters). Thids the rgister(R)
rule of the DWVARF3 spec.

If dw_val ue_type is DW_EXPR_OFFSET (1) then this is the thed wfiset(N) rule of the
DWARF3 spec applies. The calculation is identical to that W BXPR_OFFSET (0) but the
value is interpreted as the value ofjister M (rather than the address where registervlue is
stored).

If dw_val ue_t ype is DW_EXPR_EXPRESSION (2) then this is the thpression(E) rule of
the DWVARF3 document.

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopkinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Esgluate that

rev 1.83, 17 Newember 2009 -9-

-10 -

expression and the result is the address where the previous value of register M is found.
If dw value_ type is DW_EXPR_\AL _EXPRESSION (3) then this is the the
val_expression(E) rule of the\ARF3 spec.

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopkinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Esgluate that
expression and the result is the previous value of register M.
The rulert 3_cfa_rul e is the current value of the CFA. It is interpreted exactlg bRy
register M rule (as described just aBp except that dw_regnum cannot be
CW_FRAME_CR_REG3 or DV_FRAME_UNDEFINED_M\AL or DW_FRAME_SAME_VAL
but must be a real register number.

2.3.8 Macro Details Record
TheDwar f _Macr o_Det ai | s type gives information about a single entry in the .debug.macinfo section.

struct Dwarf_Macro Details_s {
Dwarf O f dnd_of f set;
Dwarf _Smal|l dnd_type;
Dwar f _Si gned dnd_I i neno;
Dwar f _Si gned dnd_fil ei ndex;
char * dnd_nuacr o;
b
typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;

dnd_of f set is the byte offset, within the .debug_macinfo section, of this macro information.

dnd_t ype is the type code of this macro info entry (or 0, the type code indicating that this is the end of
macro information entries for a compilation unifee DW MACI NFO defi ne, ec in the DNARF
document.

dnd_| i neno is the line number where this entry was found, or 0 if there is no applicable line number.

dnd_fil ei ndex is the file ind& of the file involved. Thisis only guaranteed meaningful on a
DW MACI NFO start _fil e dnd type. Setto -1 if unknown (see the functional interface for more
details).

dnd_nacr o is the applicable stringFor a DW MACI NFO_def i ne this is the macro name andlue.
For a DW MACI NFO_undef , or this is the macro nameror a DW MACI NFO vendor _ext this is the
vendor-defined stringalue. or otherdnd_t ypes this is 0.

2.4 Opaque Types

The opaque types declaredlibdwarf.h are used as descriptors for querieaiagt DNVARF information

stored in various debugging sectiorigach time an instance of an opaque type is returned as a result of a
libdwarf operation Dwar f _Debug excepted), it should be freed, usidgar f _deal | oc() when it is

no longer of use (read the following documentation for details, as in at least one case there is a special
routine provided for deallocation anddwarf _deall oc() is not directly called: see

dwarf _srclines()). Somefunctions return a number of instances of an opaque type in a block, by
means of a pointer to the block and a count of the number of opaque descriptors in the block: see the
function description for deallocation rules for such functions. The list of opaque types defined in
libdwarf.h that are pertinent to the Consumer Librand their intended use is described belo

typedef struct Dwarf_Debug_s* Dwarf_Debug;

rev 1.83, 17 Newember 2009 -10-

-11 -

An instance of thé&war f _Debug type is created as a result of a successful calivar f _init (), or

dwarf _elf_init(),andis used as a descriptor for subsequent access td ntbdar f functions on

that object. The storage pointed to by this descriptor should be not be freed, using the
dwar f _deal | oc() function. Insteadree it withdwar f _fi ni sh().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of ebwar f _Di e type is returned from a successful call to thwar f _si bl i ngof (),
dwarf _chil d, ordwarf _of fdi e() function, and is used as a descriptor for queries about information
related to that DIE.The storage pointed to by this descriptor should be freed, damgf _deal | oc()

with the allocation typ®W DLA_ DI E when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances ofDwar f _Li ne type are returned from a successful call to tvearf _srclines()

function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individually freed, usirdwarf_deal | oc() with the allocation type

DW DLA LI NEwhen no longer needed.

typedef struct Dwarf_d obal _s* Dwarf_d obal;

Instances oDwar f _G obal type are returned from a successful call todhar f _get _gl obal s()
function, and are used as descriptors for queries about global names (pubnames).

typedef struct Dwarf_Weak s* Dwarf_Weak;

Instances of Dwarf _\Weak type are returned from a successful call to the SGI-specif
dwar f _get weaks() function, and are used as descriptors for queries about weak names. The storage
pointed to by these descriptors should be individually freed, udimar f _deal | oc() with the
allocation type DW DLA WEAK CONTEXT (or DW DLA WEAK, an dder name, supported for
compatibility) when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf _Func type are returned from a successful call to the SGI-specif
dwar f _get funcs() function, and are used as descriptors for queries about static function names.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf_Type type are returned from a successful call to the SGI-specif
dwar f _get _types() function, and are used as descriptors for queries about user defined types.

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf _Var type are returned from a successful call to the SGlI-specif
dwar f _get var s() function, and are used as descriptors for queries about static variables.

typedef struct Dwarf_Error_s* Dwarf_Error;

This descriptor points to a structure that provides detailed information about errors detédtod\ogr f .
Users typically provide a location fdri bdwar f to store this descriptor for the user to obtain more
information about the error The storage pointed to by this descriptor should be freed, using
dwar f _deal | oc() with the allocation typ®wW DLA ERRCRwhen no longer needed.

rev 1.83, 17 Newember 2009 -11-

-12 -

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances obwar f _At t ri but e type are returned from a successful call todtarf _attrlist(),
ordwarf_attr () functions, and are used as descriptors for queries about attrédués.v Thestorage
pointed to by this descriptor should be individually freed, udiwgr f _deal | oc() with the allocation
typeDW DLA_ATTRwhen no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of @war f _Abbr ev type is returned from a successful calldwar f _get abbrev(),
and is used as a descriptor for queries about wibtions in the .dalg_abbre section. Thestorage
pointed to by this descriptor should be freed, usitvgar f _deal | oc() with the allocation type
DW DLA ABBREV when no longer needed.

typedef struct Dwarf_Fde_s* Dwarf_Fde;

Instances oDwar f _Fde type are returned from a successful call todinar f _get _fde_list(),
dwarf _get _fde for_die(),ordwarf_get fde_at_ pc() functions, and are used as descriptors
for queries about frames descriptors.

typedef struct Dwarf_Cie_s* Dwarf_Cie;

Instances oDwar f _Ci e type are returned from a successful call to derf_get _fde_list()
function, and are used as descriptors for queries about information that is commearaidrsenes.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances oDwar f _Ar ange type are returned from successful calls todkar f _get _ar anges(),
ordwar f _get _arange() functions, and are used as descriptors for queries about address fHmges.
storage pointed to by this descriptor should be individually freed, usiagf deal | oc() with the
allocation typeDW DLA ARANGE when no longer needed.

3. Error Handling

The method for detection and disposition of error conditions that arise during accessugdgirtgb
information vialibdwarf is consistent across dibdwarf functions that are capable of producing an error
This section describes the method usetittmwarf in notifying client programs of error conditions.

Most functions withinlibdwarf accept as an argument a pointer tbwar f _Er r or descriptor where a
Dwar f _Error descriptor is stored if an error is detected by the functiRoutines in the client program
that provide this argument can query Bwvear f _Er r or descriptor to determine the nature of the error and
perform appropriate processing.

A client program can also specify a function to baked upon detection of an error at the time the library

is initialized (seedwar f _i ni t ()). Whenalibdwarf routine detects an errahis function is called with

two alguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(agpin seedwar f _i nit()). Thispointer argument can be used to relay information between the error
handler and other routines of the client prograiclient program can specify or change both the error
handling function and the pointer argument after initialization uslmgrf set errhand() and

dwarf _seterrarg().

In the case wherBbdwarf functions are not provided a pointer tdaar f _Er r or descriptoy and no

error handling function was provided at initializatidipdwarf functions terminate x@cution by calling
abort (3C).

rev 1.83, 17 Neember 2009 -12 -

-13 -

The following lists the processing steps taken upon detection of an error:

1. Checkthe error argument; if not aNULL pointer dlocate and initialize ebwar f _Err or
descriptor with information describing the errptace this descriptor in the area pointed to by
error, and return a value indicating an error condition.

2. If anerrhand amgument was provided tdwar f _i ni t () at initialization, caller r hand()
passing it the error descriptor and the value of #werarg amgument provided to
dwarf _init(). If the error handling function returns, return a value indicating an error
condition.

3. Terminate programxecution by callingabort (3C) .

In all cases, it is clear from thelue returned from a function that an error occurredxatiging the
function, since DW_DLV_ERROR is returned.

As can be seen from the aleogeps, the client program can pide an error handler at initialization, and
still provide aner r or argument tolibdwarf functions when it is not desired toveathe error handler
invoked.

If a libdwarf function is called with imalid arguments, the behavior is unigbefd. In particular,
supplying aNULL pointer to al i bdwar f function (except where explicitly permitted), or pointers to
invalid addresses or uninitialized data causes undefined behavior; the retum im such cases is
undefned, and the function may fail tovioke the caller supplied error handler or to return a meaningful
error number Implementations also may aboxeeution for such cases.

3.1 Returned valuesin the functional interface

Values returned by i bdwar f functions to indicate success and errors are enumerated in Figlife?2.
DW DLV_NO ENTRY case is useful for functions need to indicate that while thasen® data to return
there was no error eithefor example,dwar f _si bl i ngof () may returnDW DLV_NO_ENTRY to
indicate that that there was no sibling to return.

SYMBOLIC NAME VALUE MEANING
DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable value

Figure 2. Error Indications
Each function in the interface that returns a value returns one of the integers invihégaive.

If DW DLV_ERRORIs returned and a pointer tdDwar f _Er r or pointer is passed to the function, then a
Dwarf_Error handle is returned through the poinlier ather pointer value in the intexée returns aatue.
After the Dwar f _Error is no longer of interest, a
dwar f _deal | oc(dbg, dw _err, DW DLA ERROR) on the error pointer is appropriate to freey an
space used by the error information.

If DW DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW DLV_(Kis returned, th&war f _Err or pointet if supplied, is not touched, butyanther values to

be returned through pointers are returned. In this case calls (depending racthierction returning the
error) todwar f _deal | oc() may be appropriate once the particular pointer returned is no longer of
interest.

Pointers passed to allovalues to be returned through them are uniformly the last pointers in each
argument list.

All the interface functions are defined from the point ofwief the writer-of-the-library (as is traditional

rev 1.83, 17 Newember 2009 -13-

-14 -

for UN*X library documentation), not from the point of wieof the user of the libraryThe caller might
code:

Dwarf_Line |ine;

Dwarf _Signed ret | off;

Dwarf _Error err;

int retval = dwarf_lineoff(line, & et _|off, &err);

for the function defined as

int dwarf_lineoff(Dwarf_Line Iine, Dnarf_Signed *return_Ilineoff,
Dwarf _Error* err);

and this document refers to the function as returning @ahee\through *err or *return_linebbr uses the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

4. Memory M anagement

Several of the functions that comprisdodwarf return pointers (opaque descriptors) to structures that ha
been dynamically allocated by the libraryo ad in the management of dynamic memahe function
dwar f _deal | oc() is provided to free storage allocated as a result of a callibovearf function. This
section describes the strategy that should be taken by a client program in managing dynamic storage.

4.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a resultibfisarf Consumer Library call should be
assumed to point to read-only memofihe results are undeéd forlibdwarf clients that attempt to write
to a region pointed to by a value returned tiypdwarf Consumer Library call.

4.2 Storage Deallocation

See the section "Returned values in the functional adetf abwe, for the general rules where calls to
dwar f _deal | oc() is appropriate.

In some cases the pointers returned bydwarf call are pointers to data which is not freeable. The library
knows from the allocation type praled to it whether the space is freeable or not and will not free
inappropriately whemdwar f _deal | oc() is called. So it is vital thalwar f _deal | oc() be called
with the proper allocation type.

For most storage allocated byibdwarf, the client can free the storage for reuse by calling
dwar f _deal | oc(), providing it with theDwar f _Debug descriptor specifying the object for which the
storage was allocated, a pointer to the area to be free-ed, and ateidtvaif specifies what the pointer
points to (the allocation type)For example, to free éwarf _Di e di e belonging the the object
represented byDwar f _Debug dbg, dlocated by a call todwarf _si blingof (), the call to
dwar f _deal | oc() would be:

dwar f _deal | oc(dbg, die, DWDLA DIE);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list
should be deallocated, folled by deallocation of the actual list itself. The following code fragment uses
an invocation ofdwarf _attrlist() as an example to illustrate a technique that can be used to free
storage from anlibdwarf routine that returns a list:

rev 1.83, 17 Newember 2009 -14 -

-15-

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(somedie, &atlist,&tcnt, &error);
if (errv == DWDLV_OK) {

for (i =0; i <atcnt; ++i) {
[* use atlist[i] */
dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);

}
dwarf _deal | oc(dbg, atlist, DWDLA LIST);

The Dwar f _Debug returned fromdwarf _init() ordwarf_elf_init() cannot be freed using
dwar f _deal | oc(). The functiondwar f _fi ni sh() will deallocate all dynamic storage associated
with an instance of Bwar f _Debug type. Inparticular it will deallocate all dynamically allocated space
associated with thBwar f _Debug descriptoyand finally male the descriptor ialid.

An Dwar f _Error returned fromdwarf _init() ordwarf_elf _init() in case of a failure cannot
be freed usinglwar f _deal | oc() . The only way to free thédwar f _Err or from either of those calls
is to usefree(3) directly. Every Dwarf Error must be freed bylwar f _deal | oc() except those

returned bydwar f _init () ordwarf _elf_init().

The codes that identify the storage pointed to in caliver f _deal | oc() are described in figure 3.

rev 1.83, 17 Neember 2009 -15-

-16 -

IDENTIFIER USED TO FREE
DW_DLA_STRING char*

DW_DLA LOC Dwarf_Loc
DW_DLA_LOCDESC Dvarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA_DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute
DW_DLA_TYPE Dwarf_Type (notused)
DW_DLA_SUBSCR Dvarf_Subscr (not used)
DW_DLA_GLOBAL_CONTEXT Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST alist of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dvarf_Frame_Op
DW_DLA_CIE Dwarf_Cie

DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_Loc Block
DW_DLA_ FRAME_BLOCK Dwarf_Frame Block (not used
DW_DLA_FUNC_CONTEXT Dvarf_Func
DW_DLA_TYPENAME_CONTEXT Dwarf_Type
DW_DLA_VAR_CONTEXT Dwarf_Var
DW_DLA_WEAK_CONTEXT Dwarf_Weak
DW_DLA_PUBTYPES_CONTEXT Dwrf_Pubtype

Figure 3. Allocation/Deallocation Identifiers

5. Functional Interface

This section describes the functionsitable in thelibdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the funstimperation.

The following sections describe these functions.

5.1 Initialization Operations

These functions are concerned with preparing an objecfdr subsequent access by the functions in
libdwarf and with releasing allocated resources when access is complete.

5.1.1 dwarf _init()

rev 1.83, 17 Neember 2009 -16 -

-17 -

int dwarf _init(
int fd,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,
Dwar f _Debug * dbg,
Dwarf _Error *error)

When it returnsDW DLV_OK, the functiondwar f _i ni t () returns throughdbg a Dwar f _Debug
descriptor that represents a handle for accessing debugging records associated with tleedeserigdtor

fd. DWDLV_NO ENTRY is returned if the object does not contailV®RF debugging information.
DW DLV_ERRORis returned if an error occurredheaccess argument indicates what access is\atd

for the section.The DW DLC_READ parameter is valid for read access (only read access is defined or
discussed in this documentlhe err hand argument is a pointer to a function that will besdked
whenever an aror is detected as a result ofibdwarf operation. Theer r ar g agument is passed as an
argument to theer r hand function. Thefile descriptor associated with thd argument must refer to an
ordinary file (i.e. not a pipe, socket, device, /proc en&y.), be opened with the at least as much
permission as specified by tlaecess argument, and cannot be closed or used as an argumery to an
system calls by the client until aftdwar f _f i ni sh() is called. The seek position of thkefassociated
with f d is undefined upon return dfvar f _i nit ().

With SGI IRIX, by default it is allowed that the app ose() fd immediately after calling
dwar f _i ni t (), but that is nota portable approach (that it works is an accidental side effect oftte f
that SGI IRIX use€ELF_C READ MVAP in its hidden internal call tel f _begi n()). The portable
approach is to consider thad must be left open till after the correspondingadiwfinish() call has
returned.

Sincedwar f _i ni t () uses the same error handling processing as ttidwarf functions (seeerror
Handling above), client programs will generally supply @nr or parameter to bypass the delt actions
during initialization unless the default actions are appropriate.

5.1.2 dwarf_df_init()

int dwarf_elf _init(
EIf * elf file_pointer,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf_Ptr errarg,
Dwar f _Debug * dbg,
Dwar f _Error *error)

The functiondwar f _el f _i ni t () is identical todwar f i nit () except that an opeBl f * pointer

is passed instead of @efdescriptor In systems supportingLF object files this may be more space or
time-eficient than usinglwar f _i nit (). The client is allowed to use thg f * pointer for its avn
purposes without restriction during the time twar f _Debug is open, gcept that the client should not
el f _end() the pointer till afterdwar f _fi ni shis called.

5.1.3 dwarf_get_elf()

rev 1.83, 17 Newember 2009 -17 -

-18 -

int dwarf_get_el f(
Dwar f _Debug dbg,
Elf ** el f,
Dwarf _Error *error)

When it returnW DLV_CK, the functiondwar f _get _el f () returns through the pointet f theEl f
* handle used to access the object represented byowhef Debug descriptordbg. It returns
DW DLV_ERROR 0N error.

Becausa nt dwarf _i nit () opens an Elf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran gp should uselwar f _get _el f and should calel f _end with the pointer returned
through theEl f ** handle created biynt dwarf _init().

This function is not meaningful for a system that does not use the EIlf format for objects.

5.1.4 dwarf_finish()

int dwarf _finish(
Dwar f _Debug dbg,
Dwarf Error *error)

The functiondwar f _fi ni sh() releases alLibdwarf internal resources associated with the descriptor
dbg, and invalidatesdbg. It returnsDW DLV_ERRORf there is an error during the finishing operatidh.
returnsDW DLV _OK for a successful operation.

Becausa nt dwarf i nit() opens an EIf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran gp should uselwar f _get el f and should calel f _end with the pointer returned
through theel f ** handle created hiynt dwarf _init().

5.1.5 dwarf_set_stringcheck()

int dwarf_set_stringcheck(
i nt stringcheck)

The functioni nt dwarf_set _stringcheck() sets a global flag and returns theviwes value of
the global flag.

If the stringcheck global flag is zero (the aeit) libdwarf does not do string length validity checks. If the
stringcheck global flag is non-zero libdv does do string length validity checks (the checks de slo
libdwarf down).

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

5.1.6 dwarf_set_reloc_application()

int dwarf_set _reloc_application(
int apply)

The functioni nt dwarf_set rel oc_application() sets a global flag and returns thevioes
value of the global flag.

rev 1.83, 17 Neember 2009 -18 -

-19 -

If the reloc_application global flag is non-zero (the default) then the applicable .rela section &ists)e e
will be processed and applied toydDWARF section when it is read in. If the reloc_application global flag
is zero no such relocation-application is attempted.

Not all machine types (elf header e_machine) or all relocations are supported, but thew velyctgion
types apply to BWARF debug sections.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

It seems unlikely anyone will need to call this function.

5.2 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries.

5.2.1 Debugging Information Entry Debugger Delivery Operations

5.2.2 dwarf _next_cu_header()

int dwarf_next cu_header (
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_offset,
Dwar f _Hal f *address_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

The functiondwar f _next _cu_header () returnsDW DLV_ERROR if it fails, and DW DLV_OX if it
succeeds.

If it succeeds* next _cu_header is set to the offset in the .debug_info section of thé cempilation-

unit header if it succeed$n reading the last compilation-unit header in the .debug_info section it contains
the size of the .debug info section. The next call dearf next cu_header () returns

DW DLV_NO _ENTRY without reading a compilation-unit or settifignext _cu_header. Subsequent

calls todwar f _next cu_header () repeat the cycle by reading the first compilation-unit and so on.

The other values returned through pointers are #iaes in the compilation-unit headelf any of
cu_header | ength, version_stanp, abbrev_offset, or address_si ze is NULL, the
argument is ignored (meaning it is not an error to proviNeld. pointer).

5.2.3 dwarf_siblingof()

i nt dwarf_si bl i ngof (
Dwar f _Debug dbg,
Dwarf_Die die,

Dwarf _Die *return_sib,
Dwarf _Error *error)

The functiondwar f _si bl i ngof () returnsDW DLV_ERROR and sets ther r or pointer on error If

rev 1.83, 17 Neember 2009 -19-

-20 -

there is no sibling it returnBW DLV_NO_ENTRY. When it succeedsjwar f _si bl i ngof () returns
DW DLV_OK and setér et urn_si b to theDwar f _Di e descriptor of the sibling afi e.

If di e is NULL, the Dwar f _Di e descriptor of the first die in the compilation-unit is returned. This die
has theDW TAG conpi |l e_unit,DW TAG partial _unit,or DW TAG type_unit tag.

Dwarf Die return_sib = 0;
Dwarf Error error = 0;
int res;
/* in_die mght be NULL or a vaid Dnarf_Die */
res = dwarf_siblingof(dbg,in_die, &eturn_sib, &error);
if (res == DWDLV_OK) {
/* Use return_sib here. */
dwar f _deal | oc(dbg, return_sib, DWDLA D E);
/* return_sib is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_sib = 0;

5.2.4 dwarf_child()

int dwarf_chil d(
Dwarf _Die die,
Dwarf Die *return_Kkid,
Dwarf Error *error)

The functiondwar f _chi | d() returnsDW DLV_ERRCR and sets ther r or die on error If there is no
child it returnsDW DLV_NO _ENTRY. When it succeedgjwarf chi | d() returnsDW DLV_OK and
sets *return_kid to the Dwarf_Di e descriptor of the first child ofdi e. The function
dwar f _si bl i ngof () can be used with the returralue ofdwarf _chil d() to access the other
children ofdi e.

Dwarf _Die return_kid = O;
Dwarf _Error error = 0;
int res;

res = dwarf_child(dbg,in_die, & eturn_kid, &error);
if (res == DWDLV_OK) {
/* Use return_kid here. */
dwarf _deal | oc(dbg, return_kid, DWDLA D E);
/* return_die is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_kid = 0;

5.2.5 dwarf_offdie)

rev 1.83, 17 Neember 2009 -20 -

-21-

int dwarf_offdie(
Dwar f _Debug dbg,
Dwarf_ O f offset,
Dwarf _Die *return_die,
Dwarf _Error *error)

The functiondwar f _of f di e() returnsDW DLV_ERROR and sets therr or die on error When it
succeedsdwar f _of f di e() returnsDW DLV_CK and sets*r et urn_di e to the theDwarf_Di e
descriptor of the debugging information entryo&f set in the section containing defging information
entries i.e the .dely_info section.A return of DW DLV_NO _ENTRY means that thef f set in the
section is of a byte containing all O bits, indicating that there is no\aatioe code. Meaning thiglie
offset’ is not the offset of a real dieyths instead an offset of a null die, a padding die, or of some random
zero byte: this should not be returned in normal usds the uses responsibility to ma& wure that

of f set is the start of a valid debugging information entffe result of passing it anviid offset could

be chaos.

Dwarf Error error = 0;
Dwarf Die return_die = 0;
int res;

res = dwarf_offdi e(dbg, die_offset, & eturn_die, &error);
if (res == DWDLV_OK) {
/* Use return_die here. */
dwar f _deal | oc(dbg, return_die, DWDLA D E);
/* return_die is no |longer usable for anything, we
ensure we do not use it accidentally with: */
return_die = 0;

5.3 Debugging Information Entry Query Operations

These queries return specific information aboutudgbng information entries or a descriptor that can be
used on subsequent queries whererga Dwar f _Di e descriptor Note that some operations are specif
to debugging information entries that are representedwaaf Di e descriptor of a specific typeror
example, not all debugging information entries contain an attribute having a name, so consexahtly
to dwar f _di ename() using aDwar f _Di e descriptor that does not\Vea rmme attribute will return
DW DLV_NO ENTRY. This is not an errgii.e. calling a function that needs a specific attebis not an
error for a die that does not contain that specific attribute.

There are s@ral methods that can be used to obtain the value of an attributevenaligi:

1. Calldwarf _hasattr() to determine if the debugging information entry has the attribute of
interest prior to issuing the query for information about the attribute.

2. Supplyanerror amgument, and check itsalue after the call to a query indicates an unsuccessful
return, to determine the nature of the problérheer r or argument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to hare a1 eror handling function iwmoked upon detection of an error (see
dwarf _init()).

rev 1.83, 17 Neember 2009 -21-

-22-

4. Calldwarf _attrlist() and iterate through the returned list of attributes, dealing with each one
as appropriate.

5.3.1 dwarf_tag()

int dwarf_tag(
Dwarf _Die die,
Dwarf Hal f *tagval,
Dwarf Error *error)

The functiondwar f _t ag() returns theag of di e through the pointet agval if it succeeds. It returns
DW DLV_Xif it succeeds. It returnBW DLV_ERRORon error.

5.3.2 dwarf_dieoffset()

i nt dwarf_di eof fset(
Dwarf_Die die,
Dwarf O f * return_offset,
Dwarf _Error *error)

When it succeeds, the functiondwarf _dieoffset() returns DWDLV_OK and sets
*return_of f set to the position oddi e in the section containing defyging information entries (the
return_of f set is a section-relate dfset). Inother words, it setset ur n_of f set to the offset of
the start of the debugging information entry describeddbg in the section containing dies i.e
.delug_info. ItreturnsDW DLV_ERROR on error.

5.3.3 dwarf_die CU_offset()

int dwarf_di e CU of fset(
Dwarf _Die die,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _di e_CU of f set () is similar todwar f _di eof f set (), except that it puts the
offset of the DIE represented by tiwarf Di e di e, from the start of the compilation-unit that it
belongs to rather than the start of .debug_infor(teur n_of f set is a CU-relatre dfset).

5.3.4 dwarf_CU_dieoffset_given_die()

int dwarf_CU di eof fset_given_di e(
Dwarf_Di e given_die,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _CU _di eof f set _gi ven_di e() is similar todwarf _di e_CU of fset (),
except that it puts the global offset of the CU DIRvning gi ven_di e of .debug_info (the
return_of f set is a global section offset).

This is useful when processing a DIE tree and encountering an error or other surprise in a DIE, as the
return_of fset can be passed wwar f _of fdi e() to return a pointer to the CU die of the CU

rev 1.83, 17 Newember 2009 -22-

-23-

owning thegi ven_di e passed tawar f _CU _di eof f set _gi ven_di e() . The consumer carxgact
information from the CU die and tlgg ven_di e (in the normal way) and print it.

An example (ashippet) of code using this function follows. It assumes itimatdi e is a DIE that, for
some reason, you Y& decided needs CU comteprinted (assumingri nt _di e_dat a does some
reasonable printing).

int res;
Dwarf_Off cudieof = 0;
Dwarf_Die cudie = 0;

print_die_data(dbg,in_die);
res = dwarf_CU_dieoffset wgn_die(in_die,&cudieoff,&error);
if(res != DW_DLV_OK) {
printf("FAIL: dwarf_CU_dieoffset_gien_die did not workO0);
exit(1);
}
res = dwarf_offdie(dbg,cudieoff,&cudie,&error);
if(res != DW_DLV_OK) {
printf("FAIL: dwarf_offdie did not workO0);
exit(1);
}
print_die_data(dbg,cudie);
dwarf_dealloc(dbg,cudie, DW_DLA_DIE);

5.3.5 dwarf_die CU_offset_range()

int dwarf_di e CU of fset_range(
Dwarf _Die die,
Dwarf O f *cu_gl obal offset,
Dwarf O f *cu_l ength,
Dwar f _Error *error)

The functiondwar f _di e_CU of f set _range() returns the déet of the beginning of the CU and the
length of the CU. The offset and length are of the entire CU that this DIE is a pdttiefused by
dwarfdump (for example) to check the validity ofsgits. Mostpplications will hae o reason to call this
function.

5.3.6 dwarf_dienameg()

i nt dwarf _di enanme(
Dwarf_Di e die,
char ** return_nane,
Dwarf _Error *error)

When it succeeds, the functidwar f _di enanme() returnsDW DLV_OK and setgr et ur n_nane to a
pointer to a null-terminated string of characters that represents the name attriloite. oft returns
DW DLV_NO ENTRY if di e does not hee a rmame attrilnte. It returnsDW DLV_ERROR if an error

rev 1.83, 17 Neember 2009 -23-

-24 -

occurred. Thestorage pointed to by a successful returdwidr f _di ename() should be freed using the
allocation typeDW DLA_STRI NGwhen no longer of interest (sdear f _deal | oc()).

5.3.7 dwarf_die abbrev_code()

int dwarf_di e _abbrev_code(Dwarf _Die die,)

The function returns the abbreviation code of the DIBat is, it returns the abbreviation "index" into the
abbreiation table for the compilation unit of which the DIE is a pdtrcannot fail. No errors are possible.
The pointerdi e() must not be NULL.

5.3.8 dwarf_attrlist()

int dwarf_attrlist(
Dwarf_Die die,
Dwarf Attribute** attrbuf,
Dwar f _Si gned *attrcount,
Dwarf _Error *error)

When it returndW DLV_CK, the functiondwar f _attrli st () setsattrbuf to point to an array of
Dwar f _Attri but e descriptors corresponding to each of the aiteb in die, and returns the number of
elements in the array througtt t r count . DW DLV_NO _ENTRY is returned if the count is zero (no
att r buf is allocated in this casePDW DLV_ERROR is returned on errorOn a siccessful return from
dwarf _attrlist(), each of theDwarf _Attri but e descriptors should be individually freed using
dwar f _deal | oc() with the allocation typ®W DLA ATTR, followed by free-ing the list pointed to by
*at tr buf using dwar f _deal | oc() with the allocation typeDW DLA LI ST, when no longer of
interest (seewar f _deal | oc()).

Freeing the attrlist:

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(sonedie, &atlist,&tcnt, &error);
if (errv == DWDLV_X) {

for (i =0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);

}
dwarf _deal | oc(dbg, atlist, DWDLA LIST);

}

5.3.9 dwarf_hasattr()

rev 1.83, 17 Newember 2009 -24 -

-25-

int dwarf_hasattr(
Dwarf_Di e die,
Dwarf_ Hal f attr,
Dwarf _Bool *return_bool,
Dwarf _Error *error)

When it succeeds, the functiolwar f _hasattr () returnsDW DLV_COK and sets r et ur n_bool to
non-zero if di e has the attributat t r andzero otherwise. Ifit fails, it returnsDW DLV _ERROR.

5.3.10 dwarf_attr()

int dwarf_attr(
Dwarf _Die die,
Dwarf Hal f attr,
Dwarf Attribute *return_attr,
Dwar f _Error *error)

When it returns DW DLV_OK, the function dwarf _attr() sets *return_attr to the
Dwar f _Attri but e descriptor ofdi e having the attrilmte at t r. It returnsDW DLV_NO_ENTRY if
attr is not contained idi e. It returnsDW DLV_ERRORf an error occurred.

5.3.11 dwarf_lowpc()

int dwarf _| owpc(
Dwarf _Die di e,
Dwar f _Addr * return_I| owpc,
Dwarf _Error * error)

The functiondwar f _| owpc() returnsDW DLV_OK and sets‘r et ur n_| owpc to the lav program
counter value associated with tihiee descriptor ifdi e represents a dagging information entry with this
attribute. ItreturnsDW DLV_NO _ENTRY if di e does not hee this attritute. ItreturnsDW DLV_ERROR
if an error occurred.

5.3.12 dwarf_highpc()

i nt dwarf _hi ghpc(
Dwarf _Die die,
Dwarf _Addr * return_highpc,
Dwar f _Error *error)

The functiondwar f _hi ghpc() returnsDW DLV_OK and sets‘r et ur n_hi ghpc the high program
counter value associated with tthiee descriptor ifdi e represents a debugging information entry with this
attribute. ItreturnsDW DLV_NO _ENTRY if di e does not hee tis attritute. ItreturnsDW DLV_ERROR

if an error occurred.

5.3.13 dwarf_bytesize()

rev 1.83, 17 Neember 2009 -25-

-26 -

Dwar f _Si gned dwarf _byt esi ze(

Dwarf_Di e di e,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _byt esi ze() returnsDW DLV_OK and sets r et ur n_si ze to the number
of bytes needed to contain an instance of the gggreebugging information entry representedibe. It
returnsDW DLV_NO _ENTRY if di e does not contain the byte size atitddDW AT byt e_si ze. It
returnsDW DLV_ERRORIf an error occurred.

5.3.14 dwarf_bitsize()

int dwarf _bitsize(
Dwarf _Die die,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedgiwar f _bi t si ze() returnsDW DLV_OK and set$r et ur n_si ze to the number of
bits occupied by the bit field value that is an attribute of thengiie. It returnsDW DLV_NO _ENTRY if
di e does not contain the bit size attrib DW AT _bit _si ze. It returnsDW DLV_ERROR if an error
occurred.

5.3.15 dwarf_bitoffset()

int dwarf_bitoffset(
Dwarf _Di e die,
Dwarf _Unsigned *return_size,
Dwarf _Error *error)

When it succeedsiwar f _bi t of f set () returnsDW DLV_OK and setér et ur n_si ze to the number
of bits to the left of the most significant bit of the bit fiellwe. Thishit offset is not necessarily the net bit
offset within the structure or class , sirfid@&/ AT_dat a_nmenber _| ocat i on may give a lyte offset to
this DI E and the bit offset returned through the pointer does not include the bits in the fogte df
returnsDW DLV_NO _ENTRY if di e does not contain the bit offset attrte DW AT _bit _of fset. It
returnsDW DLV_ERRORIf an error occurred.

5.3.16 dwarf_srclang()

i nt dwarf _srcl ang(
Dwarf _Die die,
Dwarf _Unsigned *return_|ang,
Dwar f _Error *error)

When it succeedsgwar f _srcl ang() returnsDW DLV_CK and sets*return_|l ang to a code
indicating the source language of the compilation unit represented by the desdriptort returns
DW DLV_NO _ENTRY if di e does not represent a souride flebugging information entry (i.e. contain the
attributeDW AT | anguage). It returnsDW DLV_ERRORIf an error occurred.

rev 1.83, 17 Neember 2009 -26 -

-27-

5.3.17 dwarf_arrayorder()

int dwarf_arrayorder(
Dwarf _Die die,
Dwarf _Unsigned *return_order,
Dwar f _Error *error)

When it succeedgjwar f _arrayorder () returnsDW DLV_OK and sets*ret urn_order a ode
indicating the ordering of the array represented by the descdptor It returnsDW DLV_NO _ENTRY if
di e does not contain the array order atitdeDW AT _or deri ng. It returnsDW DLV_ERRORIf an error
occurred.

5.4 Attribute Form Queries

Based on the attributes form, these operations are concerned with returning uninterpretie datiéh
Since it is not alays obvious from the returnalue of these functions if an error occurred, one should
always supply arerr or parameter or hee aranged to hee a eror handling function imoked (see
dwar f _i ni t ()) to determine the validity of the returned value and the natureyodraors that may hae
occurred.

A Dwarf_ Attribute descriptor describes an attribute of a specific die. Thus, each
Dwar f _Att ri but e descriptor is implicitly associated with a specific die.

5.4.1 dwarf_hasform()

i nt dwarf _hasforn{
Dwarf Attribute attr,
Dwarf Half form
Dwarf _Bool *return_hasform
Dwar f _Error *error)

The functiondwar f _hasf or m() returnsDW DLV_OK and andhuts anon-zero

value in the*r et urn_hasf or m boolean if the attribute represented by thearf Attri bute
descriptorat t r has the attribute formhor m If the attribute does not & that form zero is put into
*return_hasform DW DLV_ERRORIs returned on error.

5.4.2 dwarf_whatform()

i nt dwarf_what f orm(
Dwarf _Attribute attr,
Dwar f _Hal f *return_form
Dwarf _Error *error)

When it succeedsiwar f _what f or n() returnsDW DLV_OK and sets r et ur n_f or mto the attrilnte
form code of the attribute represented by thearf Attri bute descriptorattr. It returns
DW DLV_ERRCR on error An dtribute using DW_FORM_indirect &fctively has tw forms. This
function returns the ‘final’ form foDW FORM i ndi r ect, not the DW FORM i ndi r ect itself. This
function is what most applications will want to call.

rev 1.83, 17 Neember 2009 -27 -

-28 -

5.4.3 dwarf_whatform_direct()

int dwarf_whatformdirect(
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwar f _Error *error)

When it succeedsjwar f _what form direct () returnsDW DLV_OK and setsret urn_f ormto
the attrilute form code of the attribute represented by Darf Attri bute descriptorattr. It
returns DW DLV_ERROR on error An atribute usingDW FORM i ndi r ect effectively has two forms.
This returns the form ‘directly’ in the initial fornield. Sowhen the formitld is DW FORM i ndi r ect

this call returns th&W FORM i ndi r ect form, which is sometimes useful for dump utilities.

5.4.4 dwarf_whatattr()

int dwarf_whatattr(
Dwarf Attribute attr,
Dwar f _Hal f *return_ attr,
Dwarf _Error *error)

When it succeedsiwar f _what attr () returnsDW DLV_OK and setgret urn_at tr to the attrilute
code represented by tbear f _At t ri but e descriptorat t r. It returns DW DLV_ERROR on error.

5.4.5 dwarf_formref()

int dwarf _fornref(
Dwarf Attribute attr,
Dwar f O f *return_of fset,
Dwar f _Error *error)

When it succeedgjwar f _fornref () returnsDW DLV_OK and sets'ret ur n_of f set to the CU-
relative dfset represented by the descripaott r if the form of the attribute belongs to tREFERENCE
class.att r must be a CU-local reference, not fobW FORM r ef _addr . Itis an eror for the form to
not belong to this class or to be foldV FORM r ef _addr . It returnsDW DLV_ERROR on error See
alsodwar f _gl obal _fornref below.

5.4.6 dwarf_global_formref()

i nt dwarf_gl obal _fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwarf _Error *error)

When it succeedsiwar f _gl obal _fornref () returnsDW DLV_OK and setsr et urn_of f set to
the .delng_info-section-relate dfset represented by the descriptdrt r if the form of the attribte
belongs to theREFERENCE class. attr can be ay legd REFERENCE class form including
DW FORM r ef _addr . Itis an eror for the form to not belong to this class. It retubvg DLV _ERROR
on error See alsalwar f _f or nr ef above.

rev 1.83, 17 Newember 2009 -28-

-29 -

5.4.7 dwarf_formaddr()

i nt dwarf _fornaddr(
Dwarf Attribute attr,
Dwar f _Addr * return_addr,
Dwar f _Error *error)

When it succeedsiwar f _f or maddr () returnsDW DLV_OK and set$r et ur n_addr to the address
represented by the descriptdrt r if the form of the attribte belongs to thADDRESS class. lItis an error
for the form to not belong to this class. It retubM DLV_ERRCR on error.

5.4.8 dwarf_formflag()

int dwarf_fornflag(
Dwarf Attribute attr,
Dwarf _Bool * return_bool,
Dwarf _Error *error)

When it succeedsiwar f _f ornfl ag() returnsDW DLV_OK and setgr et ur n_bool 1 (i.e. true) (if
the attribute has a non-zero value) @r(i.e. false) (if the attribute has a zeralue). It returns
DW DLV_ERRORon error or if theat t r does not hee form flag.

5.4.9 dwarf_formudata()

i nt dwarf _fornudata(
Dwarf Attribute attr,
Dwarf _Unsigned * return_uval ue,
Dwar f _Error * error)

The function dwarf fornudata() returns DWDLV_OK and sets*return_uval ue to the
Dwar f _Unsi gned vaue of the attribte represented by the descripaart r if the form of the attribte
belongs to theCONSTANT class. Itis an error for the form to not belong to this class. It returns
DwW DLV_ERROR 0N error.

5.4.10 dwarf_formsdata()

i nt dwarf_fornsdat a(
Dwarf Attribute attr,
Dwarf _Signed * return_sval ue,
Dwarf _Error *error)

The function dwarf _formsdata() returns DWDLV_OK and sets*return_sval ue to the
Dwar f _Si gned vaue of the attribute represented by the descriptarr if the form of the attribte
belongs to th&CONSTANT class. Itis an error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size dle f _Si gned type, its value is signxéended. It
returnsDW DLV_ERRCR on error.

rev 1.83, 17 Neember 2009 -29-

-30-

5.4.11 dwarf_formblock()

int dwarf _fornbl ock(
Dwarf Attribute attr,
Dwarf Bl ock ** return_bl ock,
Dwar f _Error * error)

The functiondwar f _f or nbl ock() returnsDW DLV_OK and setsr et ur n_bl ock to a pointer to a
Dwar f Bl ock structure containing the value of the attribute represented by the desatiptorif the
form of the attribute belongs to tlBt OCK class. Itis an error for the form to not belong to this cla¥he
storage pointed to by a successful returnheér f _f or nbl ock() should be freed using the allocation
type DW DLA BLOCK, when no longer of interest (seelwarf _dealloc()). It returns
DwW DLV_ERROR 0N error.

5.4.12 dwarf_formstring()

int dwarf_fornmstring(
Dwarf Attribute attr,
char ** return_string,
Dwarf _Error *error)

The functiondwar f _f or mst ri ng() returnsDW DLV_OK and set$r et urn_stri ng to a pointer to
a rull-terminated string containing the value of the attribute represented by the desdriptoif the form
of the attribute belongs to tt&TRI NG class. Itis an error for the form to not belong to this clagte
storage pointed to by a successful returdwér f _f or nstri ng() should not be freedThe pointer
points into existing BVARF memory and the pointer becomes stalelith after a call to
dwarf _finish. dwarf_fornstring() returnsDW DLV_ERRCRon error.

5.4.12.1 dwarf_loclist_n()

int dwarf_loclist_n(
Dwarf Attribute attr,
Dwarf _Locdesc ***| | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The functiondwar f _| ocl i st_n() sets*| | buf to point to an array obwar f _Locdesc pointers
corresponding to each of the locatiofpeessions in a location list, and séts st | en to the number of
elements in the array and retu\& DLV_OK if the attribute is appropriate.

This is the preferred function for asf_Locdesc as it is the interface allowing access to an entire loclist.
(use ofdwar f _I ocl i st_n() is suggested as the better inhed, thougtdwar f _| ocl i st () is still
supported.)

If the attribute is a reference to a location list (DW_FORM_data4 or DW_FORM_data8) the location list
entries are used to fill in all the fields of thear f _Locdesc(s) returned.

If the attribute is a location description (DW_FORM_block2 or DW_FORM_block4) then some of the
Dwar f _Locdesc values of the singl®war f _Locdesc record are set to 'sensible’ but arbitrasfues.
Specifically Id_lopc is set to 0 and Id_hipc is set to all-bits-on. Ahdst | en is set to 1.

It returns DW DLV_ERROR on error dwarf_loclist_n() works on DWAT | ocation,
DW AT dat a_nenber | ocati on, DW AT vtabl e_el em | ocati on,

rev 1.83, 17 Newember 2009 -30-

-31-

DW AT _string_I| engt h, DW AT use_l ocati on,andDW AT_r et ur n_addr attributes.

Storage allocated by a successful caliwér f _| ocl i st _n() should be deallocated when no longer of
interest (seelwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thied_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HypeDLA LOC BLOCK.
and thel | buf [] space pointed to should be deallocated with allocation@VgéLA LOCDESC. This
should be followed by deallocation of thebuf using the allocation typeW DLA LI ST.

Dwar f _Si gned | cnt;
Dwar f _Locdesc **I | buf;
int lres;

Ires = dwarf_loclist_n(soneattr, & |buf,& cnt &error);
if (lres == DWDLV_X) {
for (i =0; i <lecnt; ++i) {
/* use Ilbuf[i] */

dwar f _deal | oc(dbg, Ilbuf[i]->d_s, DWDLA LOC BLOCK);
dwar f _deal | oc(dbg, |1 buf[i], DWDLA LOCDESC);

}
dwar f _deal | oc(dbg, I|Ibuf, DWDLA LIST);

5.4.12.2 dwarf_loclist()

int dwarf_loclist(
Dwarf Attribute attr,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The functiondwar f _| ocl i st () sets*| | buf to point to aDwar f _Locdesc pointer for the single
location expression it can return. It sétsi stlen to 1. and returndW DLV_X if the attribute is
appropriate.

It is less flexible thardwar f _| ocl i st _n() in thatdwarf _| ocli st () can handle a maximum of
one location ®pression, not a full location list. If a location-list is present it returns only the first location-
list entry location description. Ushwar f _| ocl i st _n() instead.

It returns DWDLV_ERROR on error dwarf_loclist() works on DWAT | ocation,
DW AT dat a_nenber | ocati on, DW AT vtabl e_el em | ocati on,
DW AT _string_I| engt h, DWAT use_| ocati on,andDW AT_r et ur n_addr attributes.

Storage allocated by a successful caldear f _| ocli st () should be deallocated when no longer of
interest (seelwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thied_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HyeDLA LOC BLOCK.
This should be followed by deallocation of thebuf using the allocation typeW DLA L OCDESC.

rev 1.83, 17 Neember 2009 -31-

-32-

Dwar f _Si gned | cnt;
Dwar f _Locdesc *I | buf;
int lres;

Ires = dwarf_loclist(soneattr, & |buf, & cnt, &error);
if (lres == DWDLV_X) {
/* lcnt is always 1, (and has al ways been 1) */ */

/* Use || buf here. */

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

uf->ld_s, DWDLA LOC BLOCK);

I1b
Il buf, DWDLA LOCDESC);

/* Earlier version.

* for (i =0; i <lcnt; ++i) {

* /[* use |lbuf[i] */

*

* /* Deallocate Dwarf_Loc block of Ilbuf[i] */

* dwarf _deal | oc(dbg, Ilbuf[i].ld_s, DWDLA LOC BLOCK);
* }

* dwar f _deal | oc(dbg, |Ibuf, DWDLA LOCDESC);

*/

}

5.4.12.3 dwarf_loclist_from_expr()

int dwarf_loclist_fromexpr(
Dwarf _Ptr bytes_in,
Dwar f _Unsi gned bytes_I en,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The functiondwar f _| ocl i st _from expr () sets*| | buf to point to abwar f _Locdesc pointer

for the single location expression which is pointed t& byt es_i n (whose length isbyt es_I en). It
sets*listlen to 1. and return&W DLV_X if decoding is successful. Some sources of bytes of
expressions are davf expressions in frame operations elilDW CFA def _cf a_expressi on,

DW CFA expressi on, and DW CFA _val _expressi on.

Any address_size data in the location expression is assumed to be the same size agsltlae diefss_size
for the object being read (normally 4 or 8).

It returnsDW DLV_ERROR on error.

Storage allocated by a successful callefir f _| ocl i st _from expr () should be deallocated when
no longer of interest (sedwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by the

| d_s field of eachDwarf_Locdesc structure should be deallocated with the allocation type
DW DLA LOC BLQOCK. This should be followed by deallocation of thebuf using the allocation type
DW DLA_LOCDESC.

rev 1.83, 17 Neember 2009 -32-

-33-

Dwar f _Si gned | cnt;

Dwar f _Locdesc *I | buf;

int lres;

/* Exanmple with an enpty buffer here. */
Dwarf Ptr data = "";

Dwar f _Unsi gned len = 0;

Ires = dwarf_loclist_fromexpr(data,len, & Ibuf,& cnt, &error);
if (lres == DWDLV_X) {
/* lcnt is always 1 */

/* Use || buf here.*/

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

uf->ld_s, DWDLA LOC BLOCK);

I1b
Il buf, DWDLA LOCDESC);

5.4.12.4 dwarf_loclist_from_expr_a()

int dwarf_loclist_fromexpr_a(
Dwarf _Ptr bytes_in,
Dwar f _Unsi gned bytes_I en,
Dwarf _Hal f addr_si ze,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The functiondwar f _| ocl i st _from expr_a() is identical todwarf | ocli st_from expr ()
in every way except that the caller passes the additiogainaentaddr _si ze containing the address size
(normally 4 or 8) applying this location expression.

The addr _si ze agument (added 27April2009) is needed to correctly interpret frame information as
different compilation units can ha dfferent address sizeDWARF4 adds address_size to the CIE header.

5.5 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging information entry
objects to their corresponding source lines, and providing a mechanism for obtaining information about line
number entries. Although, the intacke talks of "lines" what is really meant is "statements". In case there

is more than one statement on the same line, there will be at least one descriptor per statement, all with the
same line numberlf column number is also being representeq thiél have the column numbers of the

start of the statements also represented.

There can also be more than oneddwlLine per statementFor example, if a file is preprocessed by a
language translatpthis could result in translator output shing 2 or more sets of line numbers per
translated line of output.

55.1 Get A Set of Lines

The function returns information abouweey source line for a particular compilation-unifThe
compilation-unit is specified by the corresponding die.

rev 1.83, 17 Neember 2009 -33-

-34 -

5.5.1.1 dwarf_srclines()

int dwarf_srclines(
Dwarf_Di e die,
Dwarf _Line **|i nebuf,
Dwar f _Si gned *1i necount,
Dwarf _Error *error)

The functiondwar f _srcl i nes() places all line number descriptors for a single compilation unit into a
single block, setsl i nebuf to point to that block, setd i necount to the number of descriptors in this
block and return©W DLV_OK. The compilation-unit is indicated by theven di e which must be a
compilation-unit die. It returnBW DLV_ERROR on error On successful return, line number information
should be freed usirdwar f _srcl i nes_deal | oc() when no longer of interest.

Dwar f _Si gned cnt;
Dwarf _Line *Iinebuf;
int sres;

sres = dwarf_srclines(sonedie, & inebuf,&nt, &error);
if (sres == DWDLV_X) {
for (i =0; i <cnt; ++i) {
/* use linebuf[i] */
}

dwar f _srclines_deal | oc(dbg, |inebuf, cnt);

The following dealloc code (the only documented method before July 2005) atibwbut does not
completely free all data allocatedhe dwar f _srcl i nes_deal | oc() routine was created taxfthe
problem of incomplete deallocation.

Dwar f _Si gned cnt;
Dwarf _Line *Iinebuf;
int sres;

sres = dwarf_srclines(sonedie, & inebuf,&nt, &error);
if (sres == DWDLV_X) {
for (i =0; i <cnt; ++i) {
/* use linebuf[i] */
dwar f _deal | oc(dbg, linebuf[i], DWDLA LINE);

}
dwar f _deal | oc(dbg, |inebuf, DWDLA LIST);

5.5.2 Get the set of Source File Names

The function returns the names of the source files theg @mntributed to the compilation-unit represented
by the gven DIE. Onlythe source files named in the statement program prologue are returned.

rev 1.83, 17 Neember 2009 -34 -

-35-

int dwarf_srcfiles(
Dwarf_Di e die,
char ***gsrcfil es,
Dwar f _Si gned *srccount,
Dwarf _Error *error)

When it succeeddwar f _srcfil es() returnsDW DLV_CK and puts the number of sourded named

in the statement program prologue indicated by thengii e into * srccount . Source files defined in

the statement program are ignored. Theemidi e should hae the tagDW TAG conpil e_unit,

DW TAG partial _unit, or DWTAG type_unit The location pointed to bgrcfil es is set to
point to a list of pointers to null-terminated strings that name the sdlase ®na successful return from
this function, each of the strings returned should beichgally freed usinglwar f _deal | oc() with the
allocation typeDW DLA_STRI NGwhen no longer of interesiThis should be followed by free-ing the list
using dwar f _deal | oc() with the allocation typeDW DLA LI ST. It returnsDW DLV_ERROR on
error. It returnsDW DLV_NO_ENTRY if there is no corresponding statement program (i.e., if there is no
line information).

Dwar f _Si gned cnt;
char **srcfil es;
int res;

res = dwarf_srcfil es(sonedie, &srcfiles,&nt &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {

/* use srcfiles[i] */

dwarf _deal | oc(dbg, srcfiles[i], DWDLA STRING;
}
dwar f _deal | oc(dbg, srcfiles, DWDLA LIST);

}

5.5.3 Get information about a Single Table Line

The following functions can be used on thear f _Li ne descriptors returned tgwar f _srcl i nes()
to obtain information about the source lines.

5.5.3.1 dwarf_linebeginstatement()

int dwarf _|inebegi nstatenent(
Dwar f _Li ne |ine,
Dwar f _Bool *return_bool,
Dwarf Error *error)

The functiondwar f _| i nebegi nst at enent () returnsDW DLV_OK and sets*r et urn_bool to
non-zero (if | i ne represents a line number entry that is marked as beginning a stateorers)o ((if

I i ne represents a line number entry that is not marked as beginning a statement). It returns
DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

5.5.3.2 dwarf_lineendsequence()

rev 1.83, 17 Neember 2009 -35-

-36 -

int dwarf_|ineendsequence(
Dwarf_Line |ine,
Dwarf _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i neendsequence() returnsDW DLV_OK and setsr et ur n_bool non-zero

(in which casd i ne represents a line number entry that is radrlas ending a text sequenceyap (in

which casd i ne represents a line number entry that is not marked as ending a text sequehice).
number entry that is marked as ending»a $equence is an entry with an address one beyond the highest
address used by the current sequence of line table entries (that is, the table entry is a
DW_LNE_end_sequence entry (see thARF specification)).

The function dwar f _| i neendsequence() returns DW DLV_ERROR on error It neva returns
DW DLV_NO_ENTRY.

5.5.3.3 dwarf_lineno()

int dwarf_lineno(
Dwar f _Li ne line,
Dwar f _Unsigned * returned_Iineno,
Dwar f _Error * error)

The functiondwarf _| i neno() returnsDW DLV_OK and sets*return_li neno to the source
statement line number corresponding to the descriptore. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO_ENTRY.

5.5.3.4 dwarf_line_srcfileno()

int dwarf _line_srcfileno(
Dwar f _Li ne l'ine,
Dwarf _Unsigned * returned_fil eno,
Dwar f _Error * error)

The functiondwar f _|i ne_srcfil eno() returnsDW DLV_COK and set$ret urned_fil eno to the
source statement line number corresponding to the desdript@ nunber. When the number returned
through*r et ur ned_fi | eno is zero it means thelé name is unknown (see tha\BRF2/3 line table
specifcation). Whernthe number returned throudir et ur ned_fi | eno is non-zero it is a file number:
subtract 1 from this file number to get an indeto the array of strings returned war f _srcfil es()
(verify the resulting indeis in range for the array of strings before indexing into the array of strifgs).
file number may »xeed the size of the array of strings returneddimar f _srcfil es() because
dwarf _srcfil es() does not return files names defined with B¢/ DLE defi ne_fi | e operator.
The functiondwarf |ine_srcfil eno() returns DW DLV_ERRCOR on error It neve returns
DW DLV_NO_ENTRY.

5.5.3.5 dwarf_lineaddr ()

int dwarf _|ineaddr(
Dwar f _Li ne l'ine,
Dwarf _Addr *return_lineaddr,
Dwar f _Error *error)

The functiondwar f _| i neaddr () returnsDW DLV_OK and set$ret urn_| i neaddr to the address
associated with the descriptdri ne. It returns DW DLV_ERROR on error It neve returns

rev 1.83, 17 Newember 2009 -36 -

-37-

DW DLV_NO_ENTRY.

5.5.3.6 dwarf_lineoff()

int dwarf _lineoff(
Dwarf_Line |ine,
Dwar f _Si gned * return_lineoff,
Dwarf _Error *error)

The functiondwar f _| i neof f () returnsDW DLV_(K and setsret urn_I i neof f to the column
number at which the statement represented bge begins. It setsreturn_| i neoff to -1 if the

column number of the statement is not represented (meaning the producer library calewasrgias the
column number).

On error it return®W DLV_ERROR. It neve returnsDW DLV_NO _ENTRY.

5.5.3.7 dwarf_linesrc()

int dwarf _|inesrc(
Dwarf _Line |ine,
char ** return_linesrc,
Dwar f _Error *error)

The functiondwar f _| i nesrc() returnsDW DLV_COK and setsret urn_I| i nesrc to a pointer to a
null-terminated string of characters that represents the name of the sleumbdrel i ne occurs. It
returnsDW DLV_ERROR on error.

If the applicableife name in the line table Statement Program Prolog does not start with a '/’ character the
string in DW AT _conp_di r (if applicable and present) or the applicable directory name from the line
Statement Program Prolog is prepended to the file name in the line table Statement Program Protog to mak
a full path.

The storage pointed to by a successful returndeg&arf |inesrc() should be freed using
dwar f _deal | oc() with the allocation typeDW DLA STRI NG when no longer of interest. It e
returnsDW DLV_NO_ENTRY.

5.5.3.8 dwarf_lineblock()

int dwarf _|inebl ock(
Dwarf _Line |ine,
Dwar f _Bool *return_bool,
Dwar f _Error *error)

The functiondwar f _| i nebl ock() returnsDW DLV_OK and sets‘return_| i nesrc to non-zero
(i.e. true)(if the line is marked as beginning a basic block) or zero (i.e. false) (if the line edraarkot
beginning a basic block). It returi®V DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY.

5.6 Global Name Space Oper ations

These operations operate on the .debug_pubnames section of the debugging information.

rev 1.83, 17 Newember 2009 -37 -

-38 -

5.6.1 Debugger Interface Operations

5.6.1.1 dwarf_get_globals()

i nt dwarf_get gl obal s(
Dwar f _Debug dbg,
Dwar f _d obal **gl obal s,
Dwarf _Signed * return_count,
Dwarf Error *error)

The functiondwar f _get gl obal s() returnsDW DLV_OK and set$ r et ur n_count to the count of
pubnames represented in the section containing pubnames i.ag_.pdebnames. lalso stores at
*gl obal s, a pointer to a list ofbwar f _d obal descriptors, one for each of the pubnames in the
.delug_pubnames sectioflhe returned results are for the entire section. It retOwiDLV ERROR on
error. It returnsDW DLV_NO_ENTRY if the .debug_pubnames section does not exist.

On a successful return frodwar f _get gl obal s(), theDwar f _G obal descriptors should be freed
usingdwar f _gl obal s_deal | oc(). dwarf_gl obal s_deal | oc() is nev as of dily 15, 2005 and
is the preferred approach to freeing this memory..

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf _get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_CK) {

for (i =0; i <cnt; ++i) {
/* use globs[i] */
}
dwarf gl obal s_deal | oc(dbg, globs, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as it ver did. On a auccessful return fromdwar f _get gl obal s(), the
Dwar f _d obal descriptors should be individually freed usihgar f _deal | oc() with the allocation
type DW DLA GLOBAL_CONTEXT, (or DW DLA GLOBAL, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation ¢ DLA LI ST when the descriptors
are no longer of interest.

rev 1.83, 17 Neember 2009 -38-

-39 -

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf_get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use globs[i] */
dwar f _deal | oc(dbg, globs[i], DWDLA G.OBAL_CONTEXT);

}
dwar f _deal | oc(dbg, gl obs, DWDLA LIST);

5.6.1.2 dwarf_globname()

i nt dwarf _gl obnanme(
Dwar f _d obal gl obal,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _gl obname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the pubname represented byiné G obal descriptor,gl obal .

It returnsDW DLV_ERROR on error On a successful return from this function, the string should be freed
usingdwar f _deal | oc(), with the allocation typddW DLA_ STRI NG when no longer of interestit
never returnsDW DLV_NO_ENTRY.

5.6.1.3 dwarf_global_die offset()

int dwarf_gl obal die offset(
Dwar f _d obal gl obal,
Dwar f _Of f *return_of fset,
Dwar f _Error *error)

The functiondwar f _gl obal di e _of fset () returnsDW DLV_COK and setsret urn_of f set to

the ofset in the section containing DIEs, i.e. .debug_info, of the DIE representing the pubname that is
described by th®war f _G obal descriptorgl ob. It returnsDW DLV_ERRORon error It neve returns

DW DLV_NO_ENTRY.

5.6.1.4 dwarf_global_cu_offset()

int dwarf_gl obal cu_offset(
Dwar f _d obal gl obal,
Dwarf O f *return_of fset,
Dwar f _Error *error)

The functiondwar f _gl obal _cu_of fset () returnsDW DLV_OK and setgr et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the pubname described by Earf G obal descriptor, gl obal . It returns

DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

rev 1.83, 17 Neember 2009 -39 -

-40 -

5.6.1.5 dwarf_get_cu_die offset_given_cu_header_offset()

int dwarf_get _cu_die_offset_given_cu_header_offset(
Dwar f _Debug dbg,
Dwarf_Of f i n_cu_header offset,
Dwarf O f * out_cu_di e of fset,
Dwarf _Error *error)

The functiondwar f _get cu_di e_of f set _gi ven_cu_header _of f set () returnsDW DLV_CK
and sets*out _cu_di e_offset to the offset of the compilation-unit DIE wgn the ofset
i n_cu_header _of f set of a compilation-unit headeit returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO _ENTRY.

This efectively turns a compilation-unit-header offset into a compilation-unit DIE offset (by adding the
size of the applicable CU header). This function is also sometimes useful with the
dwarf_weak cu_offset(), dwarf_func_cu_offset(), dwarf_type_cu_offset(), and

int dwarf_var_cu_of fset () functions.

dwarf _get cu_di e_offset _given_cu_header of fset () added Re 1.45, June, 2001.

This function is declared as ’optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if ¢hgion of libdwarf linked into an application has this
function.

5.6.1.6 dwarf_global_name offsets()

int dwarf_gl obal nanme_of f set s(
Dwar f _d obal gl obal,
char **return_nane,
Dwarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwar f _gl obal nane_of f set s() returnsDW DLV_OK and set$ret urn_nane to a
pointer to a null-terminated string thaveg the name of the pubname described byDivar f _Qd obal
descriptorgl obal . It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. It aso
returns in the locations pointed to Biye_of f set, andcu_of f set , the offsets of the DIE representing
the pubname, and the DIE representing the compilation-unit containing the pubname,vebsp€rii a
successful return frordwar f _gl obal _nane_of f set s() the storage pointed to byet ur n_nane
should be freed usingwar f _deal | oc(), with the allocation typ®W DLA STRI NG when no longer
of interest.

5.7 DWARF3 Type Names Oper ations

Section ".debug_pubtypes" isméin DWARF3. Thesdunctions operate on the .debug_pubtypes section of
the debugging information. The .debug_pubtypes section contains the naniesscbde usedefined
types, the offsets of th®l Es that represent the definitions of those types, and tlfeetsf of the
compilation-units that contain the definitions of those types.

rev 1.83, 17 Neember 2009 -40 -

-41 -

5.7.1 Debugger Interface Operations

5.7.1.1 dwarf_get_pubtypes()

int dwarf_get pubtypes(
Dwar f _Debug dbg,
Dwarf _Type **types,
Dwar f _Si gned *typecount,
Dwarf Error *error)

The functiondwar f _get pubt ypes() returnsDW DLV_CK and sets't ypecount to the count of
user-defhed type names represented in the section containing-defieed type names, i.e.
.delug_pubtypes. Ialso stores att ypes, a minter to a list oDwar f _Pubt ype descriptors, one for

each of the usetefined type names in the .debug_pubtypes section. The returned results are for the entire
section. ItreturnsDW DLV_NOCCQUNT on error It returnsDW DLV_NO_ENTRY if the .delug_pubtypes
section does not exist.

On a successful return frodwar f _get pubt ypes(), theDwar f _Type descriptors should be freed
using dwarf_types_deal | oc(). dwarf _types_deal | oc() is used for both
dwarf _get pubtypes() anddwarf_get types() asthe data types are the same.

Dwar f _Si gned cnt;
Dwar f _Pubt ype *types;
int res;

res = dwarf _get pubtypes(dbg, &t ypes, &nt, &error);
if (res == DWDLV_CK) {

for (i =0; i <ecnt; ++i) {
/* use types[i] */
}
dwarf types _deal | oc(dbg, types, cnt);

5.7.1.2 dwarf_pubtypename()

i nt dwarf _pubtypename(
Dwar f _Pubt ype type,
char **return_nane,
Dwarf _Error *error)

The functiondwar f _pubt ypename() returnsDW DLV_OK and setg r et ur n_nane to a pointer to a
null-terminated string that names the udefned type represented by tbear f _Pubt ype descriptor,
type. It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a siccessful
return from this function, the string should be freed usingr f _deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

rev 1.83, 17 Neember 2009 -41 -

=42 -

5.7.1.3 dwarf_pubtype die offset()

i nt dwarf_pubtype_di e_of fset(
Dwar f _Pubt ype type,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _pubt ype_di e_of f set () returnsDW DLV_CK and setsret ur n_of f set to
the offset in the section containing DIEs, i.e. .debug_info, of the DIE representing tukefrsst type that
is described by thé&war f _Pubt ype descriptor,t ype. It returnsDW DLV_ERRCR on error It neve
returnsDW DLV_NO _ENTRY.

5.7.1.4 dwarf_pubtype cu_offset()

int dwarf_pubtype cu_of fset(
Dwar f _Pubt ype type,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _pubt ype_cu_of f set () returnsDW DLV_OK and setsret urn_of f set to

the ofset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the
compilation-unit that contains the ustafined type described by tlimar f _Pubt ype descriptort ype.

It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY.

5.7.1.5 dwarf_pubtype _name _offsets()

i nt dwarf_pubtype_nane_of f set s(
Dwar f _Pubt ype type,
char ** returned_nane,
Dwarf Of * die_offset,
Dwarf Of * cu_offset,
Dwar f _Error *error)

The functiondwar f _pubt ype_nane_of f set s() returnsDW DLV_COK and set$r et ur ned_nane

to a pointer to a null-terminated string thavegi the name of the uselefined type described by the
Dwar f _Pubt ype descriptort ype. It aso returns in the locations pointed to 8ye_ of f set, and
cu_of f set, the offsets of the DIE representing the useined type, and the DIE representing the
compilation-unit containing the usdefined type, respectely. It returnsDW DLV_ERROR on error It
never returns DW DLV_NO _ENTRY. On a successful return from
dwar f _pubt ype nane_of f set s() the storage pointed to hyet ur ned_nane should be freed
usingdwar f _deal | oc(), with the allocation typ®W DLA STRI NGwhen no longer of interest.

5.8 User Defined Static Variable Names Oper ations

This section is SGI specific and is not part of standaMABRF version 2. These functions operate on the
.debug_wrnames section of the debugging information. Theuglelarnames section contains the names
of file-scope static variables, the offsets of hdEs that represent the definitions of those variables, and the
offsets of the compilation-units that contain the definitions of those variables.

rev 1.83, 17 Neember 2009 -42 -

-43-

5.9 Weak Name Space Oper ations

These operations operate on the .debug weaknames section of the debugging inforfradsm.
operations are SGI specific, not part of standanARF.

5.9.1 Debugger Interface Operations

5.9.1.1 dwarf_get_weaks()

i nt dwarf_get weaks(
Dwar f _Debug dbg,
Dwar f _Weak **weaks,
Dwar f _Si gned *weak_count,
Dwarf _Error *error)

The functiondwar f _get weaks() returnsDW DLV_OK and set$ weak _count to the count of weak
names represented in the section containing weak names i.eug_deaknames. Itreturns
DW DLV_ERROCR on error It returnsDW DLV_NO_ENTRY if the section does nokist. It also stores in
*weaks, a pointer to a list ofDwar f _Weak descriptors, one for each of the weak names in the
.debug_weaknames section. The returned results are for the entire section.

On a successful return from this function, tBearf_ Weak descriptors should be freed using
dwar f _weaks_deal | oc() when the data is no longer of interestwar f _weaks_deal | oc()is
new as of dily 15, 2005.

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;
int res;

res = dwarf_get weaks(dbg, &weaks, &cnt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use weaks[i] */
}

dwar f _weaks_deal | oc(dbg, weaks, cnt);

The following code is deprecated as of July 15, 2005 as it does not freeahteteemory This approach
still works as well as itver did. Ona auccessful return frordwar f _get _weaks() the Dwar f _Weak
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA WEAK CONTEXT, (or DW DLA WEAK, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

rev 1.83, 17 Newember 2009 -43 -

-44 -

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;
int res;

res = dwarf_get weaks(dbg, &weaks, &cnt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use weaks[i] */
dwar f _deal | oc(dbg, weaks[i], DWDLA WEAK CONTEXT);

}
dwar f _deal | oc(dbg, weaks, DWDLA LI ST);

5.9.1.2 dwarf_weakname()

i nt dwarf_weaknanme(
Dwar f _Weak weak,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _weakname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the weak name represented bwdané Weak descriptorweak. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

int dwarf_weak _die_of fset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _weak_di e_of f set () returnsDW DLV_OK and setsr et ur n_of f set to the
offset in the section containing DIEs, i.e. .dgbinfo, of the DIE representing the weak name that is
described by th®war f _Weak descriptorweak. It returnsDW DLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

5.9.1.3 dwarf_weak_cu_offset()

int dwarf_weak cu_offset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _weak _cu_of fset () returnsDW DLV_OK and sets r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the weak name described by Bwarf Wak descriptor, weak. It returns

DW DLV_ERRORoN error It neve returnsDW DLV_NO_ENTRY.

5.9.1.4 dwarf_weak_name_offsets()

rev 1.83, 17 Newember 2009 -44 -

-45 -

i nt dwarf_weak name_of f set s(
Dwar f _Weak weak,
char ** weak nane,
Dwarf O f *die_offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The functiondwar f _weak name_of f set s() returns DW DLV_OK and sets*weak name to a

pointer to a null-terminated string thaveg the name of the weak name described byDiher f _\V\eak
descriptorweak. It also returns in the locations pointed to tiye_ of f set, and cu_of f set, the

offsets of the DIE representing the weakname, and the DIE representing the compilation-unit containing the
weakname, respeedly. It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On

a accessful return fromdwar f _weak name_of f set s() the storage pointed to byweak nane

should be freed usindgwar f _deal | oc(), with the allocation typ@®W DLA STRI NG when no longer

of interest.

5.10 Static Function Names Operations

This section is SGI spe@ifand is not part of standardNARF version 2. These function operate on the
.delug_funcnames section of the debugging information. The .debug_funcnames section contains the
names of static functions defined in the object, the offsets ddlths that represent the definitions of the
corresponding functions, and thdsefts of the start of the compilation-units that contain the definitions of
those functions.

5.10.1 Debugger Interface Operations

5.10.1.1 dwarf_get_funcs()

int dwarf_get funcs(
Dwar f _Debug dbg,
Dwar f _Func **funcs,
Dwar f _Si gned *func_count,
Dwarf _Error *error)

The functiondwar f _get _funcs() returnsDW DLV_OK and set$ f unc_count to the count of static
function names represented in the section containing static function names, ug. faetnames. llso
stores, at f uncs, a inter to a list oDwar f _Func descriptors, one for each of the static functions in
the .debug_funcnames section. The returned results are for the entire skeectturnsDW DLV_ERROR

on error It returnsDW DLV_NO_ENTRY if the .debug_funcnames section does not exist.

On a successful return frodwar f _get _funcs(), theDwar f _Func descriptors should be freed using
dwarf _funcs_deal | oc(). dwarf_funcs_deal | oc() is nev as of dily 15, 2005.

rev 1.83, 17 Newember 2009 -45 -

- 46 -

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

fres = dwarf_get funcs(dbg, &funcs, &cnt, &error);
if (fres == DWDLV_XK) {

for (i =0; i <cnt; ++i) {
/* use funcs[i] */
}

dwarf _funcs_deal | oc(dbg, funcs, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did. Ona successful return frordwar f _get _f uncs(), theDwar f _Func
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA FUNC_CONTEXT, (or DW DLA FUNC, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

fres = dwarf_get funcs(dbg, &funcs, &error);
if (fres == DWDLV_K) {

for (i =0; i <ecnt; ++i) {
/* use funcs[i] */
dwar f _deal | oc(dbg, funcs[i], DWDLA FUNC CONTEXT);

}
dwar f _deal | oc(dbg, funcs, DWDLA LIST);

5.10.1.2 dwarf_funcname()

i nt dwarf_funcnanme(
Dwar f _Func func,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _f uncname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the static function represented Byéing _Func descriptorf unc. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

5.10.1.3 dwarf_func_die offset()

rev 1.83, 17 Neember 2009 -46 -

-47 -

int dwarf_func_di e_of fset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _func_di e_of f set (), returnsDW DLV_OK and set$ r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the static function that is
described by thé&war f _Func descriptor,f unc. It returnsDW DLV_ERRCR on error It neve returns

DW DLV_NO_ENTRY.

5.10.1.4 dwarf_func_cu_offset()

int dwarf_func_cu_offset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _func_cu_of fset () returnsDW DLV_OK and sets‘r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the static function described by Bharf Func descriptor,f unc. It returns

DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

5.10.1.5 dwarf_func_name offsets()

int dwarf_func_nanme_of fset s(
Dwar f _Func func,
char **func_nane,
Dwnarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwarf _func_name_of fsets() returns DW DLV_OK and sets*func_nane to a
pointer to a null-terminated string thaveg the name of the static function described byDar f _Func
descriptorf unc. It aso returns in the locations pointed to tye of f set, and cu_of f set, the

offsets of the DIE representing the static function, and the DIE representing the compilation-unit containing
the static function, respeetly. It returns DW DLV _ERROR on error It neve returns

DW DLV_NO ENTRY. On a siccessful return frondwarf func_nane_of f set s() the storage
pointed to by func_nane should be freed usinglwarf deal | oc(), with the allocation type

DW DLA STRI NGwhen no longer of interest.

5.11 User Defined Type Names Oper ations

Section "debug_typenames" is SGI sgednd is not part of standardNMARF version 2.(However, an
identical section is part of\BARF version 3 named ".debug_pubtypes", dear f _get pubt ypes()
above)

These functions operate on the ughtypenames section of the debugging informatiorhe
.delhug_typenames section contains the names of file-scopeleerd types, the édets of theDl Es that
represent the definitions of those types, and tfeetsf of the compilation-units that contain theirdgbns
of those types.

rev 1.83, 17 Newember 2009 -47 -

-48 -

5.11.1 Debugger Interface Operations

5.11.1.1 dwarf_get_types()

int dwarf_get types(
Dwar f _Debug dbg,
Dwarf _Type **types,
Dwar f _Si gned *typecount,
Dwarf Error *error)

The functiondwar f _get types() returnsDW DLV_OK and setst ypecount to the count of user
defined type names represented in the section containinglefieed type names, i.e. .dalp typenames.

It also stores att ypes, a minter to a list oDwar f _Type descriptors, one for each of the udefined
type names in the .debug_typenames sectidme returned results are for the entire section. It returns
DW DLV_NOCOUNT on error It returnsDW DLV_NO _ENTRY if the .debug_typenames section does not
exist.

On a successful return frodwar f _get _types(), theDwar f _Type descriptors should be freed using
dwarf types _dealloc(). dwarf_types_deal | oc() is nev as of dily 15, 2005 and frees all
memory allocated bgiwar f _get types().

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get types(dbg, &t ypes, &nt, &error);
if (res == DWDLV_CK) {

for (i =0; i <ecnt; ++i) {
/* use types[i] */
}

dwarf types _deal | oc(dbg, types, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did. Ona auccessful return fromdwar f _get _types(), theDwarf _Type
descriptors should be individually freed usindwarf deal | oc() with the allocation type
DW DLA TYPENAME_CONTEXT, (or DW DLA TYPENAME, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation ¢ DLA LI ST when the descriptors
are no longer of interest.

rev 1.83, 17 Newember 2009 -48 -

- 49 -

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get _types(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use types[i] */
dwar f _deal | oc(dbg, types[i], DWDLA TYPENAME CONTEXT);

}
dwar f _deal | oc(dbg, types, DWDLA LIST);

5.11.1.2 dwarf_typename()

i nt dwarf_typenanme(
Dwar f _Type type,
char **return_narme,
Dwarf _Error *error)

The functiondwar f _t ypename() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the wdefned type represented by thear f _Type descriptorf ype.
It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

5.11.1.3 dwarf_type die offset()

int dwarf _type die offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _type_di e_of fset () returnsDW DLV_OK and set$r et urn_of f set to the
offset in the section containing DIEs, i.e. .dgbinfo, of the DIE representing the usiefined type that is
described by thé&war f _Type descriptort ype. It returnsDW DLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

5.11.1.4 dwarf_type cu_offset()

int dwarf_type cu_offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _type _cu_of fset () returnsDW DLV_OK and sets r et urn_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the usdefined type described by thewar f _Type descriptor,t ype. It returns

DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

rev 1.83, 17 Newember 2009 -49 -

-50 -

5.11.1.5 dwarf_type name offsets()

int dwarf_type_name_of f set s(
Dwar f _Type type,
char ** returned_nane,
Dwarf_ _Of * die_offset,
Dwarf O f * cu_offset,
Dwarf _Error *error)

The functiondwar f _t ype_name_of f set s() returnsDW DLV_CK and set$r et ur ned_nane to a
pointer to a null-terminated string thatves the name of the useefined type described by the
Dwar f _Type descriptort ype. It also returns in the locations pointed to bye_of f set, and
cu_of fset, the ofsets of the DIE representing the udefined type, and the DIE representing the
compilation-unit containing the usdefined type, respectdly. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO_ENTRY. On a successful return frodwar f _t ype_nane_of f set s() the
storage pointed to byet ur ned_nane should be freed usindwar f _deal | oc() , with the allocation
typeDW DLA_STRI NGwhen no longer of interest.

5.12 User Defined Static Variable Names Operations

This section is SGI specific and is not part of standaMABRF version 2. These functions operate on the
.debug_warnames section of the dajging information. The .delg \arnames section contains the names
of file-scope static variables, the offsets of fhdes that represent the definitions of those variables, and the
offsets of the compilation-units that contain the definitions of those variables.

5.12.1 Debugger Interface Operations

5.12.1.1 dwarf_get_vars()

i nt dwarf_get_vars(
Dwar f _Debug dbg,
Dwarf_Var **vars,
Dwar f _Si gned *var _count,
Dwarf _Error *error)

The functiondwar f _get _vars() returnsDW DLV_OK and setsfvar _count to the count ofife-

scope static variable names represented in the section containing file-scope static variable names, i.e.
.debug_wrnames. lalso stores, atvar s, a pointer to a list oDwar f _Var descriptors, one for each of

the file-scope static variable names in the udebarnames section. The returned results are for the entire
section. ItreturnsDW DLV_ERROCR on error It returnsDW DLV_NO_ENTRY if the .delug_varnames

section does not exist.

The following is nev as d July 15, 2005. On a successful return framarf _get _vars(), the
Dwar f _Var descriptors should be freed usithgar f _vars_deal | oc() .

rev 1.83, 17 Neember 2009 -50 -

-51 -

Dwar f _Si gned cnt;
Dwar f _Var *vars;
int res;

res = dwarf_get_vars(dbg, &vars, &nt &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use vars[i] */
}

dwarf _vars_deal | oc(dbg, vars, cnt);

The following code is deprecated as of July 15, 2005 as it does not freeahteteemory This approach
still works as well as itver did. Ona successful return frondwar f _get _vars(), the Dwarf_Var
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA VAR_CONTEXT, (or DW DLA VAR, an dder name, supported for compatibility) folled by the
deallocation of the list itself with the allocation tyP@&/ DLA LI ST when the descriptors are no longer of
interest.

Dwar f _Si gned cnt;
Dwar f _Var *vars;
int res;

res = dwarf_get _vars(dbg, &vars, &nt &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use vars[i] */
dwar f _deal | oc(dbg, vars[i], DWDLA VAR CONTEXT);

}
dwar f _deal | oc(dbg, vars, DWDLA LIST);

5.12.1.2 dwarf_varname()

i nt dwarf_var name(
Dwarf _Var var,
char ** returned_nane,
Dwarf _Error *error)

The functiondwar f _var nane() returnsDW DLV_CK and setsr et ur ned_name to a pointer to a
null-terminated string that names the file-scope static variable representedwatife Var descriptor,
var . It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a siccessful return
from this function, the string should be freed usiohgar f _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

5.12.1.3 dwarf_var_die offset()

rev 1.83, 17 Neember 2009 -51-

-52 -

int dwarf_var_die_offset(
Dwar f _Var var,
Dwarf O f *returned of fset,
Dwarf _Error *error)

The functiondwar f _var _di e_of f set () returnsDW DLV_OK and set$ r et ur ned_of f set to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the file-scopeasialtie v
that is described by thBwar f _Var descriptor,var. It returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO _ENTRY.

5.12.1.4 dwarf_var_cu_offset()

int dwarf_var_cu_offset(
Dwarf_Var var,
Dwarf_ O f *returned_of fset,
Dwarf _Error *error)

The functiondwar f _var _cu_of f set () returnsDW DLV_CK and setsr et ur ned_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains thdlé-scope static variable described by twar f _Var descriptoryvar . It returns

DW DLV_ERRORoON error It neve returnsDW DLV _NO_ENTRY.

5.12.1.5 dwarf_var_name_offsets()

int dwarf_var_name_of fset s(
Dwar f _Var var,
char **r et urned_nane,
Dwarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwar f _var _nane_of f set s() returnsDW DLV_OK and setsr et ur ned_nane to a
pointer to a null-terminated string thatveg the name of the file-scope statiariable described by the
Dwar f _Var descriptorvar. It aso returns in the locations pointed to loy e of fset, and
cu_of f set, the offsets of the DIE representing tile-5cope static variable, and the DIE representing the
compilation-unit containing the file-scope static variable, resgabgti It returns DW DLV_ERROR on
error. It neve returns DWW DLV_NO ENTRY. On a successful return from
dwar f _var _nane_of f set s() the storage pointed to hyet ur ned_nane should be freed using
dwar f _deal | oc() , with the allocation typ®W DLA STRI NGwhen no longer of interest.

5.13 Macro Information Operations

5.13.1 General Macro Operations

5.13.1.1 dwarf_find_macro_value start()

char *dwarf_find nmacro_value_start(char * nmacro_string);

Given a macro string in the standard form defined in th&/ARF document ("name <space> value" or
"name(args)<spacealue") this returns a pointer to the first byte of the maatae: Itdoes not alter the

rev 1.83, 17 Neember 2009 -52-

-53 -

string pointed to by macro_string or gofine string: it returns a pointer into the string whose addrass w
passed in.

5.13.2 Debugger Interface Macro Operations

Macro information is accessed from the ughnfo section via the W AT _macro_info attribute (whose
value is an offset into .debug_macinfo).

No Functions yet defined.

5.13.3 Low Level Macro Information Operations

5.13.3.1 dwarf_get_macro_details()

int dwarf_get _rmacro_detail s(Dwarf_Debug /*dbg*/,

Dwarf_ O f macr o_of f set,
Dwar f _Unsi gned maxi mum count ,
Dwar f _Si gned * entry_count,
Dwarf _Macro_Details ** details,

Dwarf _Error * err);

dwarf _get _macro_detail s() returnsDW DLV_OK and setsentry_count to the number of
det ai | s records returned through tldet ai | s pointer The data returned througtiet ai | s should

be freed by a call tdwar f _deal | oc() with the allocation typ®W DLA STRI NG If DW DLV_Kis

returned, theent ry_count will be at least 1, since a compilation unit with macro informatiohno

macros will hae & least one macro data byte of 0.

dwarf _get _macro_det ai |l s() beagins at tharacr o_of f set offset you supply and ends at the end
of a compilation unit or atmaxi mum count detail records (whicher comes irst). |If
maxi mum _count is 0, it is treated as if it were the maximum possible unsigned integer.

dwarf _get _macro_detail s() attempts to sednd_fil ei ndex to the correct file in \eery
det ai |l s record. If it is unable to do so (or wheee the current ife index is unknawn, it sets
dnd_filei ndex to -1.

dwarf _get_macro_detail s() returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY
if there is no more macro information at tmetcr o_of f set . If macr o_of f set is passed in as 0, a
DW DLV_NO_ENTRY return means there is no macro information.

rev 1.83, 17 Neember 2009 -53-

-54 -

Dwar f _Unsi gned max = O;
Dwarf Of cur_off = 0;
Dwar f _Si gned count = O;

Dwarf _Macro Details *naclist;
int errv;

/* Loop through all the conpilation units
This is not guaranteed to work because
guarantee every byte in the section is

macr o i nfo.
DWARF does not
meani ngf ul :

there can be garbage between the macro info
for CUs. But this loop will usually work.
*/

while((errv = dwarf_get _nmacro_detail s(dbg, cur_off, max,

&count , &macli st, &rror))== DWDLV_K) {
for (i =0; i < count; ++i) {
/* use maclist[i] */
}
cur_off = maclist[count-1].dnd_offset + 1;

dwar f _deal | oc(dbg, maclist, DWDLA STRI NG ;

5.14 Low Level Frame Operations

These functions provide information about stack frames to be used to perform stack Trhees.
information is an abstraction of a table with s nger instruction and a column per register and a column
for the canonical frame address £GRvhich corresponds to the notion of a frame pointer), as well as a
column for the return address.

From 1993-2006 the interface we’ll here refer to ##ARF2 made the Qkbe a ®lumn in the matrix, bt
left DW_FRAME_UNDEFINED ML, and DN_FRAME_SAME_\AL out of the matrix (giving them
high numbers). As of the\BARF3 interfaces introduced in this document in April 2006, there are**tw
interfaces.

The original still exists (seedwarf_get fde_info_for_gg) and dvarf_get fde info_for_all gs() belov)

and works adequately for MIPS/IRIXVMARF2 and ABI/ISA sets that are fgfently similar (but the
settings for non-MIPS must be set into litm#h and cannot be changed at runtime). These functions not
a good choice for non-MIPS architectures nor werg tagood design for MIPS eitheit’s better to switch
entirely to the n& functions mentioned in the next paragraph.

A new interface set of dwarf get fde info for g3(), dwarf get fde info_for cfa reg3(),
dwarf_get_fde_info_for_all ps3() dvarf_set frame_rule_initial_value(),
dwarf_set frame_rule_table_size() aliv set frame_cfaalue() is more flexible and should work for
mary more architectures and the settingld¥vV.FRAME_CFA_COL and the size of the table can be set at

runtime.
Each cell in the table contains one of the following:

1. Aregister + offset(a)(b)

2. Aregister(c)(d)

rev 1.83, 17 Newember 2009 -54 -

-55-

3. Amarker (DW_FRAME_UNDEFINED_VAL) meaningegister value undefined

4. Amarker (DW_FRAME_SAME_VAL) meaningegister value same asin caller
(a old DNARF2 interface) Whenthe column is W_FRAME_CFA_COL: the register number is a real
hardware r@ister not a reference to W_FRAME_CIRA_COL, not DW_FRAME_UNDEFINED_ VAL,
and not W_FRAME_SAME_\AL. The CFA rule wvalue should be the stack pointer plus offset 0 when no
other value mads senseA value of DN_FRAME_SAME_\AL would be semi-logical, but since the £F
is not a real rgister not really correct. A value of DN_FRAME_UNDEFINED ML would imply the
CFA is undefned --this seems to be a useless notion, as thei€B means to finding real gisters, so
those real registers should be marked/ FRAME_UNDEFINED_M\AL, and the CRA column content
(whatever regster it specifies) becomes unreferenced by anything.

(a nev April 2006 DNARF2/3 interface): The @¥is separately accessible and not part of the talblee

'rule number’ for the Ck is a rumber outside the table. So theACiE a marker not a register number
See DW_FRAME_CHA _COL3 in libdwarf.h and derf get fde_info_for _cfa g3() and

dwarf_set frame_rule_cfa_value().

(b) When the column is not W FRAME_CFA_COL, the tegister will and must be
DW_FRAME_CFA_COL, implying that to get theirfal location for the column one must add théseif
here plus the DW_FRAME_CFA_COL rule value.

(c) When the column is\W_FRAME_CFA_COL, then theregister’ number is (must be) a real haste
register . (This paragraph does not apply to the April 2006w nenterface). If it were
DW_FRAME_UNDEFINED ML or DW_FRAME_SAME_\AL it would be a markr, not a reister
number.

(d) When the column is notW®_FRAME_CF_COL, the register may be a hardwargiseer It will not
be DW_FRAME_CFA_COL.

There is no 'column’ for DW_FRAME_UNDEFINED_ VAL or DW_FRAME_SAME_VAL.

Figure 3 is machine dependent and represents MIPS CPU register assignments.

NAME value PURPOSE
DW_FRAME_CFA_COL 0 column used for CFA
DW_FRAME_REG1 1 integer register 1
DW_FRAME_REG2 2 integer register 2

olvious names and values here
DW_FRAME_REG30 30 integer register 30
DW_FRAME_REG31 31 integer register 31
DW_FRAME_FREGO 32 floating point register 0
DW_FRAME_FREG1 33 floating point register 1

olvious names and values here
DW_FRAME_FREG30 62 floating point register 30
DW_FRAME_FREG31 63 floating point register 31
DW_FRAME_RA COL 64 column recording ra
DW_FRAME_UNDEFINED ML 1034 rayister val undefined
DW_FRAME_SAME \AL 1035 register same as in caller

Figure4. Frame Information Rule Assignments

The following table shows SGI/MIPS specific special calues: these values mean that the cell has the
value undefined or same value respectiely, rather than containing r&gister or register+offset. It assumes
DW_FRAME_CFA_COL is a table rule, which is not readily accomplished or sensible for some
architectures.

rev 1.83, 17 Neember 2009 -55-

-56 -

NAME value PURPOSE

DW_FRAME_UNDEFINED ML 1034 meansindefined value.
Not a column or register valye

DW_FRAME_SAME_\AL 1035 means 'same value’ as
caller had. Not a column or
register value

Figure5. Frame Information Special Values

The following table shows more general special celues. Thesaalues mean that the cell gister-
number refers to thefa-register or undefined-value or same-value respectrely, rather than referring to a
register in the table. The generality arises from making\D FRAME_CF_COL3 be outside the set of
registers and making theacfule accessible from outside the rule-table.

NAME value PURPOSE

DW_FRAME_UNDEFINED_ ML 1034 meansindefined value.
Not a column or register value
DW_FRAME_SAME_\AL 1035 means 'same value’ as
caller had. Not a column or
register value
DW_FRAME_CHKA_COL3 1436 means 'ch regster’ is referred to,
not a real registenot a column, but the aftthe cfa
does hae a \alue, but in the WARF3 libdwarf interface
it does not hee a real register number’).

5.14.0.1 dwarf_get_fde list()

int dwarf_get _fde_ l|ist(
Dwar f _Debug dbg,
Dwarf_Cie **cie_data,
Dwar f _Si gned *ci e_el ement _count,
Dwar f _Fde **fde_dat a,
Dwar f _Si gned *fde_el ement _count,
Dwarf _Error *error);

dwarf _get fde_list() stores a pointer to a list &var f _Ci e descriptors irf ci e_dat a, and the
count of the number of descriptors*ini e_el ement _count . There is a descriptor for each CIE in the
.delug_frame sectionSimilarly, it stores a pointer to a list dwar f _Fde descriptors irf f de_dat a,
and the count of the number of descriptorsfide_el enent _count . There is one descriptor per FDE
in the .debug_frame sectionlwar f _get _fde Iist() returnsDW DLV_ERRCR on error It returns
DW DLV_NO_ENTRY if it cannot find frame entries. It returii®v DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf _fde_cie_list_deall oc(). This dealloc approach iswes of dily 15, 2005.

rev 1.83, 17 Neember 2009 -56 -

-57-

Dwar f _Si gned cnt;

Dwarf _Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get _fde_list(dbg, &ci e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_XK) {
dwarf_fde_ cie_list_deall oc(dbg, cie_data, cie_count,
fde_dat a, fde_count);

The following code is deprecated as of July 15, 2005 as it does not freeahteteemory This approach
still works as well as itver did.

Dwar f _Si gned cnt;

Dwarf _Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get _fde_list(dbg, &i e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_XK) {

for (i =0; i < cie_count; ++i) {
/* use cie[i] */
dwarf _deal | oc(dbg, cie_data[i], DWDLA CIE);

}
for (i =0; i < fde_count; ++i) {

/* use fde[i] */

dwar f _deal | oc(dbg, fde_data[i], DWDLA FDE);
}

dwar f _deal | oc(dbg, cie_data, DWDLA LIST);
dwar f _deal | oc(dbg, fde_data, DWDLA LIST);

5.14.0.2 dwarf_get_fde list_eh()

int dwarf_get _fde |ist_eh(
Dwar f _Debug dbg,
Dwarf_Cie **cie_data,
Dwar f _Si gned *ci e_el ement _count,
Dwarf _Fde **fde_dat a,
Dwar f _Si gned *fde_el ement _count,
Dwarf_Error *error);

dwarf_get _fde_list_eh() is identical to dwarf_get fde list() except that

rev 1.83, 17 Newember 2009 -57 -

-58 -

dwarf _get fde_list_eh() reads the GNU gcc section named .eh_frame (C++ exception handling
information).

dwarf _get fde_list_eh() stores a pointer to a list @war f _Ci e descriptors in*ci e_dat a,
and the count of the number of descriptors @ e_el ement _count . There is a descriptor for each
CIE in the .debug_frame sectioigimilarly, it stores a pointer to a list dwar f _Fde descriptors in
*f de_dat a, and the count of the number of descriptors*inde_el ement _count. There is one
descriptor per FDE in the .debug_frame sectidnar f _get _fde_list() returnsDW DLV_ERROR

on error It returns DW DLV_NO ENTRY if it cannot find exception handling entries. It returns
DW DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf_fde_cie_list_deall oc(). This dealloc approach iswes of dily 15, 2005.

Dwar f _Si gned cnt;

Dwarf _Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get _fde_list(dbg, &ci e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_X) {
dwarf_fde_cie_list_dealloc(dbg, cie_data, cie_count,
fde_dat a, fde_count);

5.14.0.3 dwarf_get_cie of_fde()

int dwarf_get _cie_of_fde(Dwarf_Fde fde,
Dwarf_Cie *cie_returned,
Dwarf_Error *error);

dwarf _get _cie_of fde() stores &warf _Ci e into the Dwar f _Ci e thatci e_r et ur ned points
at.

If one has called dwarf_get fde list and does not wish to dwarf_dealloc() all theduradli FDEs
immediately one must alsowid dwarf_dealloc-ing the CIEs for those FDEs not immediately dedlloc’
Faling to obsere this restriction will cause the FDE(s) not dealtbtd become inalid: an FDE contains

(hidden in it) a CIE pointer which will be bevalid (stale, pointing to freed memory) if the CIE is
deallocd. Theinvalid CIE pointer internal to the FDE cannot be detected aidnby libdwarf. If one

later passes an FDE with a stale internal CIE pointer to one of the routines taking an FDE as input the result
will be failure of the call (returning @W_DLV_ERROR) at best and it is possible a coredump or worse will
happen (eentually).

dwarf _get _cie_of fde() returnsDW DLV_OXK if it is successful (it will be unless fde is the NULL
pointer). ItreturnsDW DLV_ERRORf the fde is ivalid (NULL).

EachDwar f _Fde descriptor describes information about the frame for a particular subroutine or function.

rev 1.83, 17 Neember 2009 -58 -

-59 -

int dwarf_get fde_for_dieis SGI/MIPS specific.

5.14.0.4 dwarf_get_fde for_dig()

int dwarf_get fde for_die(
Dwar f _Debug dbg,
Dwarf_Di e die,
Dwarf_Fde * return_fde,
Dwarf _Error *error)

When it succeedsiwarf _get fde_for_die() returnsDW DLV_CK and setsret urn_f de to a

Dwar f _Fde descriptor representing frame information for thevegi die. It looks for the
DW AT_M PS_f de attribute in the gren di e. If it finds it, is uses the value of the attribute as tifeebf
in the .debug_frame section where the FDHite If there is noDW AT _M PS fde it returns

DW DLV_NO _ENTRY. If there is an error it returidV DLV _ERROR.

5.14.0.5 dwarf_get_fde range()

int dwarf_get fde range(
Dwar f _Fde fde,
Dwar f _Addr *| ow _pc,
Dwar f _Unsi gned *func_I engt h,
Dwarf Ptr *fde_bytes,
Dwar f _Unsi gned *fde_byte | ength,
Dwnarf O f *cie_offset,
Dwar f _Si gned *ci e_i ndex,
Dwarf O f *fde_offset,
Dwarf Error *error);

On succesgjwar f _get fde_range() returnsDW DLV_OK.
The location pointed to blyow pc is set to the v pc value for this function.

The location pointed to bfyunc_| engt h is set to the length of the function in bytékhis is essentially
the length of the text section for the function.

The location pointed to bfyde byt es is set to the address where the FDgihe in the .delg_frame
section.

The location pointed to by de byte | ength is set to the length in bytes of the portion of
.debug_frame for this FDE. This is the same as the value returrthebloy get fde range.

The location pointed to byi e_of f set is set to the offset in the .debug_frame section of the CIE used by
this FDE.

The location pointed to byi e_i ndex is set to the indeof the CIE used by this FDE. The indis the
index of the CIE in the list pointed to hyi e_dat a as set by the functiodwar f _get fde list().
However, if the functiondwar f _get fde for _die() was used to obtain the gén f de, this inde
may not be correct.

The location pointed to bfyde of f set is set to the déet of the start of this FDE in the .dgp frame
section.

rev 1.83, 17 Neember 2009 -59 -

-60 -

dwarf _get fde_range() returnsDW DLV_ERROR on error.

5.14.0.6 dwarf_get_cie info()

int dwarf_get_cie_info(

Dwarf_Ci e cie,
Dwar f _Unsi gned *bytes_in_cie,
Dwar f _Smal | *version,

char **augnent er,

Dwar f _Unsi gned *code_al i gnnent _factor,
Dwar f _Si gned *dat a_al i gnment _f act or,
Dwar f _Hal f *return_address_register_rule,
Dwarf_ Ptr *initial _instructions,

Dwarf _Unsigned *initial_instructions_I|ength,
Dwar f _Error *error);

dwarf _get _cie_info() is primarily for Internal-lgel Interface consumers. If successful, it returns
DW DLV_OK and sets byt es_i n_ci e to the number of bytes in the portion of the frames section for
the CIE represented by thevgh Dwar f _Ci e descriptorci e. The other fields are directly taken from the
cie and returned, via the pointers to the callereturnsDwW DLV_ERROR on error.

5.14.0.7 dwarf_get_cie index()

int dwarf_get cie_index(
Dwarf _Cie cie,
Dwar f _Si gned *ci e_i ndex,
Dwarf _Error *error);

On success,dwarf _get cie_index() returns DWDLV_OK. On eror this function returns
DW DLV_ERROR.

The location pointed to byi e_i ndex is set to the indeof the CIE of this FDE. The indes the inde
of the CIE in the list pointed to lyi e_dat a as set by the functiodwar f _get fde list().

So one must ha wseddwarf _get fde list() ordwarf_get fde |ist_eh() togeta cie list
before this is meaningful.

This function is ocassionally useful, but is little used.

5.14.0.8 dwarf_get_fde_instr_bytes()

int dwarf_get fde_ instr_bytes(
Dwar f _Fde fde,
Dwarf Ptr *outinstrs,
Dwar f _Unsi gned *outl en,
Dwarf _Error *error);

dwarf _get fde_instr_bytes() returnsDW DLV_CK and set$outi nstrs to a pointer to a set
of bytes which are the actual frame instructions for this fde. It alsd eets| en to the length, in bytes,
of the frame instructions. It returidN DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY.
The intent is to all low-level consumers lik a dvarf-dumper to print the bytes in somashion. The
memory pointed to bgut i nst r s must not be changed and there is nothing to free.

rev 1.83, 17 Neember 2009 - 60 -

-61 -

5.14.0.9 dwarf_get_fde info_for_reg()

This interface is suitable for MWARF2 hut is not sufcient for DNARF3. See int
dwarf _get fde_info_for_reg3.

int dwarf_get fde_info_for_reg(
Dwar f _Fde fde,
Dwarf_Hal f tabl e_col um,
Dwar f _Addr pc_requested,
Dwar f _Si gned *of fset_rel evant,
Dwar f _Si gned *regi ster_num
Dwar f _Si gned *of f set,
Dwar f _Addr *row_pc,
Dwarf_Error *error);

dwarf _get _fde_info_for_reg() returnsDW DLV_CK and sets*of f set _rel evant to non-

zero if the offset is relent for the rov specified by pc_requested and column specified by

t abl e_col um, for the FDE spedid byf de. The intent is to return the rule for thevgn pc value and
register The location pointed to biyegi st er _numis set to the registeralue for the rule. The location
pointed to byof f set is set to the offset value for the rule. If offset is not vaie for this rule,

*of f set _rel evant is set to zero. Since more than one pc value wilehraws with identical entries,

the user may want to kmothe earliest pc value after which the rules for all the columns remained
unchanged. Recdlhat in the virtual table that the frame information represents there may be one or more
table rows with identical data (each such table &b a dfferent pc alue). Gven apc_request ed
which refers to a pc in such a group of identicatgothe location pointed to byow pc is set to the
lowest pc value within the group afientical ravs. The walue put in*regi st er _numary of the

DW FRAME_* table columns values specifiedlinbdwar f . h ordwar f . h.

dwarf _get _fde_i nfo_for_regreturnsDW DLV_ERRORIf there is an error.

It is usable with eithedwar f _get _fde_n() ordwarf_get fde_at_pc().

5.14.0.10 dwarf_get fde info for_all_regs()

int dwarf_get fde info for_all_regs(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwarf _Regtable *reg table,
Dwar f _Addr *row pc,
Dwarf _Error *error);

dwarf _get fde info for_all _regs() returnsDW DLV_OK and setgr eg_t abl e for the rav
specified bypc_r equest ed for the FDE specified bfyde.

The intent is to return the rules for decoding all the registeran gi pc \alue. r eg_t abl e is an array of
rules, one for each gester specified indwar f . h. The rule for each register contains three items -
dw_r egnumwhich denotes the registealue for that rulegw_of f set which denotes the offset value for
that rule anddw_of f set _r el evant which is set to zero if offset is not redmt for that rule. See
dwarf _get fde_info_for_reg() fora description of ow pc.

dwarf _get fde info for_all _regs returnsDW DLV_ERRORIf there is an error.
int dwarf_get fde info for_all _regsis SGI/MIPS specific.

rev 1.83, 17 Neember 2009 -61-

-62 -

5.14.0.11 dwarf_set_frame rule table size()

This allows consumers to set the size of the (internal to &bidlvwule table when using theeg3’ interfaces
(these interfaces are strongly preferrgdrdhe older feg’ interfaces). Itshould be at least as large as the
number of real mgsters in the ABI which is to be read in for the adfvget fde info_for_g3() or
dwarf_get_fde_info_for_all_gs3() functions to work properlylt must be less than the markealues
DW_FRAME_UNDEFINED_\AL, DW_FRAME_SAME_\AL, DW_FRAME_CFA_COL3 (because
dwarf_set frame_rule_undefinechlve() dvarf_set frame_sameale() dvarf_set frame_cfa_value()
effectively set these masks the frame rule table size can actually be\atue rgardless of the macro
values in libdwarf.h as long as the table size does vatap these markers).

Dwar f _Hal f
dwarf_set_frame_rul e_tabl e_size(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

ddwarf_set _frame_rul e_tabl e_size() sets the &lueval ue as the size of libdarf-internal
rules tablesof dbg. The function returns the pr@us value of the rules table size setting (taken from the
dbg structure).

5.14.0.12 dwarf_set_frame rule_ initial_value()

This allows consumers to set the initial value fovsadn the frame tables. By default it is taken from
libdwarf.h and is V_FRAME_REG_INITIAL_\ALUE (which itself is either
DW_FRAME_SAME_M\AL or DW_FRAME_UNDEFINED_ML). The MIPS/IRIX default is
DW_FRAME_SAME_\AL. Consumercode should set this appropriately and for ynarchitectures (bt
probably not MIPS) W/_FRAME_UNDEFINED_MAL is an appropriate setting. Note: an earlier spelling
of dwarf_set_frame_rule_initalalue() is still supported as an interface, but please change to usevthe ne
correctly spelled name.

Dwar f _Hal f
dwarf _set frame_rule_initial_val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rule_initial _val ue() setsthe alueval ue as the initial value for thidbg
when initializing rules tablesThe function returns the previous value of the initial setting (taken from the
dbg structure).

5.14.0.13 dwarf_set_frame cfa value()

This allows consumers to set the number of thA &fgster for rows in the frame tables. By default it is
taken from libdwarf.h and i®W FRAME _CFA COL. Consumer code should set this appropriately and for
nearly all architectureBW FRAMVE _CFA COL3 is an appropriate setting.

Dwar f _Hal f
dwarf _set frame_rul e_cfa val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e _cfa_val ue() sets the alueval ue as the number of the a&fregister
rule’ for this dbg when initializing rules tablesThe function returns the previous value of the initial
setting (taken from thébg structure).

5.14.0.14 dwarf_set_frame_same value()

This allavs consumers to set the number of the pseudo-register wiérnCBPA same_alue is the
operation. Bydefault it is taken from libdwarf.h and BW FRAME_SAME VAL. Consumer code should

rev 1.83, 17 Neember 2009 -62 -

-63 -

set this appropriatelghough for man architecturedDW FRAME_SAME_VAL is an appropriate setting.

Dwar f _Hal f
dwarf _set _frame_rul e_sanme_val ue(Dwar f _Debug dbg,
Dwar f _Hal f val ue);

dwarf _set frame_rul e_same_val ue() sets the &lueval ue as the number of the register that
is the pseudo-register set by th&/DCFA_same_alue frame operation. The function returns thevipres
value of the initial setting (taken from tlidog structure).

5.14.0.15 dwarf_set_frame_undefined_value()

This allows consumers to set the number of the pseudo-register

when DN_CFA_undefined_a&lue is the operation. By default it is taken from libdwarf.h and is
DW FRAME_UNDEFI NED_VAL. Consumer code should set this appropriateyough for man
architecture®wW FRAME_UNDEFI NED_VAL is an appropriate setting.

Dwar f _Hal f
dwarf _set _frame_rul e_undefi ned_val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set _frame_rul e_undefi ned_val ue() sets the alue val ue as the number of the
register that is the pseudogister set by the W _CFA_undefined_alue frame operation. The function
returns the previous value of the initial setting (taken frondtgg structure).

5.14.0.16 dwarf_get fde info for_reg3()

This interface is suitable for WARF3 and DVARF2. Itreturns the values for a particular reajister
(Not for the CR regster, see dvarf_get fde info_for_cfa_g3() belav). If the application is going to
retrieve the value for more than aviet abl e _col umm values at thispc_r equest ed (by calling this
function multiple times) it is much morefigient to call dvarf_get fde info_for_all gs3() (in spite of the
additional setup that requires of the caller).

int dwarf_get fde_ info for_reg3(
Dwar f _Fde fde,
Dwarf _Hal f tabl e _col um,
Dwar f _Addr pc_requested,
Dwarf_Smal |l *val ue_type,
Dwar f _Si gned *of fset _rel evant,
Dwar f _Si gned *regi ster_num
Dwar f _Si gned *of fset_or_bl ock_|en,
Dwarf _Ptr *bl ock_ptr,
Dwar f _Addr *row_pc,
Dwarf Error *error);

dwarf get fde info for_reg3() returnsDW DLV_OK on success. It setsval ue_type to
one of DW_EXPR_OFFSET (0), W_EXPR _\AL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_\AL EXPRESSION(3). Orzall, t abl e_col unm must be set to the register number of a
real rgister Not the ch register’ or DN_FRAME_SAME_\ALUE or
DW_FRAME_UNDEFINED_VALUE.

if *val ue_t ype has the value DW_EXPR_OFFSET (0) then:

rev 1.83, 17 Neember 2009 -63-

-64 -

It sets*of f set _rel evant to non-zero if the offset is relant for the rov specified by
pc_request ed and column specified blyabl e_col um or, for the FDE specified bf/de.
In this casethe *regi ster_num will be set to W _FRAME_CFA_COL3. Thisis an
offset(N) rule as specified in the VIARF3/2 documents. Adding the alue of
*of f set _or _bl ock_I| en to the value of the Gkregster gives the address of a location
holding the previous value of registeaibl e_col um.

If offset is not relgant for this rule,* of f set _r el evant is set to zero.*r egi st er _num
will be set to the number of the reafjiger holding the value of thteabl e_col um register.
This is the register(R) rule as specified WBRF3/2 documents.

The intent is to return the rule for theven pc \alue and rgister The location pointed to by

regi st er _numis set to the register value for the rule. The location pointed tif bget is

set to the offset value for the rul&ince more than one pc value willearows with identical

entries, the user mayant to knav the earliest pc value after which the rules for all the columns
remained unchanged. Recall that in the virtual table that the frame information represents there
may be one or more tablews with identical data (each such tablevrat a dfferent pc alue).

Given apc_r equest ed which refers to a pc in such a group of identical rows, the location
pointed to byr ow_pc is set to the lowest pc value within the group of identical rows.

If *val ue_t ype has the value DW_EXPR_VAL_OFFSET (1) then:
This will be a al ofiset(N) rule as specified in the VBARF3/2 documents so
*of fset _relevant will be non zero. The -calculation is identical to the
DW_EXPR_OFFSET (0) calculation withtof f set _rel evant non-zero, bt the \alue
resulting is the actudlabl e_col umm value (rather than the address where thkiey may be
found).

If *val ue_t ype has the value DW_EXPR_EXPRESSION (1) then:
*of f set _or _bl ock_I en is set to the length in bytes of a block of memory withVdAIRF
expression in the block* bl ock_ptr is set to point at the block of memoryhe consumer
code shouldevduate the block as a\MARF-expression. The result is the address where the
previous value of the register may be found. This isNABF3/2 expression(E) rule.

If *val ue_t ype has the value DW_EXPR_VAL_EXPRESSION (1) then:
The calculation is»actly as for DW_EXPR_EXPRESSION (1) but the result of theARF-
expression ealuation is the value of thet abl e_col umm (not the address of theble). This
is a DNARF3/2 val_expression(E) rule.

dwarf _get fde_info_for_reg returnsDW DLV_ERRORf there is an error and if there is an error
only theer r or pointer is set, none of the other output arguments are touched.

It is usable with eithedwar f _get _fde_n() ordwarf_get fde_at_pc().

5.14.0.17 dwarf_get_fde info_for_cfa_reg3()

rev 1.83, 17 Newember 2009 -64 -

-65 -

int dwarf_get fde_ info for_cfa reg3(Dwarf_Fde fde,

Dwar f _Addr pc_requested,

Dwarf _Smal | * val ue_type,

Dwar f _Si gned* of fset _rel evant,
Dwar f _Si gned* regi ster_num
Dwar f _Si gned* of fset _or_bl ock_I| en,
Dwarf Ptr * bl ock_ptr ,
Dwar f _Addr * row_pc_out,

Dwarf _Error * error)

This is identical todwar f _get _fde_i nfo_for_reg3() except the returnedalues are for the G
rule. Soregister numbefr egi st er _numwill be set to a real mgster not DW_FRAME_CFA_COL3,
DW_FRAME_SAME_VALUE, or DW_FRAME_UNDEFINED_VALUE.

5.14.0.18 dwarf_get_fde info_for_all_regs3()

int dwarf_get _fde_info_for_all_regs3(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwar f _Regt abl e3 *reg_t abl e,
Dwar f _Addr *row_pc,
Dwarf _Error *error)

dwarf_get _fde_info_for_all_regs3() returnsDWDLV_CK and sets*reg_t abl e for the
row specified by pc_request ed for the FDE specified by de. The intent is to return the rules for
decoding all the gisters, gien a pc alue. r eg_t abl e is an array of rules, the array size specified by
the caller plus a rule for the G&. Therule for the cé returned in*r eg_t abl e defines the CR value

at pc_requested The rule for each gister containsseveral values that enable the consumer to
determine the previous value of thegister (see the earlier documentation of @diwRegtable3).
dwarf_get _fde_info_for_reg3() and the Dwarf_Retable3 documentation a® for a
description of the values for eaclwro

dwarf _get fde_info_for_all _regs3returnsDW DLV_ERRORIf there is an error.

It is up to the caller to allocate spaceforeg_t abl e and initialize it properly.

5.14.0.19 dwarf_get_fde n()

i nt dwarf _get fde_ n(
Dwarf _Fde *fde_dat a,
Dwar f _Unsi gned fde_i ndex,
Dwar f _Fde *returned_fde
Dwar f _Error *error)

dwarf _get fde_n() returnsDW DLV_OK and sets et ur ned_f de to theDwar f _Fde descriptor
whose inde isf de_i ndex in the table oDwar f _Fde descriptors pointed to Hyde _dat a. The ind
starts with 0. The table pointed to by fde data is required to contain at least onelettig/table has no
entries at all the error checks may refer to uninitialized memBgturnsDW DLV_NO _ENTRY if the
index does not exist in the table Bfivar f _Fde descriptors. ReturnBW DLV_ERROR if there is an error

rev 1.83, 17 Neember 2009 -65-

-66 -

This function cannot be used unless the blocowdr f _Fde descriptors has been created by a call to
dwarf _get _fde_ list().

5.14.0.20 dwarf_get_fde at_pc()

i nt dwarf _get fde_at_pc(
Dwarf _Fde *fde_dat a,
Dwar f _Addr pc_of _interest,
Dwarf _Fde *returned_fde,
Dwar f _Addr *1 opc,
Dwar f _Addr *hi pc,
Dwarf _Error *error)

dwarf _get fde_at _pc() returns DWDLV_CK and setsreturned_fde to a Dwarf_Fde
descriptor for a function which contains the pdue specified byc_of _i nt er est. In addition, it sets
the locations pointed to Hyopc andhi pc to the lav address and the high addressered by this FDE,
respectiely. The table pointed to by fde_data is required to contain at least onelettig/table has no
entries at all the error checks may refer to uninitialized memiomgturnsDW DLV_ERROR on error It
returnsDW DLV_NO _ENTRY if pc_of _i nt er est is not in ay of the FDEs represented by the block of
Dwar f _Fde descriptors pointed to biyde_dat a. This function cannot be used unless the block of
Dwar f _Fde descriptors has been created by a calvtar f _get _fde_list().

5.14.0.21 dwarf_expand_frame_instructions()

int dwarf_expand frane_instructions(
Dwarf _Cie cie,
Dwarf Ptr instruction,
Dwar f _Unsigned i | ength,
Dwarf _Frame_Op **returned_op_list,
Dwar f _Si gned * returned_op_count,
Dwarf Error *error);

dwar f _expand_franme_i nstructions() is a High-level interface function which expands a frame
instruction byte stream into an array Bfar f _Fr ane_Qp structures. @ indicate success, it returns
DW DLV_OK. The address where the byte streamimeis specified by nst r uct i on, and the length of

the byte stream is specified by | engt h. The location pointed to byet urned_op_|i st is set to

point to a table ofr et urned_op_count pointers toDwar f _Franme_Op which contain the frame
instructions in the byte stream.lt returns DW DLV _ERROR on error It neve returns

DW DLV_NO ENTRY. After a successful return, the array of structures should be freed using
dwar f _deal | oc() with the allocation typeDW DLA FRAME BLOCK (when thg are no longer of
interest).

Not all CIEs hae the same address-size, so it is crucial that a CIE pointer to thedr@ifadde passed in.

rev 1.83, 17 Newember 2009 - 66 -

-67 -

Dwar f _Si gned cnt;
Dwar f _Frame_Op *frameops;
Dwarf Ptr instruction;
Dwar f _Unsi gned | en;

int res;

res = expand_frame_instructions(dbg,instruction,len, &f raneops, &nt, &error);
if (res == DWDLV_OK) {
for (i =0; i <cnt; ++i) {
/* use frameops[i] */
}
dwar f _deal | oc(dbg, franeops, DWDLA FRAME BLOCK);
}

5.14.0.22 dwarf_get_fde exception_info()

int dwarf_get fde_exception_info(
Dwar f _Fde fde,
Dwarf _Signed * offset_into_exception_tables,
Dwarf_Error * error);

dwarf _get _fde_exception_info() is an IRIX specific function which returns an exception table
signed offset through of f set i nto_exception_tables. The function neer returns

DW DLV_NO_ENTRY. If DW DLV_NO ENTRY is NULL the function returndwW DLV_ERRCR. For
non-IRIX objects the offset returned willvedys be zero.For non-C++ objects the offset returned will
always be zero. The meaning of the offset and the content of the tables is not defined in this document.
The applicable CIE augmentation string (seevabdetermines whether the value returned has meaning.

5.15 Location Expression Evaluation

An "interpreter" which ealuates a location expression is required ig debugger There is no integce
defined here at this time.

One problem with defining an interface is that operations are machine dependgrdefbad on the
interpretation of register numbers and the methods of getting values from the environment the expression is
applied to.

It would be desirable to specify an interface.

5.15.1 Location List Internal-level Interface

5.15.1.1 dwarf_get_loclist_entry()

rev 1.83, 17 Neember 2009 - 67 -

-68 -

int dwarf_get _loclist_entry(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Addr *hi pc_of f set,
Dwar f _Addr *1 opc_of f set,
Dwarf_ Ptr *data,
Dwar f _Unsigned *entry_len,
Dwar f _Unsi gned *next_entry,
Dwarf _Error *error)

The function reads a location list entry startingfat set and returns through pointers (when successful)
the high pchi pc_of f set, low pc | opc_of f set, a pinter to the location description datat a, the
length of the location description dagat ry_| en, and the offset of the next location description entry
next_entry.

This function will usually work correctly (meaning with most objects) but will natkwcorrectly (and can

crash an application calling it) if either some location list applies to a compilation unit with an address_size
different from the werall address_size of the object file being read or if theugidlbc section being read

has random padding bytes between loclists. Neither of these characteristics necessarily reprggémts a b
the compiler/linker toolset that produced the object file being read. W&RF standard alles both
characteristics.

dwarf _dwarf_get | oclist_entry() returnsDW DLV_OKif successful.DW DLV_NO_ENTRY is
returned when the offset passed in is beyond the end of the .debug_loc section (expected if you start at
offset zero and proceed through all the entri@)/ DLV_ERRCRIs returned on error.

Thehi pc_of f set, low pc| opc_of f set are offsets from the beginning of the current procedure, not
genuine pc values.

rev 1.83, 17 Newember 2009 -68 -

-69 -

/* Loopi ng through the dwarf_loc section finding loclists:
an exanple. */

int res;

Dwar f _Unsi gned next _entry;

Dwar f _unsi gned of f set =0;

Dwar f _Addr hi pc_off;

Dwar f _Addr | opc_off;

Dwarf Ptr dat a;

Dwar f _Unsi gned entry_I en;

Dwar f _Unsi gned next _entry;

Dwarf_ Error err;

for(;;) {
res = dwarf_get | oclist_entry(dbg, newof fset, &i pc_of f,
& owpc_off, &data, &entry_len, &ext_entry, &err);
if (res == DWDLV_OK) {
/* Avalid entry. */
newof f set = next_entry;
conti nue;
} else if (res ==DW DLV_NO ENTRY) {
/* Done! */
br eak;
} else {
[* Errorl */
br eak;

5.16 Abbreviations access

These are Internaldel I nterface functions. Debuggers can ignore this.

5.16.1 dwarf_get_abbrev()

i nt dwarf_get abbrev(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Abbr ev *returned_abbrev,
Dwar f _Unsi gned *I engt h,
Dwar f _Unsi gned *attr_count,
Dwarf _Error *error)

The function dwarf _get abbrev() returns DWDLV_OK and sets*returned_abbrev to
Dwar f _Abbr ev descriptor for an abbwation at ofset *of f set in the abbreviations section (i.e
.debug_abbrg on success. The user is responsible for making sure that a valid abbreviation begins at
of f set in the abbreiations section. The location pointed to lbgngt h is set to the length in bytes of

the abbreviation in the abbreviations section. The location pointed t@t by count is set to the
number of attributes in the ablitation. Anabbreiation entry with a length of 1 is the 0 byte of the last

rev 1.83, 17 Neember 2009 -69 -

-70 -

abbreviation entry of a compilation unitdwar f _get _abbr ev() returnsDW DLV_ERROR on error If
the call succeeds, the storage pointed to *hyet ur ned_abbrev should be freed, using
dwar f _deal | oc() with the allocation typ®W DLA ABBREV when no longer needed.

5.16.2 dwarf_get _abbrev_tag()

int dwarf_get abbrev_tag(
Dwar f _abbrev abbrev,
Dwarf Half *return_tag,
Dwarf _Error *error);

If successfuldwar f _get abbrev_tag() returnsDW DLV_OK and set$r et ur n_t ag to thetag of
the given abbreviation. ItreturnsDW DLV_ERRORon error It neve returnsDW DLV_NO_ENTRY.

5.16.3 dwarf_get_abbrev_code()

i nt dwarf_get abbrev_code(

Dwar f _abbr ev abbr ev,
Dwar f _Unsigned *return_code,
Dwar f _Error *error);

If successful,dwarf_get abbrev_code() returnsDW DLV_CK and sets‘r et ur n_code to the
abbreviation code of the gen abreviation. It returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.16.4 dwarf_get_abbrev_children_flag()

int dwarf_get abbrev_children_fl ag(
Dwar f _Abbrev abbrev,
Dwarf _Signed *returned_flag,
Dwar f _Error *error)

The function dwarf _get abbrev_children_flag() returns DWDLV _OK and sets
returned flag to DWchildren_no (if the given abbreviation indicates that a die with that
abbreviation has no children) dW chi | dr en_yes (if the given abreviation indicates that a die with
that abbreviation has a child). It retuidd@/ DLV _ERROR on error.

5.16.5 dwarf_get_abbrev_entry()

i nt dwarf_get _abbrev_entry(
Dwar f _Abbrev abbrev,
Dwar f _Si gned i ndex,
Dwar f _Hal f *attr_num
Dwar f _Si gned *form
Dwarf O f *offset,
Dwarf _Error *error)

rev 1.83, 17 Newember 2009 -70 -

-71-

If successful,dwarf_get abbrev_entry() returnsDW DLV_CK and sets*attr_num to the
attribute code of the attribute whose imde seciied byi ndex in the given abbreviation. Theindex
starts at 0. The location pointed to bgr mis set to the form of the attrike. Thelocation pointed to by

of fset is set to the byte offset of the attribute in the abbreviations section. It returns
DW DLV_NO_ENTRY if the index specified is outside the range of attributes in this atibten. Itreturns

DW DLV_ERROR 0N error.

5.17 String Section Operations

The .debug_str section contains only strindg@ehuggers need wer use this interdice: it is only for
debugging problems with the string section itself.

5.17.1 dwarf_get_str()

int dwarf_get _str(
Dwar f _Debug dbg,
Dwar f _Of f of f set,
char **string,
Dwar f _Si gned *returned_str_| en,
Dwarf _Error *error)

The functiondwar f _get _str () returnsDW DLV_OK and setsr et urned_str _I| en to the length
of the string, not counting the null termingtthat begins at the fsiet specified byof f set in the
.delug_str section. The location pointed tostyr i ng is set to a pointer to this strindhe next string in
the .debug_str section begins at thevjmesof f set + 1 +*returned_str _| en. A zero-length string
is NOT the end of the section. If there is no .debug_str sedihDLY_NO ENTRY is returned. If there
is an errorDW DLV_ERRCR is returned. If we are at the end of the section (thaifiset is one past
the end of the sectio®W DLV_NO_ENTRY is returned. If thef f set is some other too-large value then
DW DLV_ERRCRIs returned.

5.18 Address Range Operations

These functions provide information about address rangddress ranges map ranges of pc values to the
corresponding compilation-unit die thatvecs the address range.

5.18.1 dwarf_get_aranges()

i nt dwarf_get aranges(
Dwar f _Debug dbg,
Dwar f _Arange **aranges,
Dwarf _Signed * returned_arange_count,
Dwarf Error *error)

The functiondwar f _get aranges() returnsDW DLV_COK and setsr et ur ned_ar ange_count

to the count of the number of address ranges in theigdabanges section (for all compilation unitf).
sets* ar anges to point to a block obwar f _Ar ange descriptors, one for each address range. It returns
DW DLV_ERRORon error It returnsDW DLV_NO_ENTRY if there is no .debug_aranges section.

rev 1.83, 17 Newember 2009 -71-

-72 -

Dwar f _Si gned cnt;
Dwar f _Arange *arang;
int res;

res = dwarf_get_aranges(dbg, &arang, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use arang[i] */
dwar f _deal | oc(dbg, arang[i], DWDLA ARANGE);

}
dwar f _deal | oc(dbg, arang, DWDLA LI ST);

5.18.2 dwarf_get_arange()

int dwarf_get arange(
Dwar f _Arange *aranges,
Dwar f _Unsi gned ar ange_count,
Dwar f _Addr address,
Dwar f _Arange *returned_arange,
Dwarf _Error *error);

The functiondwar f _get _ar ange() takes as input a pointer to a block fiar f _Ar ange pointers,
and a count of the number of descriptors in the bldtkhen searches for the descriptor thatecs the
given addr ess. Ifitfinds one, it returnBW DLV_OK and setgr et ur ned_ar ange to the descriptor

It returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if there is no .debug_aranges entry
covering that address.

5.18.3 dwarf_get_cu_die offset()

int dwarf_get _cu_die_offset(
Dwar f _Arange ar ange,
Dwarf O f *returned _cu_die_offset,
Dwarf _Error *error);

The functiondwar f _get _cu_di e_of fset () takes aDwarf _Ar ange descriptor as input, and if
successful returnrBW DLV_CK and set$r et urned_cu_di e_of f set to the offset in the .deig_info
section of the compilation-unit DIE for the compilation-unit represented by tlea gildress rangelt
returnsDW DLV_ERRCR on error.

5.18.4 dwarf_get_arange cu_header offset()

rev 1.83, 17 Neember 2009 -72 -

-73-

i nt dwarf_get _arange_cu_header _of fset(
Dwar f _Arange ar ange,
Dwarf O f *returned _cu_header offset,
Dwarf _Error *error)

The functiondwar f _get _arange_cu_header _of f set () takes aDwar f _Ar ange descriptor as
input, and if successful returV DLV_CK and set$r et ur ned_cu_header _of f set to the ofset

in the .debug_info section of the compilation-unit header for the compilation-unit represented bgrthe gi
address range. It returb¥V DLV _ERRORon error.

This function added Rel.45, June, 2001.

This function is declared as 'optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if ¢hgian of libdwarf linked into an application has this
function.

5.18.5 dwarf_get_arange info()

int dwarf_get arange_i nfo(
Dwar f _Arange ar ange,
Dwar f _Addr *start,
Dwar f _Unsi gned *I engt h,
Dwarf O f *cu_die offset,
Dwar f _Error *error)

The functiondwar f _get arange_i nfo() returnsDW DLV_COK and stores the starting value of the
address range in the location pointed tcsbwar t , the length of the address range in the location pointed
to byl engt h, and the offset in the .debug_info section of the compilation-unit DIE for the compilation-
unit represented by the address range. It reDWwiDLV_ ERRORon error.

5.19 General Low Level Operations

This function is low-lgel and intended for use only by programs such as dwarf-dumpers.

5.19.1 dwarf_get_address size&()

int dwarf_get address_si ze(Dwarf _Debug dbg,
Dwarf Hal f *addr_si ze,
Dwar f _Error *error)

The function dwarf get address_si ze() returns DW DLV _OK on success and sets the
*addr _si ze to the size in bytes of an addres$s.case of errgit returnsDW DLV_ERROR and does not
set*addr _si ze.

5.20 Ranges Operations (.debug_ranges)

These functions pride information about the address ranges indicated BYA8AT r anges attribute
(the ranges are recorded in the debug_ranges section) of a DIE. Each call of
dwarf _get ranges_a() ordwarf_get ranges() returns a an array of Dwarf Ranges structs,

rev 1.83, 17 Neember 2009 -73-

-74 -

each of which represents a single ranges enfiye struct is defined i i bdwar f . h.

5.20.1 dwarf_get_ranges()

This is the original call and it will ark fine when all compilation units hia the same address_siz€here
is nodi e argument to this original version of the function. Othayuanents (and deallocation) match the
use ofdwar f _get ranges_a() (described next).

5.20.2 dwarf_get_ranges a()

int dwarf_get_ranges_a(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwarf_Die die,
Dwar f _Ranges **ranges,
Dwarf _Si gned * returned_ranges_count,
Dwar f _Unsigned * returned_byte_count,
Dwarf _Error *error)

The functiondwar f _get _ranges_a() returnsDW DLV_CK and set$ r et ur ned_r anges_count
to the count of the number of address ranges in the group of ranges in the .debug_ranges séstibn at of
of f set (which ends with a pair of zeros of poingtze). Thisfunction is nev as of 27 April 2009.

The of f set amgument should be the value oDV AT _r anges attribute of a Debugging Information
Entry.

The di e agument should be the value ofDmar f _Di e pointer of aDwar f _Di e with the attrilute
containing this range setfsét. Becauseach compilation unit has itsva address_size field thisgument
is necessary to to correctly read ranges. (Mxstigables hee the same address_size irery compilation
unit, ut some ABIs allw multiple address sized in arxeeutable). Ifa NULL pointer is passed in
libdwarf assumes a single address_size is appropriate for all ranges records.

The call sets'ranges to point to a block oDwar f _Ranges structs, one for each address rangie.
returns DW DLV_ERROR on error It returnsDW DLV_NO _ENTRY if there is no . debug_r anges
section or ifof f set is past the end of thedebug_r anges section.

If the *r et ur ned_byt e_count pointer is passed as non-NULL the number of bytes that the returned
ranges were tak from is returned through the pointer (for example if the returned_ranges_count is 2 and
the pointer-size is 4, then returned_byte count will be 8). Ifthet ur ned_byt e_count pointer is
passed as NULL the parameter is ignorddhe *r et ur ned_byt e_count is only of use to certain
dumper applications, most applications will not use it.

rev 1.83, 17 Neember 2009 -74 -

-75 -

Dwar f _Si gned cnt;
Dwar f _Ranges *ranges;
Dwar f _Unsi gned byt es;
int res;
res = dwarf_get_ranges_a(dbg, of f, di eptr, &r anges, &nt, &ytes, &error);
if (res == DWDLV_OK) {
Dwar f _Si gned i ;
for(i =0; i <cnt; ++i) {
Dwar f _Ranges *cur = ranges+i;
/* Use cur. */
}

dwar f _ranges_deal | oc(dbg, ranges, cnt);

5.20.3 dwarf_ranges dealloc()

i nt dwarf_ranges_deal | oc(
Dwar f _Debug dbg,
Dwar f _Ranges *ranges,
Dwarf _Signed range_count,
);

The functiondwar f _ranges_deal | oc() takes as input a pointer to a blockdfar f _Ranges array
and the number of structures in the block. It frees all the data in the array of structures.

5.21 TAG ATTR etc namesas strings

These functions turn aalue into a string. So applications wanting the stringV"OAG_compile_unit"
given the value 0x11 (the value defined for thisd) can do so easily.

The general form is

i nt dwarf_get _<somet hi ng>_nane(
unsi gned val ue,
char **s_out,

)

If the val ue passed in is known, the function retuB\& DLV_OK and places a pointer to the appropriate
string into *s_out . The string is in static storage and applications mugérrfeee the string. If the
val ue is not knavn, DW DLV_NO_ENTRY is returned ands_out is not set.DW DLV_ERRORs never
returned.

Li bdwar f generates these functions at libdwarf build time by reading dwarf.h.
All these follow this pattern rigidlyso te details of each are not repeated for each function.

The choice of 'unsigned’ for the value type argument (the code value) argument is somewhat, airititrary
could hae keen used.

The library simply assumes the value passed in is applic8blefor example, passing &G value code to

dwar f _get ACCESS narme() is a coding error which libdwarf will process as if iisvan accessibility
code \alue. Examplesf bad and good usage are:

rev 1.83, 17 Neember 2009 -75-

-76 -

const char * out;
int res;
/* The following is wong, do not do it! */
res = dwarf_get ACCESS nane(DW TAG entry_poi nt, &out);
/* Nothing one does here with 'res’ or ’out’
i s meani ngful . */

/* The follow ng is meaningful.*/
res = dwarf_get TAG name(DW TAG entry_poi nt, &ut);
if(res == DWDLV_OK) {
/* Here 'out’ is a pointer one can use which
points to the string "DWTAG entry_point". */
} else {
/* Here 'out’ has not been touched, it is
uninitialized. Do not use it. */

5.22 dwarf _get ACCESS name()

Returns an accessibility code name througtstheut pointer.

5.23 dwarf_get_ AT_name()

Returns an attribute code name throughstheut pointer.

5.24 dwarf get ATE name()

Returns a base type encoding name through tloeit pointer.

5.25 dwarf _get ADDR_name()

Returns an address type encoding name throughstheut pointer As of this writing only
DW ADDR _none is defined indwar f . h.

5.26 dwarf _get ATCF_name()

Returns a SUN code flag encoding natheough thes _out pointer This code flag is entirely a\MARF
extension.

5.27 dwarf_get CHILDREN_name()

Returns a child determination name (which is seen in the abbreviations section data) threugiuthe
pointer The only value this recognizes for a 'yes’ value isAk. a flag value this is not quite correctyan
non-zero value means yesjtldealing with this is left up to client code (normally compilers really do emit
a\value of 1 for a flag).

5.28 dwarf_get_children_name()

Returns a child determination name through gheut pointer though this ersion is really a libderf
artifact. Thestandard function isdwar f _get CHI LDREN nane() which appears just abe As a
flag value this is not quite correct ganon-zero alue means yes) but dealing with this is left up to client
code (normally compilers really do emit a value of 1 for a flag).

rev 1.83, 17 Neember 2009 -76 -

-77 -

5.29 dwarf get CC_name()

Returns aalling covention case code name through sheout pointer.

5.30 dwarf _get CFA_name()

Returns aall frame information instruction name through sheout pointer.

5.31 dwarf_get DS name()

Returns a decimal sign code name througtstheut pointer.

5.32 dwarf get DSC _name()

Returns aliscriminant descriptor code name throughgheut pointer.

5.33 dwarf _get EH_name()

Returns a&GNU exception header code name througtstheut pointer.

5.34 dwarf_get END_name()

Returns an endian code nhame throughstheut pointer.

5.35 dwarf_get FORM _name()

Returns an form code name throughsheut pointer.

5.36 dwarf get FRAME_name()

Returns a frame code name through sh@ut pointer These are dependent on the particular ABI, so
unless thedwar f . h used to generate libdwarf matches your ABI these names arelyrtiikbe ery
useful and certainly wohbe entirely appropriate.

5.37 dwarf_get_ID_name()

Returns andentifier case code name through sheout pointer.

5.38 dwarf _get INL_name()

Returns arinline code name through tise out pointer.

5.39 dwarf _get LANG_name()

Returns danguage code name through theout pointer.

5.40 dwarf get L NE_name()

Returns dine table extended opcode code name through tlo@it pointer.

5.41 dwarf get LNS name()

Returns dine table standard opcode code name through tloait pointer.

5.42 dwarf_get MACINFO_name()

Returns anacro information macinfo code name throughgheut pointer.

5.43 dwarf_get OP_name()

Returns @WARF expression operation code name througtstheut pointer.

rev 1.83, 17 Newember 2009 -77 -

-78 -

5.44 dwarf _get ORD_name()

Returns ararray ordering code name through sheout pointer.

5.45 dwarf _get TAG_name()

Returns &AG name through the_out pointer.

5.46 dwarf _get VIRTUALITY_ _name()

Returns avirtuality code name through tise out pointer.

5.47 dwarf get VIS name()

Returns a visibility code name through theout pointer.

5.48 Utility Operations

These functions aid in the management of errors encountered when using functiorighdwtré library
and releasing memory allocated as a resultlidfdsvarf operation.

5.48.1 dwarf _errno()

Dwar f _Unsi gned dwarf _errno(
Dwarf _Error error)

The functiondwar f _errno() returns the error number corresponding to the error specified bgr .

5.48.2 dwarf_errmsg()

const char* dwarf_errnsg(
Dwarf Error error)

The functiondwar f _errmsg() returns a pointer to a null-terminated error message string corresponding
to the error specified bgrror. The string returned bgwar f _errnsg() should not be deallocated
usingdwar f _deal | oc() .

The set of errors enumerated in Figure 3Wwelere defined in Dwarf 1. These errors are not used by the
current implementation of Dwarf 2.

rev 1.83, 17 Neember 2009 -78 -

-79-

SYMBOLIC NAME DESCRIPTION

DW_DLE_NE Noerror (0)

DW_DLE_VMM Version of DNVARF information newer than libdwanf
DW_DLE_MAP Memorymap failure

DW_DLE_LEE Propagtion of libelf error

DW_DLE_NDS Nodebug section

DW_DLE_NLS Noline section

DW_DLE_ID Requestethformation not associated with descriptor
DW_DLE_IOF I/Ofailure

DW_DLE_MAF Memoryallocation failure

DW_DLE_IA Invalid argument

DW_DLE_MDE Mangleddebugging entry

DW_DLE_MLE Mangledine number entry

DW_DLE_FNO Filedescriptor does not refer to an open file
DW_DLE_FNR Fileis not a regular file

DW_DLE_FWA File is opened with wrong access
DW_DLE_NOB Fileis not an object file

DW_DLE_MOF Mangledbbiject file header

DW_DLE_EOLL Endof location list entries

DW_DLE_NOLL Nolocation list section

DW_DLE_BADOFF Invalid offset

DW_DLE_EOS Enabf section

DW_DLE_ATRUNC Abbreviations section appears truncated
DW_DLE_BADBITC Addresssize passed to dwarf bad

Figure 6. List of Dwarf Error Codes

The set of errors returned by SGi bdwar f functions is listed bels. Some of the errors are SGI
specific.

rev 1.83, 17 Newember 2009 -79-

-80-

SYMBOLIC NAME

DESCRIPTION

DW_DLE_DBG_ALLOC
DW_DLE_FS®T_ERFOR
DW_DLE_FS®T_MODE_ERFOR
DW_DLE_INIT_ACCESS_WRNG
DW_DLE_ELF BEGIN_ERRPR
DW_DLE_ELF_GETEHDR_ERRR
DW_DLE_ELF_GETSHDR_ERBR
DW_DLE_ELF_STRPTR_ERGR
DW_DLE_DEBUG_INFO_DUPLICAE
DW_DLE_DEBUG_INFO_NULL
DW_DLE_DEBUG_ABBREV_DUPLICAE
DW_DLE_DEBUG_ABBREV_NULL
DW_DLE_DEBUG_ARANGES_DUPLICAE
DW_DLE_DEBUG_ARANGES_NULL
DW_DLE_DEBUG_LINE_DUPLICAE
DW_DLE_DEBUG_LINE_NULL
DW_DLE_DEBUG_LOC_DUPLICAE
DW_DLE_DEBUG_LOC_NULL
DW_DLE_DEBUG_MACINFO_DUPLICAE
DW_DLE_DEBUG_MACINFO_NULL
DW_DLE_DEBUG_PUBNAMES_DUPLICAE
DW_DLE_DEBUG_PUBMMES_NULL
DW_DLE_DEBUG_STR_DUPLICAE
DW_DLE_DEBUG_STR_NULL
DW_DLE_CU_LENGTH_ERRR
DW_DLE_VERSION_STAMP_ERRR
DW_DLE_ABBREV_OFFSET_ERBR
DW_DLE_ADDRESS_SIZE_ERBR
DW_DLE_DEBUG_INFO_PTR_NULL
DW_DLE_DIE_NULL
DW_DLE_STRING_OFFSET_BD
DW_DLE_DEBUG_LINE_LENGTH_B\D
DW_DLE_LINE_PROLOG_LENGTH_BD
DW_DLE_LINE_NUM_OPERANDS_BD
DW_DLE_LINE_SET_ADDR_ERRR
DW_DLE_LINE_EXT_OPCODE_BD
DW_DLE_DWARF_LINE_NULL
DW_DLE_INCL_DIR_NUM_BAD
DW_DLE_LINE_FILE_NUM_BAD
DW_DLE_ALLOC_FAIL
DW_DLE_DBG_NULL
DW_DLE_DEBUG_FRAME_LENGTH_BD
DW_DLE_FRAME_VERSION_BD
DW_DLE_CIE_RET_ADDR_REG_ERBR
DW_DLE_FDE_NULL
DW_DLE_FDE_DBG_NULL
DW_DLE_CIE_NULL
DW_DLE_CIE_DBG_NULL
DW_DLE_FRAME_TABLE_COL_B\D

Couldnot allocate Dwarf_Debug struct
Errorin fstat()-ing object
Errorin mode of object file
Incorrectaccess to dwarf_init()
Errorin elf_begin() on object
Errorin elf_getehdr() on object
Errorin elf_getshdr() on object
Errorin elf_strptr() on object
Multiple .debug_info sections
Nodata in .debug_info section
Multiple .debug_abbresections
Nodata in .debug_abbreection
Multiple .debug_arange sections
Nodata in .debug_arange section
Multiple .debug_line sections
Nodata in .debug_line section
Multiple .debug_loc sections
Nodata in .debug_loc section
Multiple .debug_macinfo sections
Nodata in .debug_macinfo section
Multiple .debug_pubnames sections
Nodata in .debug_pubnames section
Multiple .debug_str sections
Nodata in .debug_str section
Lengthof compilation-unit bad
IncorrectVersion Stamp
Offset in .debug_abbvebad
Sizeof addresses in target bad
Pointeinto .debug_info in DIE null
Null Dwarf_Die
Offset in .debug_str bad
Lengthof .debug_line segment bad
Lengthof .debug_line prolog bad
Numberof operands to line instr bad
Errorin DW_LNE_set_address instruction
Errorin DW_EXTENDED_OPCODE instructio
Null Dwarf_line argument
Errorin included directory for gen line
File number in .debug_line bad
Failed to allocate required structs
Null Dwarf_Debug argument
Errorin length of frame
Bad version stamp for frame
Badregister specified for return address
NullDwarf_Fde argument
NoDwarf_Debug associated with FDE
Null Dwarf_Cie argument
NoDwarf_Debug associated with CIE
Badcolumn in frame table specified

rev 1.83, 17 Neember 2009

Figure 7. List of Dwarf 2 Error Codes (continued)

-80-

-81-

SYMBOLIC NAME

DESCRIPTION

DW_DLE_PC_NO_IN_FDE_RANGE
DW_DLE_CIE_INSTR_EXEC_ERBR
DW_DLE_FRAME_INSTR_EXEC_ERRR
DW_DLE_FDE_PTR_NULL
DW_DLE_RET_OP_LIST_NULL
DW_DLE_LINE_CONTEXT_NULL
DW_DLE_DBG_NO_CU_CONTEXT
DW_DLE_DIE_NO_CU_CONTEXT
DW_DLE_FIRST_DIE_NT_CU
DW_DLE_NEXT_DIE_PTR_NULL
DW_DLE_DEBUG_FRAME_DUPLICAE
DW_DLE_DEBUG_FRAME_NULL
DW_DLE_ABBREV_DECODE_ERRR
DW_DLE_DWARF_ABBREV_NULL
DW_DLE_ATTR_NULL
DW_DLE_DIE_BAD
DW_DLE_DIE_ABBREV_BAD
DW_DLE_ATTR_FORM_B\D
DW_DLE_ATTR_NO_CU_CONTEXT
DW_DLE_ATTR_FORM_SIZE_BD
DW_DLE_ATTR_DBG_NULL
DW_DLE_BAD_REF_FORM
DW_DLE_ATTR_FORM_OFFSET_ABD
DW_DLE_LINE_OFFSET_BD
DW_DLE_DEBUG_STR_OFFSET 4D
DW_DLE_STRING_PTR_NULL
DW_DLE_PUBNAMES_VERSION_ERBR
DW_DLE_PUBNAMES_LENGTH_RBD
DW_DLE_GLOBAL_NULL
DW_DLE_GLOBAL_CONTEXT_NULL
DW_DLE_DIR_INDEX_BAD
DW_DLE_LOC_EXPR_BD
DW_DLE_DIE_LOC_EXPR_BD
DW_DLE_OFFSET_BD
DW_DLE_MAKE_CU_CONTEXT_RIL
DW_DLE_ARANGE_OFFSET_BD
DW_DLE_SEGMENT_SIZE_BD
DW_DLE_ARANGE_LENGTH_B\D
DW_DLE_ARANGE_DECODE_ERRR
DW_DLE_ARANGES_NULL
DW_DLE_ARANGE_NULL
DW_DLE_NO_FILE_NAME
DW_DLE_NO_COMP_DIR
DW_DLE_CU_ADDRESS_SIZE_BD
DW_DLE_ELF_GETIDENT_ERRR
DW_DLE_NO_AT_MIPS_FDE
DW_DLE_NO_CIE_FOR_FDE
DW_DLE_DIE_ABBREV_LIST_NULL
DW_DLE_DEBUG_FUNCNAMES_DUPLICAE
DW_DLE_DEBUG_FUNCMMES_NULL

PQequested not in address range of FDE
Errorin executing instructions in CIE
Errorin executing instructions in FDE
NullPointer to Dwarf_Fde specified
Ndocation to store pointer to Dwarf_Frame_Oq
Dwarf_Line has no context
dbfas no CU context for dwarf_siblingof()
Dwrf _Die has no CU context
FirstDIE in CU not DW_TRG_compilation_unit
Erroin moving to next DIE in .debug_info
Multiple .debug_frame sections
Nodata in .debug_frame section
Errorin decoding abbreviation
Null Dwarf_Abbres specified
Null Dwarf_Attribute specified
DIE bad
No abbreviation found for code in DIE
Inappropriateattribute form for attribute
NdaCU context for Dwarf_Attribute struct
Sizeof block in attribute value bad
NoDwarf_Debug for Dwarf_Attribute struct
Inappropriatorm for reference attribute
Offset reference attribute outside current CU
Offset of lines for current CU outside .debug_lin
Offset into .debug_str past its end
Pointeto pointer into .debug_str NULL
\ersion stamp of pubnames incorrect
Readpubnames past end of .debug_pubnames
Null Dwarf_Global specified
No context for Dwarf_Global gen
Errorin directory inde read
Badoperator read for location expression
Expectedblock value for attribute not found
Offset for next compilation-unit in .debug_info b
Could not male CU mntext
Offset into .debug_info in .debug_aranges bad
Segment size should be 0 for MIPS processors
Lengthof arange section in .debug_arange bad
Arangeglo not end at end of .debug_aranges
NULL pointer to Dwarf_Arange specified
NULL Dwarf_Arange specified
No file name for Dwarf_Line struct
NdCompilation directory for compilation-unit
CU header address size not match Elf class
Errorin elf_getident() on object
DIEdoes not hee DW_AT_MIPS_fde attribute
NEIE specified for FDE
Noabbreviation for the code in DIE found
Multiple .debug_funcnames sections
Nodata in .debug_funcnames section

Figure 8. List of Dwarf 2 Error Codes (continued)

rev 1.83, 17 Neember 2009

-81-

[¢)

-82-

SYMBOLIC NAME

DESCRIPTION

DW_DLE_DEBUG_FUNCNAMES_VERSION_ERBR
DW_DLE_DEBUG_FUNCNAMES_LENGTH_BD
DW_DLE_FUNC_NULL
DW_DLE_FUNC_CONTEXT_NULL
DW_DLE_DEBUG_TYPENAMES_DUPLICAE
DW_DLE_DEBUG_TYPEMMES_NULL
DW_DLE_DEBUG_TYPENAMES_VERSION_ERBR
DW_DLE_DEBUG_TYPENAMES_LENGTH_BD
DW_DLE_TYPE_NULL
DW_DLE_TYPE_CONTEXT_NULL
DW_DLE_DEBUG_VARNAMES_DUPLICAE
DW_DLE_DEBUG_VARNAMES_NULL
DW_DLE_DEBUG_VARNAMES_VERSION_ERBR
DW_DLE_DEBUG_VARNAMES_LENGTH_RD
DW_DLE_VAR_NULL
DW_DLE_VAR_CONTEXT_NULL
DW_DLE_DEBUG_WEAKNAMES_DUPLICAE
DW_DLE_DEBUG_WEAKNAMES_NULL

DW_DLE_DEBUG_WEAKNAMES_VERSION_ERBR

DW_DLE_DEBUG_WEAKNAMES_LENGTH_RBD
DW_DLE_WEAK_NULL
DW_DLE_WEAK_CONTEXT_NULL

\ersion stamp in .debug_funcnames bag

Lengtherror in reading .debug_funcnames

NULL Dwarf_Func specified

Nocontext for Dwarf_Func struct
Multiple .debug_typenames sections
Nodata in .debug_typenames section
\ersion stamp in .debug_typenames bad

Lengtherror in reading .debug_typenames

NULL Dwarf_Type specified

Nocontext for Dwarf_Type gien

Multiple .debug_varnames sections
Nodata in .debug_varnames section
\ersion stamp in .debug_varnames bad

Lengtherror in reading .debug_varnames

NULL Dwarf_Var specified

Nocontext for Dwarf_Var gien

Multiple .debug_weaknames section
Nodata in .debug_varnames section
\ersion stamp in .debug_varnames bad
Lengtherror in reading .debug_weaknan
NULL Dwarf_Weak specified
Nocontext for Dwarf_Weak gén

Figure9. List of Dwarf 2 Error Codes

es

This list of errors is not necessarily complete; additional errors might be added when functionality to create
delugging information entries are added ltbdwarf and by the implementors dfbdwarf to describe
internal errors not addressed by thewablist. Someof the aboe arors may be unused. Errors may not

have the same meaning in different implementations.

5.48.3 dwarf_seterrhand()

Dwar f _Handl er dwarf _set errhand(
Dwar f _Debug dbg,
Dwar f _Handl er errhand)

The functiondwar f _set er r hand() replaces the error handler (sbsar f _i ni t ()) with er r hand.
The old error handler is returned. This function is currently unimplemented.

5.48.4 dwarf_seterrarg()

Dwarf Ptr dwarf_seterrarg(
Dwar f _Debug dbg,
Dwarf _Ptr errarg)

The functiondwar f _set errar g() replaces the pointer to the error handler communication area (see
dwarf _init()) with errarg. A pointer to the old area is returnedhis function is currently

unimplemented.

rev 1.83, 17 Newember 2009 -82-

-83-

5.48.5 dwarf_dealloc()

voi d dwarf _deal | oc(
Dwar f _Debug dbg,
voi d* space,
Dwar f _Unsi gned type)

The functiondwar f _deal | oc frees the dynamic storage pointed tostpace, and allocated to the gén
Dwar f _Debug. The agumentt ype is an intger code that specifies the allocation type of tiggore
pointed to by thepace. Refer to section 4 for details dibdwarf memory management.

rev 1.83, 17 Neember 2009 -83-

rev 1.83, 17 Neember 2009

-84 -

-84 -

CONTENTS

1. INTRODUCTION iiiiiiiei e ettt e e e e e e st e e e e e e e ettt e e e e e e e aanssaseeaeeaeeaaassnssaeaaaeeeesansssnees 1
S R ©7o])/ ([0 | 1| AP P PP PPPPPPRPPPPP 1
1.2 PUIMPOSE ANA SCOPE.....euiiiiiiieeiiiiiitte et e e e ettt e e e e st et e e e e s e s e e e e e e s s snbbrneeeeaeeeans 1
S I I o Tod [4 1=T o[B o 11 (o Y PP PP 1
R I = 1 0 T1 (o] o PP OTPUPPPRPRR 2
T O 1Y = V= PP 2
1.6 IEMS CRANGEA ...ttt e et e e e e e e e e e e e s e reeeeeaaans 3
1.7 HemMS REMMEA oo 3
1.8 REVISION HISTOIY oottt e e e e e e e e e s et r e e e e e e e nns 4

2. TYPES DEfINItIONS ... —— 4
2.1 General DESCHPLIONccoo i —— 4
A o= 1= | Y/ o 1= TR 4
ARG I e To [12 = (I 1Y/ 12U TUUUPPPPTPRRTT 5

2.3.1 LOCAtiON RECOM ...ccoeeiiieiieeeeeeeeeee e 5
2.3.2 LOCAtiON DESCIIPLION ..eviieiiiiiiiiiiiee e e e ettt e e e e e e e e e e e e s anbenees 5
2.3.3 DAt@a BIOCK ... 6
2.3.4 Frame Operation CodesMBRF 2 ... 6
2.3.5 Frame RegtableMIARF 2 ... e e e e eene 7
2.3.6 Frame Operation CodesMBRF 3 (and WVARF2) ..., 8
2.3.7 Frame RegtableMIARF 3 ... e 8
2.3.8 Macro Details RECOId........cooiiiiiieiieii e nnennne 10
A O o TV U Y/ o1 S PP 10

3. Error HandliNgoooooviiiiiiii 12
3.1 Returned values in the functional interface............cccc 13

4. MeMOIY MANAGEIMENTueiii ettt ettt e e e e et et et b e e e e et e e eeabbb e e e e e e eeeesbebna e e eaaas 14
4.1 Read-0Only PrOPertieS........c.uuiiiiiieeiiiiittee ettt e e e e e e 14
4.2 Storage DealloCaAtiONc..uiiiiiiiieiiiie e 14

5. FUNCLIONAI INTEITACE ...eiiieiiiiiiieiiee et e bbb eaeeas 16
5.1 Initialization OPEratiONsccooooiiiiiiiii e 16

o0t 00 Ao 1117 U 11 () 16
5.1.2 dwarf_elf_INIt() .eeeeeeeeeeeiieiieee e 17
5.1.3 dWarf_get_eIf() ..eeeeeeeeeiiiiiiiii e 17
5.1.4 dwarf_fiNiSN() .ooeeeiiiiiiiii e 18
5.1.5 dwarf_set StriNGCRECK().....uururrririiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeee e eeeeeeeseereeeeeeeeeeeeeeees 18
5.1.6 dwarf_set_reloc_application()..........ccoeeeeiiiiiiii e 18
5.2 Debugging Information Entry Delry Operationscccccvvviiiiiiieeereeeeinniiinineeeen 19
5.2.1 Debugging Information Entry Debugger Dely Operations 19
5.2.2 dwarf_next_CU_NEader(}..........uuuuuurureeiiiiiiiiiiiieieiieeeieeeeeeeeeeeee e e eeeeeeeeeeeeeeeeeeeees 19
5.2.3 dwarf_SIiDINGOT() ...eveeeeiiiiiiiiiiiie e 19
5.2.4 dwarf_Child() ...ccoooiii b aaaa—araaaaaes 20
5.2.5 dwarf offdi€() ...eeeeeeeeieiiiiiieieeeee 20
5.3 Debugging Information Entry Query OperationsS...........cccvvvvriviiiiiiieeeeeeeeeiiinneeee e 21

54

5.5

5.6

TR R R0 11V T = Vo | PO P TP PPPPPPPPPPPP 22

5.3.2 dwarf_dieoffSEt()ccooiiiiiii i 22
5.3.3 dwarf _die_ CU _OffSet() ...covvvviiiiiiiiiiii 22
5.3.4 dwarf_CU_dieoffset gBn_die()cooiiiiiiiiiieiiieicee e 22
5.3.5 dwarf_die_CU_offset_range(}........ccooerieeiieieeieeeae e 23
5.3.6 dWarf_di€NamE() ...eeeeeeeiiiiiiiiiii e 23
5.3.7 dwarf_die_abbrev_Code()....... it 24
5.3.8 dwarf_attrlist()ccoovvvviiiieii . 24
5.3.9 dwarf_hasattr()ccooeiiiiiiiii i 24
EIRC F0 K0 I V7=V - 11) 25
5.3.11 dWarf_IOWPC() woeeeeeeeeeiieeeeee e 25
5.3.12 dWAIT_NIGNPC() -eveeeeeeeeeiiiiiiii e 25
5.3.13 AWAIT_DYIESIZE() ...uuevereeeeeeeeiiiiiti ettt 25
5.3.14 dwarf_DitSIiZe() ...covvveeeiieeieee L 26
5.3.15 dwarf_bitoffSet()oovvvvviiiiiiii 26
5.3.16 dwarf_Srclang()coooveeiiiiiiii e 26
5.3.17 dwarf_arrayorder()ooooeeeeieeeie oo 27
Attribute FOrm QUETIES ..oeviiieiiieiieee e, 27
5.4.1 dwarf_Nasform()c.ceeeeeeiieii e 27
5.4.2 dwarf_ Whatform()coooevviiiiiiii 27
5.4.3 dwarf_whatform_direCt()oooooeiiiiiii 28
o Ao V7= U E Y] F= L= 28
5.4.5 dwarf_fOrmMIef()eeeeeeeiieeeiieieeee e 28
5.4.6 dwarf_global_formref() ..o 28
5.4.7 dwarf_formaddr()cccueeiiiiiiee e 29
5.4.8 dwarf _formflag()cooooiiiiiiiii 29
5.4.9 dwarf _formudata()cceevvviiiiiiiiiiii 29
5.4.10 dwarf_formsdata()couvuriiiiiiiiiiieiis e 29
5.4. 11 dwarf_formbloCK()coooeiiiiiiie e 30
5.4.12 dWarf_fOrMSIING() «eeeeeeeeiiinririiiee e e e e e e 30
5.4.12.1 dwarf_I0CHST_N() weeeeeeiiiiiiiiiieieee e 30
5.4.12.2 dwarf 10CHSt() ..oovvvieeiiieiieeee e, 31
5.4.12.3 dwarf_loclist_from_eXpr() .ccccccceevieeiiiiiiiiiii 32
5.4.12.4 dwarf_loclist_from_expr_a()......cccccevriiiiiiieeireeeeicen e 33
Line NUMDEr OPEIatiONS. ...ttt e e 33
5.5.1 GetA SELOFLINES cooviieiiiiiieeeeee e 33
5.5.1.1 dwWarf_SICHNES() ..evvvreeeieiiiiiiiiiiie et 34
5.5.2 Get the set of Source File NamesS.........coooiiuiiiiiiiiiiiiiiice e 34
5.5.3 Get information about a Single Table Line.........cccccoiiiiiiiiiiniiiiiiiiiiiinnns 35
5.5.3.1 dwarf_linebeginstatement().............ceerieeeiiiiiiii e 35
5.5.3.2 dwarf_lineendsequence().........oooeuiiiiiiiiii e 35
5.5.3.3 dwWarf_lINENO() ...evvveeeeieiiiiiiii e 36
5.5.3.4 dwarf_line_srcfileno()coeeeeiiiiiiiiiieee e 36
5.5.3.5 dwarf _lineaddr()oooeeiiiiii e 36
5.5.3.6 dwarf _lin€off()cccoiiiiiiiii 37
5.5.3.7 dwarf_lINESIC() .evuvrruiiiiii i e e e e eannees 37
5.5.3.8 dwarf_liN€bIOCK()cuvviiiiiieeee e 37
Global Name Space OPEratiONS..........eueeeiiiiuurieieieeeeaaiiiie e e e e e s e e e e eeeeas 37

5.6.1 Debugger Interface OPerationsS...........ocouiiiiiuriiiiieeeiiiiiiiiiee e e e e e 38

5.6.1.1 dwarf _get globalS()ccvvvvriiiiiiiiiiiiiiii 38
5.6.1.2 dwarf _globname()ccccccvvviiiiiiiiiiii 39
5.6.1.3 dwarf _global_die_offSet().......cccceeiiiiiiiiiiiiiiii e 39
5.6.1.4 dwarf_global_cu_offSet().........cooeiiiiiiiriii s 39
5.6.1.5 dwarf_get _cu_die_offsetvgn_cu_header_offset()....................... 40
5.6.1.6 dwarf_global_name_offSetS()........ccuurrrieeeriiiiiiiiiieee e 40
5.7 DWARF3 Type Names Operations..........coooiieiiiiiiieieieieeeeeee s s 40
5.7.1 Debugger Interface OPEratiONS............uuuureiverrieerreerieeieeereereeeeeererreeeeerrerreeereen 41
5.7.1.1 dwarf_get pubtypPeS()...ceeeeeeriiiiiiiiiii e 41
5.7.1.2 dwarf_pubtypename()...........uuueuuueeuummmmeeiinninenieeeeeenenneneeeaeneeeeeeeeeeeee 41
5.7.1.3 dwarf_pubtype_die_OffSEt().........cccurmmrriieiiiiiiiiiieeeee e 42
5.7.1.4 dwarf_pubtype_Cu_OffSEt()......ceveerrriiiirriiiiieeeiiiiiiiie e 42
5.7.1.5 dwarf_pubtype_name_offsets()..........ccceeeiiiiiiiiii i 42
5.8 User Defined Static Variable Names Operations...............uuvveeverrieereeereereeeeeeeeeeeeee. 42
5.9 Weak Name SPace OPeratiONS......cciieeeeieeeeiiiiiieeeeeeeeeeeeiiis s e e e eeeeeeesnnnaseeeeeseeesssnnnnnnns 43
5.9.1 Debugger Interface OPEratioNnsS.ccceiiiiuriiiiiieeeiiiiiieiee e 43
5.9.1.1 dwarf_get WeakS()......couiiuurriiiiieeeeeii e 43
5.9.1.2 dwarf_weakname()ceeeeeiiiiiiiiiiiiee e 44
5.9.1.3 dwarf weak cu_ offSet()....cccccvvvviiiiiiiiiiii 44
5.9.1.4 dwarf weak name_OffSetS()......uururreeiiiriiiiiiiiiiieeeeeeeeeeeeeeer e 44
5.10 Static Function Names OPEeratiOnsS............uieeiiieeiiieeeiiiiinn e eeeeeeer e e e e e e eeeernn 45
5.10.1 Debugger Interface OPerations................eeuueeeueeeueeeieeiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeees 45
5.10.1.1 dwarf_get_fUNCS() .. .eeeeeeeiiiiiiiiiieeee e 45
5.10.1.2 dwarf_fUNCNAME()ceuieeiiiiiiiiiii e 46
5.10.1.3 dwarf_func_die_OffSEt()........uuurrmrirriririiiiiiiiiieiiieeeeeeeeer e 46
5.10.1.4 dwarf_func_cu_offset().........cooeeiiiiiiiiiiicii e 47
5.10.1.5 dwarf _func_name_offSEtS(}....uuuciiiiiieiiiiiiiiiiii e 47
5.11 User Defined Type Names OpPerationS..........ccuueviiiiiieiiiiiiieiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeees 47
5.11.1 Debugger Interface OPEratioNS.............ceuiiiiuririiieeeeeaiiiieeee e e e e e e e 48
5.11.1.1 dwarf_get_tYPeS() ..ueeeeeeeeiiiiiriiiiieee ettt 48
5.11.1.2 dwarf_typename().....cccccviiiiiiiiiiiiii 49
5.11.1.3 dwarf_type_die_OffSEt()......uuurrrriiiiiiiiiiiiiiiiiieeiieeeeeeeeeeee e 49
5.11.1.4 dwarf _type cu_OffSEt()....ccuurrriiiiiiiiiiieiice e 49
5.11.1.5 dwarf_type_name_offSetS().......cceeerraiiieeiriiee e 50
5.12 User Defined Static Variable Names Operations............ccccvvveeveeennniiiineieeeeee e 50
5.12.1 Debugger Interface OPEeratioNs.............oeuiiiiuriiriieeeeesiiiieeeee e e s e e e e 50
5.12.1.1 dwarf _get vars()ccoeeeiiiiiiie e 50
5.12.1.2 dwarf varname()........coooeiiiiiiii e 51
5.12.1.3 dwarf var_die OffSet().....ccceeeiiiiiriiiiiiiiii e 51
5.12.1.4 dwarf_var_Cu_OffSEt().........uuurruummmrruiniiiiiieiiieiieeiieeieeeieeeeeeeeeeeeeeeeeeeees 52
5.12.1.5 dwarf_var_name_offSetS()....ccvurriiiiiiiiiiiiiiiiiii 52
5.13 Macro INformation OPEratiONS...........couiuurrrriiieeeiiiirieeie e e e e e s s e e e e e s s eeeeeeeeaaes 52
5.13.1 General Macro OPEratiONS..........uueieeeiireeiiiiieiieerieeeeeeeeeereee e rerereeaeeeeaeeaeees 52
5.13.1.1 dwarf_find_macro_value_start()...........ccccevvrrrrerereereereeeeeeeeeeeeeeeeeeen. 52
5.13.2 Debugger Interface Macro OpPerations..............covvvevuruiiniieeeereeeeiiiin e eeeeeenns 53
5.13.3 Lav Levd Macro Information OPerations.............coooevvrvriereeeennniiiiiieeeeee s 53
5.13.3.1 dwarf_get_macro_detailS().......ccceuumrrmmrmmiieeeeiiiiiiieeee e 53

5.14 Lon Levd Frame OPEIatiONSccuvrrriiieeeeiiiiiiieiieee e s s st e e e e s s ssisrseeeaeeesssnnnenneees 54

5.14.0.1 dwarf _get fde liSt().....ceereeerieiiiiiiiiiiiiiii 56
5.14.0.2 dwarf_get fde list €N().....cuverriiiiieiiiiiiiiiiieiieee e 57
5.14.0.3 dwarf _get_cie_of fde().....ccccoeeiiiiiiiiiiiiiic e, 58
5.14.0.4 dwarf_get_fde_for_die()....ccccccorrimmiiiiiiiiii 59
5.14.0.5 dwarf_get_fde_range()........ccourrieeeriiiiiiiiieeee e 59
5.14.0.6 dwarf_get_cie_iNfO().......oorummmiiiiiiiiiiiie e 60
5.14.0.7 dwarf_get _cie_indeX().......ccccoeviiiiiiiiiiiii 60
5.14.0.8 dwarf_get fde instr_ byteS()....uuurrerieiiiiiiiiiiieeieeeeeeeeeeeeeeeeeee e, 60
5.14.0.9 dwarf _get _fde info_for reg()....ccccooeeerrimmeeiiiiiiniieeeereeice e eeeeeenens 61
5.14.0.10dwarf_get_fde_info_for_all_regsS().......ueeeeemmmmmmemereeeiieiiieeiieeeeeeeenn. 61
5.14.0.11dwarf_set_frame_rule_table_Size()......cccccourrrrreeerreeiieriieiiieeieeneenn, 62
5.14.0.12dwarf_set_frame_rule_initial_value()........ccccccrrriimrirreieeenniiiiinne. 62
5.14.0.13dwarf_set frame_cfa_value()...........ccoeeeeieeiieiiiecccccs 62
5.14.0.14dwarf_set_frame_same_value().............cccoeeeeiieeieiiieiecccccccccs 62
5.14.0.15dwarf_set_frame_undefined_value()........ccccccoeeeeriiiiiiiriiiiiciineeeenn, 63
5.14.0.16dwarf_get_fde_info_for_reg3().........ceeeerreerieeriieeeeee e 63
5.14.0.17dwarf_get_fde_info_for_cfa_reg3(}......cccccoereeeeeenneenn, 64
5.14.0.18dwarf_get_fde_info_for_all_regS3():......cceuvrrurrrmreeeeiriiiiiiiiieeeeennns 65
5.14.0.19dwarf_get fde N()..coeeereeeiieiiiiiii 65
5.14.0.20dwarf_get fde_at PC()....covvvrriiiiiiiiiiiii 66
5.14.0.21dwarf_expand_frame_INStruCtionS()........cceeeeeeeerrreeiiiiiininieeeeeeennnnns 66
5.14.0.22dwarf_get_fde_exception_iNfo()............uueerremmmmmemmmeieeiieieieeieeeeeeeeenn. 67
5.15 Location EXpression EVAIUALION.couiiiiiiiiiiiiiiee e 67
5.15.1 Location List Internald@l Interfaceccccccvvvviiiiiiiiieiiiiiiieiieeeeeeeeeeeeeeeeeeee 67
5.15.1.1 dwarf_get_loclist_entry().........cooeeeeiiiiiiiee e 67
5.16 ADDIreVIiatioNS GCCESS.uuuuiiiiiieiiiiiiiieie e e et a e e e e et e e e e e s s s e e e e e e s e e eeeaeas 69
5.16.1 dwarf_get_abbreV() ... 69
5.16.2 dwarf_get_abbrev _tag()..... .. eeueeeememmmmiiiiiiiiiieeiiieiieeieeeeee e e e eees 70
5.16.3 dwarf_get_abbrev_code()....... oo 70
5.16.4 dwarf_get_abbrev_children_flag().........cceeeeriiiiiiiiiiii e 70
5.16.5 dwarf_get_abbrev_entry()........cccueuuuiimiriiiiiiiiiiiiiiieiireeseeeeesreeeeeeeeeeee e 70
5.17 String SECtiON OPEIAtiONS.......ccvviiiiiiiiiiiiiiiiiee et a e 71
N o Y= o = A= 1 (N 71
5.18 Address Range OPerations........ccccoioiiieeeiaeieaeieee e eeeeeeeeeeeeeneennees 71
5.18.1 dwarf_get_ arangeS (). ... o ueeeeururrireieeeee e ittt e e 71
5.18.2 dwarf_get_arange()ocvrerrreeeeeiiiiiiiiee e e e e s 72
5.18.3 dwarf_get_cu_die_OffSEt().....uuiririiiiiiiiiieiiiieieeeeeeeeeeeeeee 72
5.18.4 dwarf_get_arange_cu_header offSet().........ccooeiiiiiiiiiiiiiiias 72
5.18.5 dwarf_get_arange_iNfO().......ceeeriieiiiiieiiii e e 73
5.19 General Ly LeVd OPEratiONS eeeeuuuemummmuemmieeeneeeeeeeneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 73
5.19.1 dwarf_get_addreSS_SIiZE()... . eeeeeeiiirrieiiieeee st 73
5.20 Ranges Operations (.debug_ranges).........couuuiiiiiiiiiiiiiiiiiiieee e 73
5.20.1 dwarf_get_ranges()......ccoooeeiiiiiiii e 74
5.20.2 dwarf_get_ranges_a().....ccooeeieeieeiiiiiieiieecie e 74
5.20.3 dwarf_ranges_dealloC()..........ccuuuruiiiiiii i e 75
5.21TAG ATTR €tC NAMES @S SIHNGS....cceieeee e 75
5.22 dwarf_get_ ACCESS_NAME()....ccuiiiiiriiiieeeee ittt e e 76

5.23 dwarf_get_ AT _NAME() «.ooouvrereiieeeeiiiiiii et e e e e e e et e e e e e e s s e e e e e e s ennneees 76

5.24 dwarf_get ATE NAME() ...ccooiiiiii it 76
5.25 dwarf_get ADDR_NAME() ...ioeiiieiieiieei e eee e ann e rnnennrennne 76
5.26 dwarf_get ATCF _NAME()..uuuuuuiiiiieeiiieiiiiiiis s e e e e et s e e e e e e e et s e e e e e e e e eearaa e e e e e e e 76
5.27 dwarf_get CHILDREN_NAME() ...cceeeeeeieeee e 76
5.28 dwarf_get_children_Name()........c.uureeieeeeiiie e 76
5.29 dwarf_get_ CC_NAME()......uuuureiieieeiiiiiiieie e e e e st e e e e e e st e e e e e e s s bbn et e e e e e s annneees 77
5.30 dwarf_get CFA NAME().....coooiiii i 77
5.31 dwarf_get DS NAME()uuuuuuuuiuuuiiiiiiiiiiiiiuutiutersterrrerrerrarsrrsrrerrreerererrr..—————————————————————. 77
5.32 dwarf_get DSC _NaME().....cceieeuuiuiiiiii e ee i s e e e e e e e e e e e e e e et e e e e e e e e eerreanaa 77
5.33 dwarf_get_ EH_NAME().......uuieiiiiieeiii ettt 77
5.34 dwarf_get_ END_NAME()uuuveieiiieeiiiiiiie et e e e e e e e 77
5.35 dwarf_get FORM_NAME()....uuuurriiieeiiiiiiiiie ettt e s e e e e et e e e e e e e s annes 77
5.36 dwarf_get FRAME _Name().....cccovvviiiiiiiiiiiee e, 77
5.37 dwarf_get ID _Name()ooooiiiiiiii oo 77
oIRC T o ATV Vg o 1= AN o F= U [T 77
5.39 dwarf_get. LANG _NAME() 1oooooiiieiieeeeee it eneennee 77
5.40 dwarf_get LNE_NAME()......oiiuiiiiiiieeeeiii et e e e e e 77
5.41 dwarf_get LNS_ NAME()....ccoiiuiiiiiiiee et e e et r e e e e e 77
5.42 dwarf_get MACINFO_NAME() ...uvuurirrriiriiiiiiiiiiiieiiiresreesessssesreeseereeeeeseerererererreererreen 77
5.43 dwarf_get. OP_NAME()...uuuuuuuuriuuiiiuiiiiiiiriiuuiiuteesiersrrrrrsseerrrssressreerrrerere—————————————————————. 77
5.44 dwarf_get ORD_NAME()...uiiieiiiiiiiiiiiiie et e e et e e e e e e e ee e e e e e e e e eeeeneens 78
5.45 dwarf_get AG_NAME() ..oooeeieieiieeei oo 78
5.46 dwarf_get VIRTUALITY_NAME() ..vvrrereeiiiiiiiiiiieeee et 78
5.47 dwarf_get VIS NAME() ..uueeeiiieiiiiiiiiiiiee et 78
5.48 Utility OPEerationNSccoooiiiiiiiei e —— 78
o E T o V- o =Y 1 o (PP 78
Ao Y= o =T 1o T) I 78
5.48.3 dwarf_SeterrNand()ooouerrrieeeeeeee s 82
5.48.4 AWAIT_SEIEITAIG() ++vvreeeeeiiiiiiriieiie e ettt e e e e e e e e e e e e e e eeaaeens 82
5.48.5 dWarT_dEAIIOC() ..ieeiiviiiiiiiiiiiee ettt 83

LIST OF FIGURES

(o [= ST or= 1 F= T 1Y/ =P 5
Figure 2. Error INAICALIONSoeiiiiiiiiiiiiiie et e e e e e e e e e e e e e e e e 13
Figure 3. Allocation/Deallocation Identifiers. ... 16
Figure 4. Frame Information Rule ASSIGNMENTS..........uuuuuriiiiiiiiiiriiieeeiereeeeeeereeeeereeeeereeeeeeeee 55
Figure 5. Frame Information Special Values..............ccccciviiii 56
Figure 6. List Of DWarf ErrOr COOUESuuiiii i ettt e e e e e e e s e e ar e e e 79
Figure 7. List of Dwarf 2 Error Codes (continued).............coovvriiiiiiiiiiiiiieeeeeeeeeeee e, 80
Figure 8. List of Dwarf 2 Error Codes (CONtINUE)........ccceeeiiiiriiiiiieeeeieiiieee e 81
Figure 9. List Of DWarT 2 ErfOr COUEScuiiiiiiiiiiiiiiieee ettt e e e e e e 82

Vi

A Consumer Library Interfaceto DWARF

David Anderson

ABSTRACT

This document describes an interé to a library of functions to acces®VBRF delugging
information entries and WARF line number information (and otheWNARF2/3 information).It
does not mak recommendations as towdhe functions described in this document should be
implemented nor does it suggest possible optimizations.

The document is oriented to readingVBRF version 2 and version Ihere are certain sections
which are SGI-specific (those are clearly identified in the document).

rev 1.83, 17 Neember 2009

0. UNIX s a registered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

Vii

