A Producer Library Interfaceto DWARF

David Anderson

1. INTRODUCTION

This document describes an interfaceto | i bdwar f , alibrary of functions to provide creation of DWARF
debugging information records, DWARF line number information, DWARF address range and pubnames
information, weak names information, and DWARF frame description information.

1.1 Copyright
Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2008 David Anderson.

Permission is hereby granted to copy or republish or use any or al of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that it would be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to propose alibrary of functions to create DWARF debugging information.
Reading (consuming) of such recordsis discussed in a separate document.

The functions in this document have mostly been implemented at Silicon Graphics and are being used by
the code generator to provide debugging information. Some functions (and support for some extensions)
were provided by Sun Microsystems.

The focus of this document is the functiona interface, and as such, implementation and optimization issues
areintentionally ignored.

Error handling, error codes, and certain Li bdwar f codes are discussed in the "A Consumer Library
Interface to DWARF", which should be read (or at least skimmed) before reading this document.

However the general style of functions here in the producer librar is rather C-traditional with various types
as return values (quite different from the consumer library interfaces). The style generally follows the style
of the original DWARF1 reader proposed as an interface to DWARF. When the style of the reader
interfaces was changed (1994) in the dwarf reader (See the "Document History" section of "A Consumer
Library Interface to DWARF") the interfaces here were not changed as it seemed like too much of a change
for the two applications then using the interfacel So this interface remains in the traditional C style of
returning various data types with various (somewhat inconsistent) means of indicating failure.

rev 1.23, 8 Aug 2008 -1-

1.3 Document History

This document originally prominently referenced "UNIX International Programming Languages Special
Interest Group " (PLSIG). Both UNIX International and the affiliated Programming Languages Special
Interest Group are defunct (UNIX is a registered trademark of UNIX System Laboratories, Inc. in the
United States and other countries). Nothing except the general interface style is actually related to anything
shown to the PLSIG (this document was open sourced with libdwarf in the mid 1990's).

See "http://lwww.dwarfstd.org" for information on current DWARF standards and committee activities.

1.4 Definitions

DWARF debugging information entries (DIES) are the segments of information placed in the
. debug_i nfo and related sections by compilers, assemblers, and linkage editors that, in conjunction
with line number entries, are necessary for symbolic source-level debugging. Refer to the document
"DWARF Debugging Information Format" from Ul PLSIG for a more compl ete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information Format" version 2.
and the "A Consumer Library Interface to DWARF".

In addition, this document refers to EIf, the ATT/USL System V Release 4 object format. Thisis because
the library was first developed for that object format. Hopefully the functions defined here can easily be
applied to other object formats.

1.5 Overview

The remaining sections of this document describe a proposed producer (compiler or assembler) interface to
Libdwarf, first by describing the purpose of additional types defined by the interface, followed by
descriptions of the available operations. This document assumes you are thoroughly familiar with the
information contained in the DWARF Debugging Information Format document, and "A Consumer Library
Interface to DWARF".

The interface necessarily knows a little bit about the object format (which is assumed to be EIf). We make
an attempt to make this knowledge as limited as possible. For example, Libdwarf does not do the writing of
object data to the disk. The producer program does that.

1.6 Revision History
March 1993 Work on dwarf2 sgi producer draft begins

March 1999 Adding a function to allow any number of trips through the dwarf_get section_bytes()
call.

April 10 1999 Added support for assembler text output of dwarf (as when the output must pass through
an assembler). Revamped internals for better performance and simpler provision for
differencesin ABI.

Sep 1, 1999 Added support for little- and cross- endian debug info creation.

May 7 2007 This library interface now cleans up, deallocating all memory it uses (the application
simply callsdwarf_producer_finish(dbg)).

rev 1.23, 8 Aug 2008 -2-

2. Type Definitions

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects of Libdwarf . The types defined by typedefs contained in libdwarf.h al use the
convention of adding Dwarf _as a prefix to indicate that they refer to objects used by Libdwarf. The prefix
Dwarf P_ is used for objects referenced by the Libdwarf Producer when there are similar but distinct
objects used by the Consumer.

2.2 Namespace issues

Application programs should avoid creating names beginning with Dwar f _ dwar f _ or DW_ as these are
reserved to dwarf and libdwarf.

3. libdwarf and Elf and relocations

Much of the description below presumes that EIf is the object format in use. The library is probably usable
with other object formats that allow arbitrary sections to be created.

3.1 binary or assembler output

With DW DLC_STREAM RELCOCATI ONS (see below) it is assumed that the calling app will simply write
the streams and relocations directly into an EIf file, without going through an assembler.

With DW DLC SYMBOLI C_RELOCATI ONS the caling app must either A) generate binary relocation
streams and write the generated debug information streams and the relocation streams direct to an ef file or
B) generate assembler output text for an assembler to read and produce an object file.

With case B) the libdwarf-calling application must use the relocation information to change points of each
binary stream into references to symbolic names. It is necessary for the assembler to be willing to accept
and generate relocations for references from arbitrary byte boundaries. For example:

.dataOalbcc #producing 3 bytes of data.
.word mylabel #producing areference
.word endlabel - startlable #producing absolute length

3.2 libdwarf relationship to EIf

When the documentation below refers to "an elf section number’ it is realy only dependent on getting (via
the callback function passed by the caller of dwar f _producer _i ni t ()) a sequence of integers back
(with 1 asthe lowest).

When the documentation below refers to "an EIf symbol index’ it is really dependent on Elf symbol
numbers only if DW DLC STREAM RELOCATI ONS are being generated (see below). With
DW DLC _STREAM RELOCATI ONS the library is generating EIf relocations and the section numbers in
binary form so the section numbers and symbol indices must really be EIf (or elf-like) numbers.

rev 1.23, 8 Aug 2008 -3-

With DW DLC_SYMBOLI C_RELOCATI ONS the values passed as symbol indexes can be any integer set or
even pointer set. All that libdwarf assumes is that where values are unique they get unique values.
Libdwarf does not generate any kind of symbol table from the numbers and does not check their uniqueness
or lack thereof.

3.3 libdwarf and relocations

With DW DLC_SYMBCOLI C_RELOCATI ONS libdwarf creates binary streams of debug information and
arrays of relocation information describing the necessary relocation. The EIf section numbers and symbol
numbers appear nowhere in the binary streams. Such appear only in the relocation information and the
passed-back information from calls requesting the relocation information. As a consequence, the ' symbol
indices can be any pointer or integer value as the caller must arrange that the output deal with relocations.

With DW DLC_STREAM RELOCATI ONS all the relocations are directly created by libdwarf as binary
streams (libdwarf only creates the streams in memory, it does not write them to disk).

3.4 symbols, addresses, and offsets

The following applies to calls that pass in symbol indices, addresses, and offsets, such as
dwar f _add_AT targ_address() dwar f _add_arange b() and
dwarf _add_frame_fde b().

With DW DLC_STREAM RELOCATI ONS a passed in address is one of: @) a section offset and the (non-
global) symbol index of asection symbol. b) A symbol index (global symbol) and a zero offset.

With DW DLC_SYMBOLI C_RELOCATI ONS the same approach can be used, or, instead, a passed in
address may be c) a symbol handle and an offset. In this case, since it is up to the calling app to generate
binary relocations (if appropriate) or to turn the binary stream into a text stream (for input to an assembler,
if appropriate) the application has complete control of the interpretation of the symbol handles.

4. Memory M anagement

Several of the functions that comprise the Libdwarf producer interface dynamically alocate values and
some return pointers to those spaces. The dynamically allocated spaces can not be reclaimed (and must
not be freed) except by dwar f _pr oducer _fi ni sh(dbg).

All data for a particular Dwarf_P_Debug descriptor is separate from the data for any other
Dwar f _P_Debug descriptor in usein the library-calling application.

4.1 Read-only Properties

All pointers returned by or as a result of a Libdwarf call should be assumed to point to read-only memory.
Except as defined by this document, the results are undefined for Libdwarf clients that attempt to writeto a
region pointed to by areturn value from a Libdwarf call.

4.2 Storage Deallocation

Cdlingdwar f _producer _fi ni sh(dbg) freesall the space, and invalidates all pointers returned from
Li bdwar f functionson or descended from dbg).

rev 1.23, 8 Aug 2008 -4-

5. Functional Interface

This section describes the functions available in the Libdwarf library. Each function description includesits
definition, followed by a paragraph describing the function’s operation.

The functions may be categorized into groups. initialization and termination operations, debugging
information entry creation, EIf section callback function, attribute creation, expression creation, line
number creation, fast-access (aranges) creation, fast-access (pubnames) creation, fast-access (weak
names) creation, macro information creation, low level (.debug_frame) creation, and location list
(.debug_loc) creation.

The following sections describe these functions.

5.1 Initialization and Termination Operations

These functions setup Li bdwarf to accumulate debugging information for an object, usualy a
compilation-unit, provided by the producer. The actual addition of information is done by functions in the
other sections of this document. Once al the information has been added, functions from this section are
used to transform the information to appropriate byte streams, and help to write out the byte streams to
disk.

Typicaly then, a producer application would create a Dwar f _P_Debug descriptor to gather debugging
information for a particular compilation-unit using dwarf producer _init(). The producer
application would use this Dwar f _P_Debug descriptor to accumulate debugging information for this
object using functions from other sections of this document. Once all the information had been added, it
would cal dwarf _transformto_di sk _form) to convert the accumulated information into byte
streams in accordance with the DWARF standard. The application would then repeatedly call
dwarf get section_bytes() for each of the . debug * created. This gives the producer
information about the data bytes to be written to disk. At this point, the producer would release al resource
used by Li bdwar f for this object by calling dwar f _pr oducer _fi ni sh().

It is aso possible to create assembler-input character streams from the byte streams created by this library.
This feature requires slightly different interfaces than direct binary output. The details are mentioned in the
text.

5.1.1 dwarf _producer_init()

Dwar f _P_Debug dwarf _producer _init(
Dwar f _Unsi gned fl ags,
Dwar f _Cal | back_Func func,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,

Dwarf _Error *error)

Thefunctiondwar f _producer _init() returnsanew Dwarf _P_Debug descriptor that can be used
to add Dwar f information to the object. On error it returns DW DLV_BADADDR. f | ags determine
whether the target object is 64-bit or 32-bit. f unc isa pointer to a function called-back from Li bdwar f

whenever Li bdwar f needs to create a new object section (asit will for each .debug_* section and related
relocation section). er r hand is a pointer to a function that will be used for handling errors detected by
Li bdwar f . err ar g isthe default error argument used by the function pointed to by er r hand.

Thef | ags valuesare asfollows:
DW DLC WRI TE isrequired. The values DW DLC_READ DW DLC_RDWR are not supported by

rev 1.23, 8 Aug 2008 -5-

the producer and must not be passed.

If DW DLC _SI ZE 64 isnot ORed into f | ags then DW DLC_SI ZE 32 isassumed. Oring in
bothisan error.

If DW DLC _OFFSET_SI ZE 64 isnot ORed into f | ags then 64 bit offsets (as defined in the
1999 DWARF3) may be used (see next paragraph) to generate DWARF (if and only if
DW _DLC SIZE 64isdso ORed intof | ags).

If HAVE_STRI CT_32BI T_OFFSET is set a configure time only 32bit DWARF offsets are
generated (use configure option --enabl e-dwarf-format-strict-32bit) and
DW DLC OFFSET_SI ZE_64 isignored. If HAVE_SGE _| Rl X_OFFSETS is set at configure
time SGI IRIX offsets (standard 32bit, a special 64bit offset for 64bit address objects) are
generated (use configure option --enabl e-dwarf-format-sgi-irix) and
DW DLC OFFSET_SI ZE_64 is ignored. If neither HAVE_STRI CT_32BI T_OFFSET nor
HAVE SGE | Rl X_OFFSETS is set at configure time then standard offset sizes are used (and
HAVE_DWARF2_99 EXTENSI ONisset) and DW DLC_OFFSET_SI ZE 64 is honored.

If DWDLC | SA | A64 isnot ORed into f | ags then DW DLC | SA M PSisassumed. Oring
in both isan error.

If DW DLC TARGET_BI GENDI AN is not ORed into f | ags then endianness the same as the
host is assumed.

If DW DLC TARGET_LI TTLEENDI AN is not ORed into f | ags then endianness the same as
the host is assumed.

If both DW DLC _TARGET LI TTLEENDI AN and DW DLC _TARGET_BI GENDI AN are or-d in
itisan error.

Either one of two output forms is specifiablee DW DLC STREAM RELOCATI ONS or
DW DLC_SYMBOLI C_RELOCATI ONS.

The default is DW DLC_STREAM RELOCATI ONS . The DW DLC_STREAM RELOCATI ONS
arerelocations in abinary stream (as used in a MIPS EIf object).

The DW DLC_SYMBOLI C_RELOCATI ONS are the same relocations but expressed in an array of
structures defined by libdwarf, which the caller of the relevant function (see below) must deal

with appropriately. This method of expressing relocations allows the producer-application to
easily produce assembler text output of debugging information.

If DW DLC _SYMBOLI C_RELOCATI ONS isORed into f | ags then relocations are returned not
as streams but through an array of structures.

The function f unc must be provided by the user of thislibrary. Its prototypeis:

rev 1.23, 8 Aug 2008 -6-

typedef int (*Dwarf_Call back_Func) (
char* nane,

i nt si ze,

Dwar f _Unsi gned type,

Dwar f _Unsi gned fl ags,
Dwar f _Unsi gned ['ink,

Dwar f _Unsi gned i nfo,

i nt* sect _name_i ndex,
i nt* error)

For each section in the object filethat | i bdwar f needs to create, it calls this function once, passing in the
section name, the sectiont ype, the section f | ags, thel i nk field, and thei nf o field. For an Elf object
file these values should be appropriate EIf section header values. For example, for relocation callbacks, the
I'i nk field is supposed to be set (by the app) to the index of the symtab section (the link field passed
through the callback must be ignored by the app). And, for relocation callbacks, the i nf o field is passed
asthe elf section number of the section the relocations apply to.

On success the user function should return the Elf section number of the newly created EIf section.

On success, the function should also set the integer pointed to by sect _name_i ndex to the ElIf symbol
number assigned in the EIf symbol table of the new EIf section. This symbol number is needed with
relocations dependent on the relocation of this new section. Because "int *" is not guaranteed to work with
elf 'symbols’ that arereally pointers, It is better to usethe dwar f _pr oducer _i nit _b() interface.

For example, the . debug_I i ne section’s third data element (in a compilation unit) is the offset from the
beginning of the . debug_i nf o section of the compilation unit entry for this . debug_I i ne set. The
relocation entry in . rel . debug_l i ne for this offset must have the relocation symbol index of the
symbol . debug_info returned by the callback of that section-creation through the pointer
sect _name_i ndex.

On failure, the function should return -1 and set the er r or integer to an error code.

Nothing in libdwarf actually depends on the section index returned being areal EIf section. The Elf section
is simply useful for generating relocation records. Similarly, the EIf symbol table index returned through
thesect _name_i ndex must simply be an index that can be used in relocations against this section. The
application will probably want to note the values passed to this function in some form, even if no Elf fileis
being produced.

5.1.2 dwarf_producer_init_b()

Dwarf P Debug dwarf _producer _init_b(
Dwar f _Unsi gned fl ags,
Dwar f _Cal | back_Func_b func,
Dwar f _Handl er errhand,
Dwarf_Ptr errarg,
Dwar f _Error *error)

The function dwar f _producer _init_b() isthe sameasdwarf producer i nit() except that
the callback function uses Dwarf _Unsigned rather than int as the type of the symbol-index returned to
libdwarf through the pointer argument (see below).

Thef | ags valuesare asfollows:
DW DLC WRI TE isrequired. The values DW DLC_READ DW DLC_RDWR are not supported by
the producer and must not be passed.

If DW DLC _SI ZE 64 isnot ORed into f | ags then DW DLC_SI ZE 32 isassumed. Oringin

rev 1.23, 8 Aug 2008 -7-

both is an error.

If DWDLC | SA | A64 isnot ORed into f | ags then DW DLC | SA M PSisassumed. Oring
in both isan error.

Either one of two output forms are specifiable DW DLC STREAM RELOCATI ONS or
DW DLC SYMBOLI C_RELOCATIONS . dwarf_producer _init_b() is usable with
either output form.

Either one of two output forms is specifiablee DW DLC _STREAM RELOCATI ONS or
DW DLC_SYMBOLI C_RELOCATI ONS.

The default is DW DLC_STREAM RELOCATI ONS . The DW DLC_STREAM RELOCATI ONS
arerelocations in abinary stream (as used in a MIPS EIf object).

DW DLC_SYMBOLI C_RELOCATI ONS are ORed into flags to cause the same relocations to be
expressed in an array of structures defined by libdwarf, which the caller of the relevant function
(see below) must deal with appropriately. This method of expressing relocations alows the
producer-application to easily produce assembler text output of debugging information.

The function f unc must be provided by the user of thislibrary. Its prototypeis:

typedef int (*Dwarf_Call back Func_b)(
char* nane,

i nt si ze,

Dwar f _Unsi gned type,

Dwar f _Unsi gned fl ags,
Dwar f _Unsi gned [ink,

Dwar f _Unsi gned i nfo,

Dwar f _Unsi gned* sect _name_i ndex,
i nt* error)

For each section in the object filethat | i bdwar f needs to create, it calls this function once, passing in the
section name, the sectiont ype, the section f | ags, thel i nk field, and thei nf o field. For an EIf object
file these values should be appropriate Elf section header values. For example, for relocation callbacks, the
I'i nk field is supposed to be set (by the app) to the index of the symtab section (the link field passed
through the callback must be ignored by the app). And, for relocation callbacks, the i nf o field is passed
asthe elf section number of the section the relocations apply to.

On success the user function should return the Elf section number of the newly created EIf section.

On success, the function should also set the integer pointed to by sect _name_i ndex to the ElIf symbol
number assigned in the EIf symbol table of the new EIf section. This symbol number is needed with
relocations dependent on the relocation of this new section.

For example, the . debug_I i ne section’s third data element (in a compilation unit) is the offset from the
beginning of the . debug_i nf o section of the compilation unit entry for this . debug_I i ne set. The
relocation entry in . rel . debug_l i ne for this offset must have the relocation symbol index of the
symbol . debug_info returned by the callback of that section-creation through the pointer
sect _name_i ndex.

On failure, the function should return -1 and set the er r or integer to an error code.

Nothing in libdwarf actually depends on the section index returned being areal EIf section. The Elf section
is simply useful for generating relocation records. Similarly, the EIf symbol table index returned through
thesect _name_i ndex must simply be an index that can be used in relocations against this section. The
application will probably want to note the values passed to this function in some form, even if no Elf fileis

rev 1.23, 8 Aug 2008 -8-

being produced.

Note that the Dwarf _Cal | back_Func_b() form passes back the sect name index as a
Dwarf_Unsigned. This is guaranteed large enough to hold a pointer. (the other functional interfaces have
versions with the 'symbol index’ asaDwarf_Unsigned too. See below).

If DW DLC _SYMBOLI C_RELQOCATI ONS is in use, then the symbol index is ssimply an arbitrary value
(from the point of view of libdwarf) so the caller can put anything in it: a normal elf symbol index, a
pointer to a struct (with arbitrary contents) (the caller must cast to/from Dwarf_Unsigned as appropriate),
or some other kind of pointer or vaue The values show up in the output of
dwarf _get _rel ocation_i nfo() (described below) and are not emitted anywhere else.

5.1.3 dwarf_transform_to_disk_form()

Dwarf _Signed dwarf _transformto_di sk _form
Dwar f _P_Debug dbg,
Dwarf _Error* error)

The function dwarf _transformto_di sk form() does the actual conversion of the Dwar f

information provided so far, to the form that is normally written out as El f sections. In other words, once
all DWARF information has been passed to Li bdwar f, call dwarf _transformto_di sk _form()

to transform all the accumulated data into byte streams. This includes turning relocation information into
byte streams (and possibly relocation arrays). This function does not write anything to disk. |f successful,
it returns a count of the number of El f sections ready to be retrieved (and, normally, written to disk). In
case of error, it returns DW DLV _NOCOUNT.

5.1.4 dwarf_get_section_bytes()

Dwarf _Ptr dwarf_get _section_bytes(
Dwar f _P_Debug dbg,
Dwar f _Si gned dwarf _secti on,
Dwarf _Si gned *el f_section_i ndex,
Dwar f _Unsi gned *I engt h,
Dwarf _Error* error)

The function dwarf _get _section_bytes() must be caled repetitively, with the index
dwarf _section dating a O and continuing for the number of sections returned by
dwarf _transformto_disk form() . Itreturns NULL to indicate that there are no more sections
of Dwar f information. For each non-NULL return, the return value pointsto * | engt h bytes of data that
are normally added to the output object in El f section*el f _sect i on by the producer application. Itis
illegal to call these in any order other than O through N-1 where N is the number of dwarf sections returned
by dwarf _transformto_di sk _fornm() . Thedwarf_secti on number isactually ignored: the
datais returned as if the caller passed in the correct dwarf_section numbers in the required sequence. The
error argument isnot used.

There is no requirement that the section bytes actually be written to an elf file. For example, consider the
.debug_info section and its relocation section (the call back function would resulted in assigning 'section’
numbers and the link field to tie these together (.rel.debug_info would have a link to .debug_info). One
could examine the relocations, split the .debug_info data at relocation boundaries, emit byte streams (in
hex) as assembler output, and at each relocation point, emit an assembler directive with a symbol name for
the assembler. Examining the relocations is awkward though. It is much better to use

rev 1.23, 8 Aug 2008 -9-

-10-

dwarf _get _section_relocation_info()

The memory space of the section byte stream is freed by the dwar f _pr oducer _fi ni sh() cal (or
would be if the dwar f _producer _fi ni sh() was actually correct), along with all the other space in
use with that Dwarf_P_Debug.

5.1.5 dwarf_get_relocation_info_count()

int dwarf_get relocation_info_count(
Dwar f _P_Debug dbg,
Dwar f _Unsi gned *count _of relocation_sections ,
i nt *drd_buffer_version,
Dwarf _Error* error)

The function dwarf _get relocation_info() returns, through the pointer
count _of relocation_sections, the number of times that
dwarf _get relocation_info() shouldbecalled.

The function dwar f _get _rel ocati on_i nfo() returns DW_DLV_OK if the call was successful (the
count _of relocation_sections is therefore meaningful, though
count _of relocation_sections could be zero).

*drd_buffer_version is the vaue 2. If the structure pointed to by the *rel dat a_buffer
changes this number will change. The application should verify that the number is the version it
understands (that it matches the value of DWARF _DRD BUFFER VERSION (from libdwarf.h)). The
value 1 version was never used in production MIPS libdwarf (version 1 did exist in source).

It returns DW_DLV_NO_ENTRY if count _of rel ocati on_secti ons is not meaningful because
DW DLC SYMBOLI C_ RELOCATI ONS was not passed in the dwarf _producer _init() (or
dwarf _producer _init_b())cal.

It returns DW_DLV_ERROR if there was an error, in which casecount _of rel ocati on_secti ons
is not meaningful.

5.1.6 dwarf_get_relocation_info()

int dwarf_get _rel ocation_info(
Dwar f _P_Debug dbg,
Dwarf _Si gned *el f_section_i ndex,
Dwarf _Si gned *el f_section_index_Iink,
Dwar f _Unsi gned *rel ocation_buffer_count,
Dwarf Rel ocation_Data *rel data buffer,
Dwarf _Error* error)

The function dwarf _get _rel ocati on_i nfo() should normally be caled repetitively, for the
number of relocation sectionsthat dwar f _get _rel ocati on_i nf o_count () indicated exist.

It returns DW DLV_(X to indicate that valid values are returned through the pointer arguments. The
er r or argument isnot set.

It returns DW_DLV_NO_ENTRY if there are no entries (the count of relocation arrays is zero.). The
er r or argument is not set.

rev 1.23, 8 Aug 2008 -10-

-11-

It returns DW DLV_ERROR if thereisan error. Calling dwar f _get _rel ocati on_i nf o() more than
the number of times indicated by dwar f _get rel ocati on_i nfo_count () (without an intervening
cal to dwarf_reset _section_bytes()) resultsin a return of DW DLV_ERROR once past the
valid count. Theerr or argument is set to indicate the error.

Now consider the returned-through-pointer values for DW DLV_COK.

*el f _section_i ndex isthe’ef sectionindex’ of the section implied by this group of relocations.

*el f _section_i ndex_| i nk isthe section index of the section that these rel ocations apply to.

*rel ocati on_buffer_count isthe number of array entries of relocation information in the array
pointedto by *r el dat a_buffer .

*r el dat a_buf f er pointsto an array of 'struct Dwarf Relocation_Data s structures.
The version 2 array information is as follows:

enum Dwarf Rel_Type {dwarf_drt_none,
dwarf_drt_data reloc,
dwarf_drt_segment_rel,
dwarf_drt_first_of length pair,
dwarf_drt_second_of length_pair
|
typedef struct Dwarf_Relocation_Data s * Dwarf _Relocation_Data;
struct Dwarf_Relocation Data s {
unsigned char drd _type; /* contains Dwarf Rel_Type*/
unsigned char drd_length; /* typically 4 or 8 */
Dwarf_Unsigned drd_offset; /* where the datato relocis*/
Dwarf_Unsigned drd_symbol_index;

1

The Dwarf_Rel _Type enum is encoded (via casts if necessary) into the single unsigned char
dr d_t ype field to control the space used for thisinformation (keep the spaceto 1 byte).

The unsigned char dr d_I| engt h field holds the size in bytes of the field to be relocated. So for elf32
object formats with 32 bit apps, drd_I| engt h will be 4. For objects with MIPS -64 contents,
drd_| engt h will be 8. For some dwarf 64 bit environments, such asiab4, dr d_| engt h is 4 for some
relocations (file offsets, for example) and 8 for others (run time addresses, for example).

If drd_t ypeisdwarf_drt _none, thisisan unused slot and it should be ignored.

If drd_type isdwarf _drt_data_rel oc thisis an ordinary relocation. The relocation type means
either (R_MIPS_64) or (R_MIPS_32) (or the like for the particular ABI. dr d_| engt h gives the length of
the field to be relocated. dr d_of f set is an offset (of the value to be relocated) in the section this
relocation stuff is linked to. drd_synbol _i ndex is the symbol index (if elf symbol indices were
provided) or the handle to arbitrary information (if that is what the caller passed in to the relocation-
creating dwarf calls) of the symbol that the relocation is relative to.

When drd_type is dwarf_drt _first_of _length_pair the next data record will be

rev 1.23, 8 Aug 2008 -11-

-12 -

drt _second_of | ength_pair and the drd_of f set of the two data records will match. The
relevant 'offset’ in the section this reloc applies to should contain a symbolic pair like

.word second_symbol - first_symbol
to generate alength. dr d_I engt h givesthe length of the field to be rel ocated.

drt _segnent _rel means(R_MIPS SCN_DISP) isthe real relocation (R_MIPS_SCN_DISP appliesto
exception tables and this part may need further work). dr d_I engt h gives the length of the field to be
relocated.

The memory space of the section byte stream is freed by the dwar f _pr oducer _fi ni sh() cal (or
would be if the dwar f _producer _fi ni sh() was actually correct), along with all the other space in
use with that Dwarf_P_Debug.

5.1.7 dwarf _reset_section_bytes()

void dwarf_reset section_bytes(
Dwar f _P_Debug dbg
)

The function dwarf _reset _section_bytes() is used to reset the interna information so that
dwarf _get section_bytes() will begin (on the next call) at the initial dwarf section again. It
also resets so that callsto dwarf _get _rel ocati on_i nfo() will begin again at the initial array of
relocation information.

Some dwarf producers need to be able to run through the dwar f _get secti on_byt es() and/or the
dwarf _get relocation_info() cals more than once and this call makes additional passes
possible. The set of Dwarf Ptr values returned is identical to the set returned by the first pass. It is
acceptable to call this before finishing a pass of dwarf _get section_bytes() or
dwarf _get relocation_info() cals. No errors are possible as this just resets some internal
pointers. It isunwiseto call thisbeforedwar f _transformto_di sk_forn() hasheencaled.

5.1.8 dwarf_producer_finish()

Dwar f _Unsi gned dwarf_producer _fini sh(
Dwar f _P_Debug dbg,
Dwarf _Error* error)

The function dwar f _producer _fini sh() should be called after al the bytes of data have been
copied somewhere (normally the bytes are written to disk). It frees al dynamic space alocated for dbg,
include space for the structure pointed to by dbg. This should not be called till the data have been copied
or written to disk or are no longer of interest. It returns non-zero if successful, and DW DLV_NOCOUNT if
thereisan error.

5.2 Debugging Information Entry Creation

The functions in this section add new DI Es to the object, and also the relationships among the DI E to be
specified by linking them up as parents, children, left or right siblings of each other. In addition, thereis a
function that marks the root of the graph thus created.

rev 1.23, 8 Aug 2008 -12-

-13-

5.2.1 dwarf_add_die to_debug()

Dwar f _Unsi gned dwarf_add_di e to_debug(
Dwar f _P_Debug dbg,
Dwarf P Die first_die,
Dwar f _Error *error)

The function dwar f _add_di e_t o_debug() indicatesto Li bdwar f theroot DI E of the DI E graph
that has been built so far. It isintended to mark the compilation-unit DI E for the object represented by
dbg. Theroot DI Eisspecifiedby first _die.

It returns O on success, and DW DLV_NOCOUNT on error.

5.2.2 dwarf_new_dig()

Dwarf_P _Die dwarf_new die(
Dwar f _P_Debug dbg,
Dwar f _Tag new_t ag,

Dwarf _P_Di e parent,
Dwarf P Die child,
Dwarf_P Die | eft_sibling,
Dwarf_P _Die right_sibling,
Dwarf _Error *error)

Thefunctiondwar f _new di e() createsanew DI E with its parent, child, left sibling, and right sibling
Dl Es specified by parent , chi l d, | eft _si bl i ng,andri ght _si bl i ng, respectively. Thereisno
requirement that al of these DI Es be specified, i.e. any of these descriptors may be NULL. If none is
specified, this will be an isolated DIE. A DK E is transformed to disk form by
dwarf _transformto_disk form() only if there is a path from the DI E specified by
dwar f _add_di e_t o_debug toit. Thisfunction returns DW DLV_BADADDR on error.

new t ag is the tag which is given to the new DI E. parent, child, | eft_sibling, and
ri ght _si bling are pointers to establish links to existing DI Es. Only one of parent, child,
left_sibling,andright_sibling may benon-NULL. If parent (chil d)isgiven, theDl Eis
linked into the list after (before) the DI E pointed to. If | eft _si bl i ng (ri ght_si bl i ng) is given,
the DI Eislinked into the list after (before) the DI E pointed to.

To add attributesto the new DI E, usethe At t ri but e Cr eat i on functions defined in the next section.

5.2.3 dwarf_die link()

Dwarf P Die dwarf_die |ink(
Dwarf P Die die,
Dwarf P Die parent,
Dwarf P Die child,
Dwarf P Die | eft-sibling,
Dwarf P Die right_sibling,
Dwarf Error *error)

The function dwar f _di e_| i nk() links an existing DI E described by the given di e to other existing
Dl Es. Thegivendi e can belinked to aparent DI E, achild DI E, aleft sibling DI E, or aright sibling DI E
by specifying non-NULL parent, child,left_sibling,andright sibling Dwarf_P D e
descriptors. It returns the given Dwar f _P_Di e descriptor, di e, on success, and DW DLV_BADADDR on
error.

rev 1.23, 8 Aug 2008 -13-

-14-

Only one of parent ,chil d,l eft _sibling,andri ght_si bl i ng may benon-NULL. If par ent
(chi I d) is given, the DI E is linked into the list after (before) the DI E pointed to. If | eft _si bl i ng
(ri ght _si bl i ng) isgiven, the DI E islinked into the list after (before) the DI E pointed to. Non-NULL
links overwrite the corresponding links the given die may have had before the cal to
dwarf _die_Iink()

5.3 Attribute Creation

The functions in this section add attributes to a DI E. These functions return a Dwarf _P_Attri bute
descriptor that represents the attribute added to the given DI E. In most cases the return value is only useful
to determineif an error occurred.

Some of the attributes have values that are relocatable. They need a symbol with respect to which the
linker will perform relocation. This symbol is specified by means of an index into the EIf symbol table for
the object (of course, the symbol index can be more general than an index).

5.3.1 dwarf_add_AT _location_expr ()

Dwarf_P_Attribute dwarf_add_AT_| ocati on_expr (
Dwar f _P_Debug dbg,
Dwarf _P_Di e ownerdie,
Dwarf _Hal f attr,
Dwar f _P_Expr | oc_expr,
Dwarf_Error *error)

The function dwar f _add_AT | ocati on_expr () adds the attribute specified by attr tothe DI E
descriptor given by owner di e. The attribute should be one that has a location expression as its value.
The location expression that is the value is represented by the Dwar f _P_Expr descriptor | oc_expr . It
returns the Dwar f _P_Attri but e descriptor for the attribute given, on success. On error it returns
DW DLV_BADADDR.

5.3.2 dwarf_add_AT_name()

Dwarf P Attribute dwarf_add AT nane(
Dwarf P Di e ownerdie,
char *nane,
Dwarf Error *error)

The function dwarf _add_AT nane() adds the string specified by name as the value of the
DW AT _nane attribute for the given DI E, owner di e. It returnsthe Dwar f _P_at tri but e descriptor
for the DW AT _nane attribute on success. On error, it returns DW DLV_BADADDR.

5.3.3 dwarf_add_AT_comp_dir()

Dwarf P _Attribute dwarf_add_AT conp_dir(
Dwarf _P_Di e ownerdie,
char *current _working_directory,
Dwarf _Error *error)

The function dwar f _add_AT_conp_dir () adds the string given by
current _working_directory as the vaue of the DW AT_conp_di r attribute for the DI E
described by the given owner di e. It returns the Dwar f _P_Att ri but e for this attribute on success.
On error, it returns DW DLV_BADADDR.

rev 1.23, 8 Aug 2008 -14-

-15-

5.34 dwarf_add_AT_producer()

Dwarf P Attribute dwarf_add AT producer (
Dwarf P Di e ownerdie,
char *producer_string,
Dwar f _Error *error)

The function dwar f _add_AT _producer () adds the string given by producer _string as the
value of the DW AT producer attribute for the DI E given by ownerdie. It returns the
Dwarf P _Attribute descriptor representing this attribute on success. On error, it returns
DW DLV_BADADDR.

5.3.5 dwarf_add_AT_const_value_signedint()

Dwarf _P_Attribute dwarf_add_ AT const_val ue_si gnedi nt (
Dwarf P Di e ownerdi e,
Dwar f _Si gned si gned_val ue,
Dwarf _Error *error)

The function dwarf_add_AT _const _val ue_signedint() adds the given Dwarf _Si ghed
value si gned_val ue asthe value of the DW AT_const _val ue attribute for the DI E described by the
given owner di e. It returns the Dwarf _P_Attri but e descriptor for this attribute on success. On
error, it returns DW DLV_BADADDR.

5.3.6 dwarf_add_AT_const_value_unsignedint()

Dwarf P _Attribute dwarf_add AT const_val ue_unsi gnedi nt (
Dwarf P Di e ownerdie,
Dwar f _Unsi gned unsi gned_val ue,
Dwar f _Error *error)

The function dwar f _add_AT _const _val ue_unsi gnedi nt () adds the given
Dwar f _Unsi gned value unsi gned_val ue as the value of the DW AT _const _val ue attribute for
the DI E described by the given owner di e. It returns the Dwarf _P_Attri but e descriptor for this
attribute on success. On error, it returns DW DLV_BADADDR.

5.3.7 dwarf_add_AT_const_value_string()

Dwarf_P_Attribute dwarf_add_AT_const_val ue_stri ng(
Dwarf P Di e ownerdi e,
char *string_val ue,
Dwar f _Error *error)

The function dwarf_add_AT const_val ue_string() adds the string value given by
st ri ng_val ue asthe value of the DW AT_const _val ue attribute for the DI E described by the given
owner di e. It returns the Dwar f _P_Attri but e descriptor for this attribute on success. On error, it
returns DW DLV_BADADDR.

5.3.8 dwarf_add_AT targ address()

rev 1.23, 8 Aug 2008 -15-

-16 -

Dwarf_P_Attribute dwarf_add_AT_targ_address(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf_ Hal f attr,
Dwar f _Unsi gned pc_val ue,
Dwar f _Si gned sym i ndex,
Dwarf_Error *error)

The function dwar f _add_AT_t ar g_address() addsan attribute that belongs to the "address" class
to the die specified by owner di e. The attributeis specified by at t r , and the object that the DI E belongs
tois specified by dbg. The relocatable address that is the value of the attribute is specified by pc_val ue.
The symbol to be used for relocation is specified by the sym i ndex, which is the index of the symbol in
the Elf symbol table.

It returnsthe Dwar f _P_At t ri but e descriptor for the attribute on success, and DW DLV _BADADDR on
error.

5.3.9 dwarf_add_AT targ address b()

Dwarf P Attribute dwarf_add AT targ address_b(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdie,
Dwarf Hal f attr,
Dwar f _Unsi gned pc_val ue,
Dwar f _Unsi gned sym i ndex,
Dwarf_Error *error)

The function dwarf _add_AT targ_address_b() is identical to
dwar f _add_AT targ_address_b() exceptthat sym i ndex() isguaranteed to be large enough
that it can contain a pointer to arbitrary data (so the caller can passin areal elf symbol index, an arbitrary
number, or a pointer to arbitrary data). The ability to pass in a pointer through sym i ndex() is only
usable with DW DLC_SYMBCOLI C_RELOCATI ONS.

The pc_val ue is put into the section stream output and the sym i ndex is applied to the relocation
information.

Do not use this function for attr DW AT _hi gh_pc if the value to be recorded is an offset (not apc) [use
dwar f _add_AT unsi gned_const () (for example) instead].

5.3.10 dwarf_add_AT_dataref()

Dwarf P _Attribute dwarf_add_AT dat aref (
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf_ Hal f attr,
Dwar f _Unsi gned pc_val ue,
Dwar f _Unsi gned sym i ndex,
Dwarf _Error *error)

Thisis very similar to dwar f _add_AT t arg_address_b() but results in a different FORM (results
in DW_FORM_data4 or DW_FORM_data8).

Useful for adding relocatable addresses in location lists.

rev 1.23, 8 Aug 2008 -16-

-17 -

sym i ndex() is guaranteed to be large enough that it can contain a pointer to arbitrary data (so the
caller can passin areal elf symbol index, an arbitrary number, or a pointer to arbitrary data). The ability to
pass in apointer through sym i ndex() isonly usable with DW DLC_SYMBOLI C_RELOCATI ONS.

The pc_val ue is put into the section stream output and the sym i ndex is applied to the relocation
information.

Do not use this function for DW AT_hi gh_pc, use dwar f _add_AT_unsi gned_const () [(for
example) if the wvaue to be recorded is an offsst of DWAT low pc] or
dwar f _add_AT_t arg_address_b() [if thevalueto berecorded isan address|.

5.3.11 dwarf_add AT ref address()

Dwarf P Attribute dwarf_add AT ref address(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdie,
Dwarf Hal f attr,
Dwar f _Unsi gned pc_val ue,
Dwar f _Unsi gned sym i ndex,
Dwar f _Error *error)

Thisis very similar to dwar f _add_AT targ_address_b() but results in a different FORM (results
inDW FORM r ef _addr being generated).

Useful for DW AT _t ype and DW AT i nport attributes.

sym i ndex() is guaranteed to be large enough that it can contain a pointer to arbitrary data (so the
caler can passin areal elf symbol index, an arbitrary number, or a pointer to arbitrary data). The ability to
pass in apointer through sym i ndex() isonly usable with DW DLC_SYMBOLI C_RELOCATI ONS.

The pc_val ue is put into the section stream output and the sym i ndex is applied to the relocation
information.

Do not use this function for DW AT _hi gh_pc.

5.3.12 dwarf_add_AT_unsigned_const()

Dwarf P _Attribute dwarf_add_AT unsi gned_const (
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf_ Hal f attr,
Dwar f _Unsi gned val ue,
Dwarf _Error *error)

The function dwar f _add_AT_unsi gned_const () adds an attribute with a Dwar f _Unsi gned
value belonging to the "constant” class, to the DI E specified by owner di e. The object that the DI E
belongstois specified by dbg. The attributeis specified by at t r, and itsvalueis specified by val ue.

It returnsthe Dwar f _P_At t ri but e descriptor for the attribute on success, and DW DLV _BADADDR on
error.

rev 1.23, 8 Aug 2008 -17 -

-18 -

5.3.13 dwarf_add_AT_signed_const()

Dwarf P Attribute dwarf_add AT signed_const (
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdie,
Dwarf Half attr,
Dwar f _Si gned val ue,
Dwarf Error *error)

The function dwar f _add_AT_si gned_const () adds an attribute with a Dwar f _Si gned value
belonging to the "constant” class, to the DI E specified by owner di e. The object that the DI E belongs to
is specified by dbg. The attribute is specified by at t r, and itsvalue is specified by val ue.

It returnsthe Dwar f _P_At t ri but e descriptor for the attribute on success, and DW DLV _BADADDR on
error.

5.3.14 dwarf_add_AT_reference()

Dwarf P _Attribute dwarf_add_AT reference(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf Hal f attr,
Dwarf P Di e otherdie,
Dwarf _Error *error)

The function dwar f _add_AT _reference() adds an attribute with a value that is a reference to
another DI E in the same compilation-unit to the DI E specified by owner di e. The object that the DI E
belongs to is specified by dbg. The attribute is specified by at t r, and the other DI E being referred to is
specified by ot her di e.

This cannot generate DW_FORM _ref_addr referencesto DI Es in other compilation units.

It returnsthe Dwar f _P_Att ri but e descriptor for the attribute on success, and DW DLV _BADADDR on
error.

5.3.15 dwarf_add_AT _flag()

Dwarf P Attribute dwarf_add AT fl ag(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdie,

Dwarf Hal f attr,
Dwarf_Smal | fl ag,
Dwarf Error *error)

The function dwar f _add_AT _fl ag() adds an attribute with a Dwar f _Snal | value belonging to the
"flag" class, to the DI E specified by owner di e. The object that the DI E belongs to is specified by dbg.
The attribute is specified by at t r , and its valueis specified by f | ag.

It returnsthe Dwar f _P_At t ri but e descriptor for the attribute on success, and DW DLV _BADADDR on
error.

5.3.16 dwarf_add_AT_string()

rev 1.23, 8 Aug 2008 -18-

-19-

Dwarf P _Attribute dwarf_add_ AT _string(
Dwar f _P_Debug dbg,
Dwarf P Di e ownerdi e,
Dwarf_ Hal f attr,
char *string,
Dwarf _Error *error)

The function dwar f _add_AT_stri ng() adds an attribute with a value that is a character string to the
DI E specified by owner di e. The object that the DI E belongs to is specified by dbg. The attribute is
specified by at t r , and itsvalueis pointed to by st r i ng.

It returnsthe Dwar f _P_Att ri but e descriptor for the attribute on success, and DW DLV _BADADDR on
error.

5.4 Expression Creation

The following functions are used to convert location expressions into blocks so that attributes with values
that are location expressions can store their values as a DW FORM bl ockn vaue. This is for both
.debug_info and .debug_loc expression blocks.

To create an expression, first call dwar f _new_expr () togetaDwarf _P_Expr descriptor that can be
used to build up the block containing the location expression. Then insert the parts of the expression in
prefix order (exactly the order they would be interpreted in in an expression interpreter). The bytes of the
expression are then built-up as specified by the user.

5.4.1 dwarf_new_expr()

Dwar f _Expr dwarf_new_expr (
Dwar f _P_Debug dbg,
Dwar f _Error *error)

The function dwar f _new_expr () creates a new expression area in which a location expression stream
can be created. It returns a Dwar f _P_Expr descriptor that can be used to add operators to build up a
location expression. It returns NULL on error.

5.4.2 dwarf_add_expr_gen()

Dwar f _Unsi gned dwarf_add_expr _gen(
Dwar f _P_Expr expr,
Dwarf _Smal | opcode,
Dwar f _Unsi gned val 1,
Dwar f _Unsi gned val 2,
Dwarf Error *error)

The function dwar f _add_expr _gen() takes an operator specified by opcode, along with up to 2
operands specified by val 1, and val 2, convertsit into the Dwar f representation and appends the bytes to
the byte stream being assembled for the location expression represented by expr. The first operand, if
present, to opcode isinval 1, and the second operand, if present, isin val 2. Both the operands may
actually be signed or unsigned depending on opcode. It returns the number of bytesin the byte stream for
expr currently generated, i.e. after the addition of opcode. It returns DW DLV_NOCOUNT on error.

The function dwar f _add_expr _gen() works for al opcodes except those that have a target address as

an operand. Thisis because it does not set up arelocation record that is needed when target addresses are
involved.

rev 1.23, 8 Aug 2008 -19-

-20-

5.4.3 dwarf_add_expr_addr()

Dwar f _Unsi gned dwarf_add_expr _addr (
Dwar f _P_Expr expr,
Dwar f _Unsi gned addr ess,
Dwar f _Si gned sym i ndex,
Dwar f _Error *error)

The function dwar f _add_expr _addr () is used to add the DW OP_addr opcode to the location
expression represented by the given Dwar f _P_Expr descriptor, expr. The vaue of the relocatable
addressis given by addr ess. The symbol to be used for relocation is given by sym i ndex, which isthe
index of the symbol in the EIf symbol table. It returns the number of bytes in the byte stream for expr
currently generated, i.e. after the addition of the DW OP_addr operator. It returns DW DLV_NOCOUNT on
error.

5.4.4 dwarf_add_expr_addr_b()

Dwar f _Unsi gned dwarf_add_expr _addr _b(
Dwar f _P_Expr expr,
Dwar f _Unsi gned addr ess,
Dwar f _Unsi gned sym i ndex,
Dwarf _Error *error)

The function dwar f _add_expr _addr _f () isidentical to dwarf_add_expr _addr () except that
sym i ndex() is guaranteed to be large enough that it can contain a pointer to arbitrary data (so the
caller can passin areal elf symbol index, an arbitrary number, or a pointer to arbitrary data). The ability to
pass in apointer through sym i ndex() isonly usable with DW DLC_SYMBOLI C_RELOCATI ONS.

5.4.5 dwarf_expr_current_offset()

Dwar f _Unsi gned dwarf_expr_current _of fset (
Dwar f _P_Expr expr,
Dwarf Error *error)

The function dwar f _expr _current _of f set () returns the number of bytes currently in the byte
stream for the location expression represented by the given W Dwar f _P_Expr descriptor, expr. It
returns DW DLV_NOCOUNT on error.

5.4.6 dwarf_expr_into_block()

Dwar f _Addr dwarf _expr _into_bl ock(
Dwar f _P_Expr expr,
Dwar f _Unsi gned *I engt h,
Dwarf _Error *error)

The function dwar f _expr _i nt o_bl ock() returnsthe address of the start of the byte stream generated
for the location expression represented by the given Dwar f _P_Expr descriptor, expr . The length of the
byte stream is returned in the location pointed to by | engt h. It returns DW DLV_BADADDR on error.

rev 1.23, 8 Aug 2008 -20-

-21-

5.5 Line Number Operations

These are operations on the .debug_line section. They provide information about instructions in the
program and the source lines the instruction come from. Typically, code is generated in contiguous blocks,
which may then be relocated as contiguous blocks. To make the provision of relocation information more
efficient, the information is recorded in such a manner that only the address of the start of the block needs
to be relocated. Thisis done by providing the address of the first instruction in a block using the function
dwarf | ne_set address(). Information about the instructions in the block are then added using the
function dwar f _add_| i ne_entry(), which specifies offsets from the address of the first instruction.
The end of a contiguous block isindicated by calling the functiondwar f _| ne_end_sequence().

Line number operations do not support DW DLC _SYMBOLI C_RELCOCATI ONS.

5.5.1 dwarf_add_line_entry()

Dwar f _Unsi gned dwarf_add_line_entry(
Dwar f _P_Debug dbg,
Dwar f _Unsi gned fil e_i ndex,
Dwar f _Addr code_of f set,
Dwar f _Unsi gned | i neno,
Dwar f _Si gned col um_nunber,
Dwarf _Bool is_source_stnt_begin,
Dwar f _Bool is_basic_bl ock_begin,
Dwarf _Error *error)

The function dwar f _add_I i ne_entry() adds an entry to the section containing information about
source lines. It gpecifies in code_offset, the offsst from the address set using
dwar f dwarf _| ne_set _address(), of the address of the first instruction in a contiguous block. The
source file that gave rise to the instruction is specified by fi | e_i ndex, the source line number is
specified by | i neno, and the source column number is specified by col unmm_nunber (column numbers
begin at 1) (if the source column is unknown, specify 0). fil e_i ndex isthe index of the sourcefilein a
list of source fileswhich isbuilt up using the function dwar f _add_fil e_decl ().

i s_source_stm _begi nisaboolean flag that is true only if the instruction at code_addr ess isthe
first instruction in the sequence generated for the source line a |ineno. Similarly,
i s_basi c_bl ock_begi n isaboolean flag that is true only if the instruction at code_addr ess isthe
first instruction of a basic block.

It returns O on success, and DW_DLV_NOCOUNT on error.

5.5.2 dwarf Ine set_address()

Dwar f _Unsi gned dwarf | ne_set address(
Dwar f _P_Debug dbg,
Dwar f _Addr offs,
Dwar f _Unsi gned sym dx,
Dwarf Error *error)

The function dwarf | ne_set address() sets the target address at which a contiguous block of
instructions begin. Information about the instructions in the block is added to .debug_line using calls to
dwar f dwarf _add_I i ne_entry() which specifies the offset of each instruction in the block relative
to the start of the block. Thisis done so that a single relocation record can be used to obtain the final target
address of every instruction in the block.

The relocatable address of the start of the block of instructions is specified by of fs. The symbol used to

rev 1.23, 8 Aug 2008 -21-

-22-

relocate the address is given by symi dx, which is normally the index of the symbol in the EIf symbol
table.

It returns O on success, and DW DLV_NOCOUNT on error.

5.5.3 dwarf_Ine_end_sequence()

Dwar f _Unsi gned dwarf_| ne_end_sequence(
Dwar f _P_Debug dbg,
Dwar f _Addr addr ess;
Dwar f _Error *error)

The function dwar f _| ne_end_sequence() indicates the end of a contiguous block of instructions.
addr ess() should be just higher than the end of the last address in the sequence of instructions. block of
instructions, acall todwar f | ne_set address() will have to be made to set the address of the start
of the target address of the block, followed by calls to dwarf _add | i ne_entry() for each of the
instructions in the block.

It returns O on success, and DW DLV_NOCOUNT on error.

5.5.4 dwarf_add_directory_decl()

Dwar f _Unsi gned dwarf_add_di rectory_decl (
Dwar f _P_Debug dbg,
char *nane,
Dwarf _Error *error)

Thefunctiondwar f _add_di rect ory_decl () addsthe string specified by nane to the list of include
directories in the statement program prologue of the .debug_line section. The string should therefore name
adirectory from which source files have been used to create the present object.

It returns the index of the string just added, in the list of include directories for the object. This index is
then used to refer to this string. It returns DW DLV_NOCOUNT on error.

5.5.5 dwarf_add_file decl()

Dwar f _Unsigned dwarf_add file_decl (
Dwar f _P_Debug dbg,
char *name,
Dwar f _Unsi gned dir _i dx,
Dwar f _Unsi gned ti nme_nod,
Dwar f _Unsi gned | engt h,
Dwarf Error *error)

The function dwar f _add_fil e_decl () addsthe name of a source file that contributed to the present
object. The name of thefile is specified by nanme (which must not be the empty string or a null pointer, it
must point to a string with length greater than 0). In case the name is not a fully-qualified pathname, it is
prefixed with the name of the directory specified by di r _i dx. di r _i dx istheindex of the directory to
be prefixed in thelist builtup using dwar f _add_di rectory_decl ().

ti me_nod gives the time at which the file was last modified, and | engt h gives the length of the filein
bytes.

It returns the index of the source file in the list built up so far using this function, on success. This index

rev 1.23, 8 Aug 2008 -22-

-23-

can then be used to refer to this source filein callsto dwar f _add_I i ne_entry(). On error, it returns
DW DLV_NOCOUNT.

5.6 Fast Access (aranges) Operations

These functions operate on the .debug_aranges section.

5.6.1 dwarf_add_arange()

Dwar f _Unsi gned dwarf _add_ar ange(
Dwar f _P_Debug dbg,
Dwar f _Addr begi n_addr ess,
Dwar f _Unsi gned | engt h,
Dwar f _Si gned synbol _i ndex,
Dwarf _Error *error)

The function dwar f _add_ar ange() adds another address range to be added to the section containing
address range information, .debug_aranges. The relocatable start address of the range is specified by
begi n_addr ess, and the length of the address range is specified by | engt h. The relocatable symbol
to be used to relocate the start of the address range is specified by synbol _i ndex, which is normally the
index of the symbol in the EIf symbol table.

It returns a non-zero value on success, and 0 on error.

5.6.2 dwarf_add_arange b()

Dwar f _Unsi gned dwarf_add_ar ange_h(
Dwar f _P_Debug dbg,
Dwar f _Addr begi n_address,
Dwar f _Unsi gned | engt h,
Dwar f _Unsi gned synbol i ndex,
Dwar f _Unsi gned end_synbol i ndex,
Dwar f _Addr of fset _from end_synbol,
Dwarf Error *error)

The function dwarf _add_arange b() adds another address range to be added to the section
containing address range information, .debug_aranges.

If end_synbol index is not zero we are using two symbols to create a length (must be
DW DLC_SYMBOLI C_RELOCATI ONS to be useful)

begi n_address is the offsst from the symbol specified by synbol index

of fset _from end_synbol isthe offset from the symbol specified by end_synbol _i ndex.
| engt h is ignored. This begin-end pair will be show up in the relocation array returned by
dwarf _get relocation_info() a a dwarf _drt first_of length pair and
dwarf _drt_second_of | ength_pair pair of relocation records. The consuming application
will turn that pair into something conceptually identical to

.word end_symbol + offset from end -\
(start_symbol + begin_address)

The reason offsets are alowed on the begin and end symbols is to allow the caler to re-use existing

labels when the labels are available and the corresponding offset is known (economizing on the
number of labels in use). The 'offset from_end - begin address’ will actually be in the binary

rev 1.23, 8 Aug 2008 -23-

-24-

stream, not the relocation record, so the app processing the relocation array must read that stream
value into (for example) net_offset and actually emit something like

.word end_symbol - start_symbol + net_offset

If end_synbol _i ndex is zero we must be given a length (either DW DLC_STREAM REL OCATI ONS
or DW DLC _SYMBOLI C_RELOCATI ONS):

The relocatable start address of the range is specified by begi n_addr ess, and the length of the
address range is specified by | engt h. The relocatable symbol to be used to relocate the start of the
address range is specified by synbol _i ndex, which is normally the index of the symbol in the EIf
symbol table. Theof f set _from end_synbol isignored.

It returns a non-zero value on success, and 0 on error.

5.7 Fast Access (pubnames) Operations

These functions operate on the .debug_pubnames section.

5.7.1 dwarf_add_pubname()

Dwar f _Unsi gned dwarf _add_pubnarme(
Dwar f _P_Debug dbg,
Dwarf P Die die,
char *pubnane_nane,

Dwarf _Error *error)

The function dwar f _add_pubnane() adds the pubname specified by pubname_narre to the section
containing pubnames, i.e.
.debug_pubnames. The DI E that represents the function being named is specified by di e.

It returns a non-zero value on success, and 0 on error.

5.8 Fast Access (weak names) Operations

These functions operate on the .debug_weaknames section.

5.8.1 dwarf_add_weakname()

Dwar f _Unsi gned dwarf_add weaknane(
Dwar f _P_Debug dbg,
Dwarf P Die die,
char *weak_ nane,

Dwarf Error *error)

The function dwar f _add_weaknane() adds the weak name specified by weak nane to the section
containing weak names, i.e.
.debug_weaknames. The DI E that represents the function being named is specified by di e.

It returns a non-zero value on success, and 0 on error.

rev 1.23, 8 Aug 2008 -24-

-25-

5.9 Static Function Names Oper ations

The .debug_funcnames section contains the names of static function names defined in the object, and also
the offsets of the DI Es that represent the definitions of the functionsin the .debug_info section.

5.9.1 dwarf_add_funcname()

Dwar f _Unsi gned dwarf_add_f uncnane(
Dwar f _P_Debug dbg,
Dwarf _P _Die die,
char *func_nane,

Dwarf _Error *error)

The function dwar f _add_f uncname() addsthe name of a static function specified by f unc_nane to
the section containing the names of static functions defined in the object represented by dbg. The DI E that
represents the definition of the function is specified by di e.

It returns a non-zero value on success, and 0 on error.

5.10 File-scope User-defined Type Names Oper ations

The .debug_typenames section contains the names of file-scope user-defined types in the given aobject, and
also the offsets of the DI Es that represent the definitions of the typesin the .debug_info section.

5.10.1 dwarf_add_typename()

Dwar f _Unsi gned dwarf_add_t ypenane(
Dwar f _P_Debug dbg,
Dwarf P Die die,
char *type_nane,

Dwarf Error *error)

The function dwar f _add_t ypenane() adds the name of a file-scope user-defined type specified by
t ype_nane to the section that contains the names of file-scope user-defined type. The object that this
section belongs to is specified by dbg. The DI E that represents the definition of the type is specified by
di e.

It returns a non-zero value on success, and 0 on error.

5.11 File-scope Static Variable Names Oper ations

The .debug_varnames section contains the names of file-scope static variables in the given object, and also
the offsets of the DI Es that represent the definition of the variablesin the .debug_info section.

5.11.1 dwarf_add_varname()

Dwar f _Unsi gned dwarf _add_var nanme(
Dwar f _P_Debug dbg,
Dwarf P Die die,
char *var_nane,
Dwar f _Error *error)

The function dwar f _add_var nane() adds the name of a file-scope static variable specified by

rev 1.23, 8 Aug 2008 -25-

-26-

var _nane to the section that contains the names of file-scope static variables defined by the object
represented by dbg. The DI E that represents the definition of the static variable is specified by di e.

It returns a non-zero value on success, and 0 on error.

5.12 Macro Information Creation

All strings passed in by the caller are copied by these functions, so the space in which the caller provides
the strings may be ephemeral (on the stack, or immediately reused or whatever) without this causing any
difficulty.

5.12.1 dwarf_def_macro()

i nt dwarf_def _rmacro(Dwarf_P_Debug dbg,
Dwar f _Unsi gned | i neno,
char *nane
char *val ue,
Dwarf _Error *error);

Adds a macro definition. The nanme argument should include the parentheses and parameter names if this
is a function-like macro. Neither string should contain extraneous whitespace. dwar f _def macr o()

adds the mandated space after the name and before the value in the output DWARF section(but does not
change the strings pointed to by the arguments). If this is a definition before any files are read, | i neno
should be 0. Returns DW DLV_ERRCR and sets er r or if there is an error. Returns DW DLV_CK if the
call was successful.

5.12.2 dwarf_undef_macro()

int dwarf_undef _macro(Dwarf_P_Debug dbg,
Dwar f _Unsi gned | i neno,
char *nane,
Dwarf Error *error);

Adds a macro un-definition note. If this is a definition before any files are read, | i neno should be 0.
Returns DW DLV_ERROR and sets er r or if there is an error. Returns DW DLV_X if the call was
successful.

5.12.3 dwarf_start_macro_file()

int dwarf_start_macro_fil e(Dwarf_P_Debug dbg,
Dwar f _Unsi gned | i neno,
Dwar f _Unsi gned fi | ei ndex,
Dwarf _Error *error);

fileindex is an index in the .debug_line header: the index of the file name. See the function
dwarf _add_file_decl (). Thelineno should be O if this file is the file of the compilation unit
source itself (which, of course, is not a#include in any file). Returns DW DLV_ERROR and setser r or if
thereisan error. Returns DW DLV_OK if the call was successful.

rev 1.23, 8 Aug 2008 - 26 -

-27 -

5.12.4 dwarf_end_macro filg()

int dwarf_end _macro _file(Dwarf_P_Debug dbg,
Dwarf Error *error);

Returns DW DLV_ERROR and sets er r or if there is an error. Returns DW DLV_OK if the call was
successful.

5.12.5 dwarf_vendor_ext()

i nt dwarf_vendor _ext (Dwarf_P_Debug dbg,
Dwar f _Unsi gned const ant,
char * string,
Dwar f _Error* error);

The meaning of the const ant and thest ri ng in the macro info section are undefined by DWAREF itself,
but the string must be an ordinary null terminated string. This call is not an extension to DWARF. It
simply enables storing macro information as specified in the DWARF document. Returns
DW DLV_ERRCRand setser r or if thereisan error. Returns DW DLV_OK if the call was successful.

5.13 Low Level (.debug_frame) operations

These functions operate on the .debug_frame section. Refer to | i bdwar f . h for the register names and
register assignment mapping. Both of these are necessarily machine dependent.

5.13.1 dwarf_new_fde()

Dwarf _P_Fde dwarf_new fde(
Dwar f _P_Debug dbg,
Dwarf _Error *error)

The function dwar f _new_f de() returnsanew Dwar f _P_Fde descriptor that should be used to build a
complete FDE. Subsequent calls to routines that build up the FDE should use the same Dwar f _P_Fde
descriptor.

It returnsavalid Dwar f _P_Fde descriptor on success, and DW DLV_BADADDR on error.

5.13.2 dwarf_add frame cig()

Dwar f _Unsi gned dwarf_add frane_ci e(
Dwar f _P_Debug dbg,
char *augnenter,
Dwarf _Smal |l code_ali gn,
Dwarf _Smal | data_align,
Dwarf_Smal | ret_addr_reg,
Dwarf Ptr init_bytes,
Dwarf _Unsigned init_bytes |en,
Dwarf Error *error);

The function dwar f _add_frane_ci e() createsaCl E, and returns an index to it, that should be used
torefer tothis Cl E. Cl Es are used by FDEs to setup initial values for frames. The augmentation string for
the Cl E is specified by augnment er. The code alignment factor, data alignment factor, and the return
address register for the Cl E are specified by code_al i gn, data_align, and ret _addr _reg

rev 1.23, 8 Aug 2008 -27 -

-28-

respectively. i ni t _byt es points to the bytes that represent the instructions for the Cl E being created,
andi ni t _byt es_| en specifiesthe number of bytes of instructions.

There is no convenient way to generate the i ni t _byt es stream. One just has to calculate it by hand or
separately generate something with the correct sequence and use dwarfdump -v and elfdump -h and some
kind of hex dumper to see the bytes. Thisis a seriousinconvenience!

It returns an index to the Cl E just created on success. On error it returns DW DLV _NOCOUNT.

5.13.3 dwarf_add_frame fde()

Dwar f _Unsi gned dwarf_add frane_ fde(
Dwar f _P_Debug dbg,
Dwarf _P_Fde fde,
Dwarf P Die die,
Dwar f _Unsi gned ci e,
Dwar f _Addr virt_addr,
Dwar f _Unsi gned code | en,
Dwar f _Unsi gned sym i dx,
Dwarf Error* error)

The function dwar f _add_frane_fde() adds the FDE specified by f de to the list of FDEs for the
object represented by the given dbg. di e specifies the DI E that represents the function whose frame
information is specified by the given f de. ci e specifies the index of the Cl E that should be used to setup
theinitial conditions for the given frame.

It returns an index to the given f de.

5.13.4 dwarf_add_frame_fde b()

Dwar f _Unsi gned dwarf_add_franme_fde_b(
Dwar f _P_Debug dbg,
Dwarf P Fde fde,
Dwarf P Die die,
Dwar f _Unsi gned ci e,
Dwar f _Addr virt_addr,
Dwar f _Unsi gned code_| en,
Dwar f _Unsi gned sym i dx,
Dwar f _Unsi gned sym i dx_of _end,
Dwar f _Addr of fset_fromend_sym
Dwarf _Error* error)

Thisfunctionislikedwar f _add_franme_f de() exceptthat dwarf _add_frane_fde_b() hasnew
argumentsto allow use with DW DLC_SYMBOLI C_RELOCATI ONS.

The function dwar f _add_f rame_f de_b() adds the FDE specified by f de to the list of FDEs for the
object represented by the given dbg. di e specifies the DI E that represents the function whose frame
information is specified by the given f de. ci e specifies the index of the Cl E that should be used to setup
the initial conditions for the given frame. vi rt _addr represents the relocatable address at which the
code for the given function begins, and sym i dx gives the index of the relocatable symbol to be used to
relocate this address (vi rt _addr that is). code_I| en specifies the size in bytes of the machine
instructions for the given function.

rev 1.23, 8 Aug 2008 -28-

-29-

If sym i dx_of _end is zero (may be DwWDLC STREAM RELOCATIONS or
DW DLC_SYMBOLI C_RELOCATI ONS):

vi rt _addr represents the relocatable address at which the code for the given function begins, and
sym i dx gives the index of the relocatable symbol to be used to relocate this address (vi rt _addr
that is). code_I| en specifies the size in bytes of the machine instructions for the given function.
sym i dx_of _endandof fset_from end_symare unused.

If sym i dx_of _end isnon-zero (must be DW DLC_SYMBCLI C_RELOCATI ONS to be useful):

vi rt _addr is the offset from the symbol specified by sym i dx . of f set _from end_symis
the offset from the symbol specified by sym i dx_of _end. code_|I en isignored. This begin-end
pair will be show up in the relocation array returned by dwarf _get _rel ocati on_i nfo() asa
dwarf _drt_first_of length_pair and dwarf_drt_second_of _| ength_pair pair
of relocation records. The consuming application will turn that pair into something conceptually
identical to

.word end_symbol + begin -\
(start_symbol + offset_from_end)

The reason offsets are alowed on the begin and end symbols is to alow the caler to re-use existing
labels when the labels are available and the corresponding offset is known (economizing on the
number of labels in use). The ’offset_from_end - begin address’ will actually be in the binary
stream, not the relocation record, so the app processing the relocation array must read that stream
valueinto (for example) net_offset and actually emit something like

.word end_symbol - start_symbol + net_offset

It returns an index to the given f de.

On error, it returns DW DLV _NOCOUNT.

5.13.5 dwarf_add_frame_info_b()

Dwar f _Unsi gned dwarf_add franme_i nfo_b(
Dwar f _P_Debug dbg,

Dwarf _P_Fde f de,
Dwarf P Die di e,
Dwar f _Unsigned cie,
Dwar f _Addr virt_addr,

Dwar f _Unsi gned code_| en,

Dwarf _Unsigned sym. dx,

Dwarf _Unsigned end_synbol _index,

Dwar f _Addr of fset _from end_synbol,
Dwar f _Si gned of fset _into_exception_tables,
Dwar f _Unsigned exception_table synbol,

Dwar f _Error* error)

The function dwar f _add_frane_fde() adds the FDE specified by f de to the list of FDEs for the
object represented by the given dbg. di e specifies the DI E that represents the function whose frame
information is specified by the given f de. ci e specifies the index of the Cl E that should be used to setup

rev 1.23, 8 Aug 2008 -29-

-30-

theinitial conditions for the given frame. of f set _i nt o_excepti on_t abl es specifies the offset into
.M PS. eh_region €f section where the exception tables for this function begins.
exception_tabl e_synbol gives the index of the relocatable symbol to be used to relocate this
offset.

If end_synmbol _index is not zero we are using two symbols to create a length (must be
DW DLC_SYMBOLI C_RELOCATI ONS to be useful)

vi rt _addr isthe offset from the symbol specified by sym i dx . of f set _from end_synbol

is the offset from the symbol specified by end_synbol _i ndex. code_I en is ignored. This
begin-end par will be show up in the relocation array returned by
dwarf_get _relocation_info() a a dwarf_drt _first_of length_pair and
dwarf _drt_second_of _| engt h_pai r pair of relocation records. The consuming application
will turn that pair into something conceptually identical to

.word end_symbol + offset_from_end_symbol -\
(start_symbol + virt_addr)

The reason offsets are alowed on the begin and end symbols is to alow the caler to re-use existing
labels when the labels are available and the corresponding offset is known (economizing on the
number of labels in use). The ’offset_from_end - begin address’ will actually be in the binary
stream, not the relocation record, so the app processing the relocation array must read that stream
value into (for example) net_offset and actually emit something like

.word end_symbol - start_symbol + net_offset
If end_synbol index is zero we must be given a codelen vaue (either
DW DLC STREAM RELOCATI ONS or DW DLC_SYMBOLI C_RELOCATI ONS):
The relocatable start address of the range is specified by vi rt _addr, and the length of the address
range is specified by code_| en. The relocatable symbol to be used to relocate the start of the
address range is specified by synbol _i ndex, which is normally the index of the symbol in the Elf
symbol table. Theof f set _from end_synbol isignored.

It returns an index to the given f de.

On error, it returns DW DLV _NOCOUNT.

5.13.6 dwarf_add frame_info()

rev 1.23, 8 Aug 2008 -30-

-31-

Dwar f _Unsi gned dwarf_add_frane_i nf o(
Dwar f _P_Debug dbg,
Dwarf P Fde fde,
Dwarf P Die die,
Dwar f _Unsi gned ci e,
Dwarf _Addr virt_addr,
Dwar f _Unsi gned code_| en,
Dwar f _Unsi gned sym i dx,
Dwar f _Si gned of fset _into_exception_tables,
Dwar f _Unsi gned exception_t abl e_synbol ,
Dwarf _Error* error)

The function dwar f _add_frane_f de() adds the FDE specified by f de to the list of FDEs for the
object represented by the given dbg. di e specifies the DI E that represents the function whose frame
information is specified by the given f de. ci e specifies the index of the Cl E that should be used to setup
the initial conditions for the given frame. vi rt _addr represents the relocatable address at which the
code for the given function begins, and sym i dx gives the index of the relocatable symbol to be used to
relocate this address (vi rt _addr that is). code_I| en specifies the size in bytes of the machine
instructions for the given function. of f set _i nt o_excepti on_t abl es specifies the offset into
.M PS. eh_region ef section where the exception tables for this function begins.
exception_tabl e_symnbol gives the index of the relocatable symbol to be used to relocate this
offset.

It returns an index to the given f de.

5.13.7 dwarf_fde cfa offset()

Dwarf P Fde dwarf _fde _cfa of fset(
Dwarf _P_Fde fde,
Dwar f _Unsi gned reg,
Dwar f _Si gned of f set,
Dwarf Error *error)

The function dwarf fde cfa_offset() appends a DW CFA of f set operation to the FDE,
specified by f de, being constructed. The first operand of the DW CFA of f set operation is specified by
regP. The register specified should not exceed 6 bits. The second
operand of the DW CFA offset operation is specified by offset.

It returns the given fde on success.

It returns DW DLV_BADADDR on error.

5.13.8 dwarf_add_fde inst()

Dwarf _P_Fde dwarf_add_fde_inst(
Dwarf P Fde fde,
Dwarf _Smal | op,
Dwar f _Unsi gned val 1,
Dwar f _Unsi gned val 2,
Dwarf _Error *error)

The function dwar f _add_f de_i nst () adds the operation specified by op to the FDE specified by
fde. Upto two operands can be specified in val 1, and val 2. Based on the operand specified
Li bdwar f decides how many operands are meaningful for the operand. It also converts the operands to

rev 1.23, 8 Aug 2008 -31-

-32-

the appropriate datatypes (they are passed to dwar f _add_f de_i nst asDwar f _Unsi gned).

It returns the given f de on success, and DW DLV_BADADDR on error.

rev 1.23, 8 Aug 2008 -32-

CONTENTS

LINTRODUCTION oo sie e see et s nns 1
1.1 Copyright oo s 1
1.2 PUrPOSE 8N SCOPE ..ottt et 1
1.3 Document HiStOrY ..oooeeeeeecieeee e 2
1.4 DEFINITIONS oot ns 2
15 OVEIVIEIW oottt ettt nne e s 2
1.6 REVISION HISIONY oot 2

2. TYPe DEfINITIONS ..o s 3
2.1 General DESCIIPLION ...ooeiiieieeeeee e 3
2.2 NAMESPACE ISSUES .oovveeeieeieeeeieesiteeteesteesteessee et e see b e sneeenneesnee e 3

3.libdwarf and Elf and reloCations cccovevviieeninnene e 3
3.1 binary or assembler OULPUL oveeeeriiieeeeeee e 3
3.2 libdwarf relationship to Elf ..o 3
3.3 libdwarf and reloCationNS ccceeveiiinieree e 4
3.4 symbols, addresses, and OffSEtS cceevceeiviie i, 4

4. Memory Management ... 4
4.1 Read-0nly Properti€S cccoccee ittt 4
4.2 Storage DealloCation ccevieeiie e 4

5.Functional INterfaceooceeiie e 5
5.1 Initialization and Termination Operations cccccceeveeeceeseecnene. 5

5.1.1dwarf_producer init() ..occceoeeerieeiieere e 5
5.1.2dwarf_producer_init_ B() .ooooeriiniee s 7
5.1.3dwarf_transform_to _disk_form()ccccccviiieiieiieeiiecieein, 9
5.1.4dwarf_get_section_bytes() ..cooccvevieviecrie e 9
5.1.5dwarf_get_relocation_info_count()ccccceveeriieneniennnen. 10
5.1.6dwarf_get_relocation info() ...ccccocveveevci i, 10
5.1.7dwarf_reset_section bytes() ...ccccccevieeviieiie e 12
5.1.8dwarf_producer_finish()cccoovviiiiniie e, 12
5.2 Debugging Information Entry Creation —cccoeveeeveevieccieenen. 12
5.2.1dwarf_add die to debug() ..ooocevrieeriniieee e 13
5.22dwarf new_die)) .o 13
5.2.3dwarf_die link() oo 13

5.3 Attribute Creation cccoecveveeeceesee e
5.3.1dwarf_add AT location _expr()
5.3.2dwarf_add AT name() ...cccccvvvevevvieenee
5.3.3dwarf_add AT comp dir() ..ccoceveevvvenee
5.3.4dwarf_add AT producer()ccccccvvveeenee

5.3.5dwarf_add AT const value signedint()
5.3.6dwarf add AT const value unsignedint()

5.3.7dwarf_add AT const_value string()
5.3.8dwarf_add AT targ address()
5.3.9dwarf_add AT targ_address b()
5.3.1@warf_add AT dataref()cccoeevevecennnenn
53.1twarf_add AT ref address()
5.3.12warf add AT unsigned const()
5.3.18warf_add AT signed const()
5.3.14iwarf add AT reference()cccccvveeee.
5.3.18warf_add AT flag() ..ccoceeevvievieeireienen,
5.3.1@warf_add AT string() ..ccoooevvveevinnienne
5.4 EXpression Creation cccccceeveeeeieeceeesieesneennes
54.1dwarf new_expr() .cocceeveerinnieenee e
54.2dwarf_add expr_gen() ..cccoeeeiiieeninnieene
54.3dwarf add expr_addr()ccooceeviniieenne
54.4dwarf_add expr_addr b()coeviveinnee
54.5dwarf_expr_current_offset()cccoceenee
5.4.6dwarf_expr_into block()cccoevevriennee
5.5 Line Number Operations cccoceevvvrenneennenn,
55.1dwarf_add line entry() .cocoovviveiinrinnee
5.5.2dwarf Ine set address()cccccevevvienee.
5.5.3dwarf_Ine_end sequence()cccccvviennee.
5.5.4dwarf_add directory_decl()ccccovennee
55.5dwarf_add file decl() ..cccooovvvviiiiiiinnn,
5.6 Fast Access (aranges) Operations cccee......
5.6.1dwarf_add arange()ccocvvvriiininniee
5.6.2dwarf_add arange b() ...ccccoviiiiiinien
5.7 Fast Access (pubnames) Operations —................
5.7.1dwarf_add pubname()ccocoiiiiiiinn
5.8 Fast Access (weak names) Operations —............
5.8.1dwarf_add weakname()ccccccvcevviienee

5.9 Static Function Names OperationS ccceevereereeneeniesieesee e 25

5.9.1dwarf_add funcname() ..o, 25
5.10File-scope User-defined Type Names Operations —........cccccceveenee. 25
5.10.8warf_add typename() ...ccccceveevieerie e 25
5.11File-scope Static Variable Names Operations cccccevveeiieennen. 25
5.11.8warf add varname()ccccceevieiie e 25
5.12Macro Information Creation ccceeveevceesensie e esee e 26
512 8warf_def_ macro() ..occoeveeie 26
5.12.2lwarf_undef macro() ..o 26
5.12.8warf_start macro file) ..occevveveeee 26
512 diwarf_end macro_file) .o, 27
5.12.8warf vendor_ext()ccccoceiieiiie e 27
5.13 ow Level (.debug_frame) operationscccccceveevieeseesieeeninnns 27
513 Bwarf new _fde() .o 27
5.13.2lwarf_add frame Cie() .cocoovevieceee e, 27
5.13.8warf_add frame fde() ..cccoovieviiee e 28
513 diwarf_add frame fde D) .o, 28
5.13.8warf_add frame info b() .cooovoeiie e, 29
5.13.@warf_add frame info()cccooeviieie e, 30
5.13. dwarf_fde cfa offset() ..ccooooveviiie e, 31
5.13.8warf_add fde inSt() ..ooooverereeie e 31

A Producer Library Interfaceto DWARF

David Anderson

ABSTRACT

This document describes an interface to a library of functions to create
DWARF debugging information entries and DWARF line number
information. It does not make recommendations as to how the functions
described in this document should be implemented nor does it suggest
possible optimizations.

The document is oriented to creating DWARF version 2. Support for
creating DWARF3 isintended but such support is not yet fully present.

rev 1.23, 8 Aug 2008

