A Consumer Library Interfaceto DWARF

David Anderson

1. INTRODUCTION

This document describes an interfacelitmiwarf, a library of functions to pndde access to WARF
delugging information records, \MARF line number information, WARF address range and global
names information, weak names informationVARF frame description information, IARF static
function names, WARF static variables, and@ARF type information.

The document has long mentioned the "Unix International Programming Languages Special Interest
Group" (PLSIG), under whose auspices th&/ARF committee was formed around 1991Unix
International” was disbanded in the 1990s and no longer exists.

The DNARF committee published\WWARF2 July 27, 1993.

In the mid 1990s this document and the library it describes (which the commiteeeemaorsed, hang
decided not to endorse or appeoay particular library interface) was madeadable on the internet by
Silcon Graphics, Inc.

In 2005 the WWARF committee bgen an dfiliation with FreeStandardsanr In 2007 FreeStandardsgor
merged with The Linux Bundation. Th®WARF committee dropped itsfdfation with FreeStandardsgr
in 2007 and established the alfistd.og website. Seéhttp://www.dwarfstd.og" for current information
on standardization activities and a gaf the standard.

1.1 Copyright
Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007 David Anderson.

Permission is hereby granted to gap republish or use anor dl of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that dud be useful, but WITHOUT ANY WRRANTY;
without esen the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to act®8KRm delugging
information. There is no effort made in this document to address the creation of these records as those
issues are addressed separately (see "A Producer Library Interfadé RMHD).

Additionally, the focus of this document is the functional irded, and as such, implementation as well as
optimization issues are intentionally ignored.

rev 1.72, 30 Dec 2008 -1-

1.3 Document History

A document vas written about 1991 which had similar layout and iate$. Writterby people from Hal
Corporation, That document described a library for readilgARF1. Theauthors distributed paper
copies to the committee with the clearly expressed intent to propose the document as a suppated interf
definition. Thecommittee decided not to pursue a library definition.

SGI wrote the document you arewneeading in 1993 with a similar layout and content argrorzation,

but it was complete documentwsate with the intent to read \WARF2 (the WARF version then in
existence). Thantent was (and is) to alsow future revisions of B/ARFE. All the function interdces
were changed in 1994 to uniformly return a simple integer success-codeNs&i) OK etc), generally
following the recommendations in the chapter titled "Candy Machine dotss'f of "Writing Solid Code",
a book by Stee Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIES) are thgnsents of information placed in thelebug_*

sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source4e debugging. Referto the latest DWARF Debugging Information

Format" from www.dwarfstd.ay for a more complete description of these entries.

This document adopts all the terms and definition©WARF Debugging Information Format" versions 2
and 3. It originally focused on the implementation at Silicon Graphics, lucndy attempts to be more
generally useful.

1.5 Overview

The remaining sections of this document describe the proposed interfadedwar f , first by describing

the purpose of additional types umefd by the interface, followed by descriptions of theilable
operations. Thiglocument assumes you are thoroughly familiar with the information contained in the
DWARF Debugging Information Format document.

We sparate the functions intoveeal categories to emphasize that not all consumert ¥ use all the
functions. V¢ all the catgories Delgger Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the ratlyer $&t of function calls easier to
understand.

Unless otherwise specified, all functions and structures should ee #akbeing designed for Dejyer
consumers.

The Debugger Interface of this library is intended to be used hygdels. Thenterface is lov-level
(close to dwarf) but suppresses irvale detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sectignsp at need. Andven then will probably
want to absorb only the information in a single compilation unit at a titlndebugger does not care about
implementation details of the library.

The Internal-lgel Interface is for a WARF prettyprinter and cheek A thorough prettyprinter will ant

to knaw al kinds of internal things (lie actual FORM numbers and actual offsets) so it can check for
appropriate structure in theVBARF data and print (on request) all that internal information for human
users and libdwarf authors and compileiters. Callsin this interface provide data a debugger does not
care about.

The High-level Interface is for higher leel access (it is not really a highvd interface!). Programsuch as
disassemblers will want to be able to displayvaieinformation about functions and line numbers without
having to iwest too much effort in looking at\MARF.

The miscellaneous interface is just what is lgfrothe error handler functions.

rev 1.72, 30 Dec 2008 -2-

The following is a brief mention of the changes in this libdwarf from the istidraft for DVARF \ersion
1 and recent changes.

1.6 Items Changed

Added support for various\BARF3 features, Ut primarily a nev frame-information interface tailorable at
run-time to more than a single ABIl. See dwarf set frame_rule_initalaue() and
dwarf_set frame_rule_table_size(). See also dvarf_get fde_info_for_ig3() and
dwarf_get_fde_info_for_cfa_g8(). (April 2006)

Added support for B/ARF3 .debug_pubtypes section. Corrected various leaks (revising dealloc() calls,
adding n& functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the ives deallocation method documented for data returned by
dwarf_srclines() was incapable of freeing all the allocated storage (14 July 2005).

dwarf_netglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pomiareats.
This makes writing safe and correct library-using-code far eabaerjustification for this approach, see
the book by Stee Maguire titled "Writing Solid Code" at your bookstore.

1.7 Items Removed

Dwarf_Type was remad since types are no longer special.

dwarf_typeof() was remad since types are no longer special.

Dwarf_Ellist was remeed since element lists no longer are a special format.
Dwarf_Bounds was remved snce bounds hae been generalized.

dwarf_netdie() was replaced by édwf net _cu_header() to reflect the real wayVBRF is oganized.
The dvarf_netdie() was only useful for getting to compilation unighlmnings, so it does not seem harmful
to remave it in favar of a more direct function.

dwarf_childcnt() is remeed on gounds that no good use was apparent.

dwarf_prevline() and dvarf_netline() were remeed on grounds this is better left to a debugger to do.
Similarly, dwarf_dieline() was remeed.

dwarf_islstline() was remved as it was not meaningful for the reviseMIB\RF line operations.

Any libdwarf implementation might well decide to support all the reddunctionality and to retain the
DWARF Version 1 meanings of that functionalityhis would be dficult because the original libcf
draft specification used traditional C library interfaces which confuse ahees returned by successful
calls with exceptional conditions Blfailures and 'no more data’ indications.

1.8 Revision History

March 93 Work on DWARF2 SGI draft begins
June 94 The function returns are changed to return an error/success code only.
April 2006: Support for WARF3 consumer operations is close to completion.

rev 1.72, 30 Dec 2008 -3-

2. Types Definitions

2.1 General Description

Thelibdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects dibdwarf. The types defined by typedefs containedlilodwarf.h all use the
convention of addingDwar f _ as a prefix and can be placed in three categories:

« Scalar types : The scalar typesidefl inlibdwarf.h are defined primarily for notational cagnience
and identiication. Dependingn the individual defition, they are interpreted as a value, a pointer
or as a flag.

+ Aggregae types : Some alues can not be represented by a single scalar type;nthst be
represented by a collection of, or as a union of, scalar and/ogaiggtgpes.

« Opaque types : The complete idéfon of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opaque type to be used in another
guery or an nstance of a scalar or aggae type, which is the actual result.

2.2 Scalar Types
The following are the defined Bibdwarf.h:

typedef int Dwar f _Bool ;

typedef unsigned long |ong Dwarf_ OFf;

typedef unsigned | ong | ong Dwarf_Unsi gned;

typedef unsigned short Dwar f _Hal f;

typedef unsi gned char Dwar f _Smal | ;

typedef signed long | ong Dwar f _Si gned;

typedef unsigned | ong | ong Dwarf_Addr;

typedef void *Dwarf_Ptr;

typedef void (*Dwarf_Handl er) (Dwarf_Error *error, Dwarf_Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the Jilmatryfor representing pc-
values/addresses within the target objelet. f Dwarf_Addr is for pc-values within the target objeibe.f
The sample scalar type assignmentsvab@e for alibdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machine. The types mustdéined appropriately for each
implementation of libdarf. A description of these scalar types in the SGI/MIPS environmentes mji
Figure 1.

rev 1.72, 30 Dec 2008 -4 -

NAME SIZE ALIGNMENT PURPOSE
Dwarf_Bool 4 4 Boolean states
Dwarf_ Off 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Sgned large integer
Dwarf_Addr 8 8 Program address
(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer
(host program)
Dwarf_Handler 4|8 4|8 Pointeto
error handler function

Figurel. Scalar Types

2.3 Aggregate Types

The following aggrgate types are defed by libdwarf.h: Dwarf_Loc, Dwarf_Locdesc,
Dwar f _Bl ock, Dwarf _Frame_Op. Dwarf_Regtabl e. Dwarf_Regtabl e3. While most of

I i bdwar f acts on or returns simple values or opaque pointer types, this small set of structures seems
useful.

2.3.1 Location Record

TheDwar f _Loc type identifies a single atom of a location description or a location expression.

typedef struct {

Dwar f _Smal | I r_atom

Dwar f _Unsi gned I r _nunber;

Dwar f _Unsi gned I r_nunber2;

Dwar f _Unsi gned Ir_offset;
} Dwarf_Loc;

Thel r _at omidentifies the atom corresponding to tB&/ OP_* definition in dwarf.h and it represents
the operation to be performed in order to locate the item in question.

Thel r _nunber field is the operand to be used in the calculation spddify thel r _at omfield; not all
atoms use thisidld. Someatom operations imply signed numbers so it is necessary to cast this to a
Dwar f _Si gned type for those operations.

Thel r _nunber 2 field is the second operand specified byltheat omfield; onlyDW OP_BREGX has
this field. Someatom operations imply signed numbers so it may be necessary to cast this to a
Dwar f _Si gned type for those operations.

Thelr _of fset field is the byte déet (within the block the location record came from) of the atom
specifed by thel r _at omfield. Thisis set on all atoms. This is useful for operatidig OP_SKI P and
DW OP_BRA.

rev 1.72, 30 Dec 2008 -5-

2.3.2 Location Description

TheDwar f _Locdesc type represents an ordered listyfar f _Loc records used in the calculation to
locate an item. Note that in marases, the location can only be calculated at runtime of the associated
program.

typedef struct {

Dwar f _Addr I d_I opc;
Dwar f _Addr I d_hi pc;
Dwar f _Unsi gned | d_cents;
Dwar f _Loc* I d_s;

} Dwarf Locdesc;

Thel d_I opc andl d_hi pc fields provide an address range for which this location descriptatids v
Both of these fields are set zero if the location descriptor is valid throughout the scope of the item it is
associated with. These addresses are virtual memory addressedsetstfiim-something. Theirtual
memory addresses do not account for dseement (none of the pcalues from libdwarf do that, it is up to
the consumer to do that).

Thel d_cent s field contains a count of the numberm»far f _Loc entries pointed to by tHed_s field.

Thel d_s field points to an array @war f _Loc records.

2.3.3 Data Block

The Dwarf_Bl ock type is used to contain the value of an attribute whose form is either
DW FORM bl ock1, DW FORM bl ock2, DW FORM bl ock4, DW FORM bl ocks8, or
DW FORM bl ock. Its intended use is to dedr the value for an attribute of wof these forms.

typedef struct {
Dwar f _Unsi gned bl | en;
Dwarf_ Ptr bl data;
} Dwarf _Bl ock;

Thebl _I en field contains the length in bytes of the data pointed to bylthdat a field.

The bl _dat a field contains a pointer to the uninterpreted data. Since wealxaarf _Ptr here one
must cop the pointer to some other type (typicallywamsi gned char *) so me can add increments to
index through the data. The data pointed tdilby dat a is not necessarily at gruseful alignment.

2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable foMBRF3
and for DNARF2 is described belo

The DNARF2Dwar f _Fr ame_Qp type is used to contain the data of a single instruction of an instruction-
sequence of le-level information from the section containing frame informatidthis is ordinarily used
by Internal-le#el Consumers trying to printverything in detalil.

rev 1.72, 30 Dec 2008 -6-

typedef struct {
Dwarf_Small fp_base_ op;
Dwarf_Smal |l fp_extended_op;
Dwar f _Hal f fp_register;
Dwar f _Si gned fp_offset;
Dwarf_Offset fp_instr_offset;
} Dwarf_Frane_Op;

f p_base_op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tB8al | Franme Instruction
Encodi ngs figure in thedwar f document. lfhot used with the Op it is 0.

fp_offset is the address, delta, offset, or second register as defined irCahke Frane
I nstruction Encodi ngs figure in thedwar f document. Ifthis is anaddr ess then the walue
should be cast tbDwar f _Addr) before being used. In gmmplementation thisiéld *must* be as laye
as the larger of Dwarf_Signed and Dwarf_Addr for this to work propdirlyot used with the op it is 0.

fp_instr_of fset is the byte offset (within the instruction stream of the frame instructions) of this
operation. lIstarts at O for a gen frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable foMBRF3
and for DNARF2 is described belo

The Dwar f _Regt abl e type is used to contain thegisterrestore information for all registers at aayi
PC alue. Normallyused by debuggers.

/* DW_REG_TABLE_SIZE must reflect the number of registers
*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h

*

#define DW_REG_ABLE_SIZE <fill in size here, 66 for MIPS/IRIX>
typedef struct {

struct {
Dwar f _Smal | dw of fset _rel evant;
Dwar f _Hal f dw_r egnum
Dwar f _Addr dw of f set;

} rul es[DW REG TABLE Sl ZE] ;
} Dwarf _Regtabl e;

The array is indeed by regster number The field values for each indere described ne. For clarity we
describe the field values for indeules[M] (M being ag legd array element index).

dw of fset _rel evant is non-zero to indicate théw _of f set field is meaningful. If zero then the
dw_of f set is zero and should be ignored.

dw_regnum is the register number applicabléf. dw of f set _rel evant is zero, then this is the
register number of the register containing the value for registetfMw _of f set _r el evant is non-
zero, then this is the register number of thgister to use as a base (M may b& F-RAME_CFA_COL,
for example) and thdw_of f set vaue applies. The value of register M is therefore the valuegidtesr
dw_regnum

dw_of f set should be ignored dlw_of f set _r el evant is zero. If dw_of f set _rel evant is non-
zero, then the consumer code should add éhgevto the value of thegisterdw _r egnumto produce the
value.

rev 1.72, 30 Dec 2008 -7-

2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2)
This interface is adequate folMARF3 and for BVARF2. Itis new in libdwarf in April 2006.

The DNARF2 Dwar f _Frame_(p3 type is used to contain the data of a single instruction of an
instruction-sequence of welevel information from the section containing frame information. This is
ordinarily used by Internal-lel Consumers trying to printverything in detail.

typedef struct {

Dwar f _Smal | fp_base_op;
Dwar f _Smal | f p_ext ended_op;
Dwar f _Hal f fp_register;

/* Val ue may be signed, depends on op.

Any applicable data_alignnment_factor has

not been applied, this is the raw offset. */
Dwarf _Unsigned fp_offset _or_block |en;
Dwar f _Smal | *f p_expr_bl ock;

Dwarf O f fp_instr_offset;
} Dwarf_ Frane_Op3;

fp_base _op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tBal | Frane Instruction
Encodi ngs figure in thedwar f document. Ifhot used with the Op itis 0.

fp_offset or_ bl ock | en is the address, delta, offset, or second register as defined Cakhe
Frame Instruction Encodi ngs figure in thedwar f document. Or (depending on the op, it may
be the length of the davf-expression block pointed to Byp_expr _bl ock. If this is anaddr ess then
the value should be cast f®war f _Addr) before being usedin ary implementation this field *must*
be as large as the ¢gar of Dwarf_Signed and Dwarf_Addr for this to work propeifynot used with the
opitis 0.

fp_expr_bl ock (if applicable to the op) points to a drfrexpression block which is
fp_offset or bl ock | en bytes long.

fp_instr_of fset is the byte dbet (within the instruction stream of the frame instructions) of this
operation. Isstarts at O for a gen frame descriptor.

2.3.7 Frame Regtable: DWARF 3
This interface is adequate folMARF3 and for BVARF2. Itis new in libdwarf as of April 2006.

TheDwar f _Regt abl e3 type is used to contain thegisterrestore information for all registers at &ei
PC \alue. Normallyused by debuggers.

rev 1.72, 30 Dec 2008 -8-

typedef struct Dwarf_Regtable Entry3 s {

Dwar f _Smal | dw of fset _rel evant;
Dwar f _Smal | dw val ue_type;
Dwar f _Hal f dw_r egnum

Dwar f _Unsi gned dw of fset _or_ bl ock | en;
Dwarf Ptr dw_bl ock_ptr;

} Dwar f _Regt abl e_Entry3;

typedef struct Dwarf_Regtabl e3_s {
struct Dwarf_Regtable Entry3_s rt3 _cfa rule;

Dwar f _Hal f rt3_reg_table_size;
struct Dwarf_Regtable Entry3_ s * rt3_rules;
} Dwarf_Regtabl e3;

The array is inded by regster number The field values for each ind@re described n¢. For clarity we
describe the field alues for inde rulesfM] (M being ay legd array element inde.
(DW_FRAME_CHA_COL3 DW_FRAME_SAME_\AL, DW_FRAME_UNDEFINED_ML are not lgd
array indees, nor is ap index < 0 or > it3_rey_table_size); The caller of routines using this struct must
create data space for rt3_reg_table size entries of struerfORegtable Entry3_s and arrange that
rt3_rules points to that space and that rt§_table size is set correctiyfhe caller need not (but may)
initialize the contents of the rt3_cfa_rule or the rt3_rules arfég following applies to each rt3_rules rule
M:

dw_regnum is the register number applicable. If dw_regnum is
DW_FRAME_UNDEFINED ML, then the register | has undefinedlve. Ifdw_r egnumis
DW_FRAME_SAME_VAL, then the register | has the same value as in the previous frame.

If dw_r egnhumis neither of these two, then the following apply:

dw_val ue_t ype determines the meaning of the othetds. Itis one of W_EXPR_OFFSET
(0), DW_EXPR_\AL_OFFSET(1), W_EXPR_EXPRESSION(2) or
DW_EXPR_VAL_EXPRESSION(3).

If dw_val ue_t ype is DW_EXPR_OFFSET (0) then this is as ilVBRF2 and the dfet(N)
rule orthe register(R) rule of theMBARF3 and MVARF2 document applies. The value is either:
If dw_of f set _r el evant is non-zero, thedw_r egnumis efectively ignored ut
must be identical to W_FRAME_CFA_COL3 and thedw of f set value applies.
The value of rgister M is therefore the value of Eplus the value oflw_of f set .
The result of the calculation is the address in memory where the value of register M
resides. Thiss the offset(N) rule of the WARF2 and MVARF3 documents.

dw_of f set _rel evant is zero it indicates théw_of f set field is not meaningful.
The value of rgister M is the value currently in gister dw_r egnum (the \alue

DW_FRAME_CF_COL3 must not appeannly real rgisters). Thids the rgister(R)

rule of the DWVARF3 spec.

If dw_val ue_type is DW_EXPR_OFFSET (1) then this is the thed wfiset(N) rule of the
DWARF3 spec applies. The calculation is identical to that W BXPR_OFFSET (0) but the
value is interpreted as the value ofjister M (rather than the address where registervlue is
stored).

If dw_val ue_t ype is DW_EXPR_EXPRESSION (2) then this is the thpression(E) rule of
the DWVARF3 document.

rev 1.72, 30 Dec 2008 -9-

-10 -

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopkinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Eagluate that
expression and the result is the address where the previous value of register M is found.

If dw value_ type is DW_EXPR_\AL _EXPRESSION (3) then this is the the
val_expression(E) rule of theVARF3 spec.

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopkinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Eagluate that
expression and the result is the previous value of register M.

The rulert 3_cfa_rul e is the current value of the CFA. It is interpreted exactlg bRy
register M rule (as described just aBp except that dw_regnum cannot be
CW_FRAME_CRA_REG3 or DV_FRAME_UNDEFINED_M\AL or DW_FRAME_SAME_VAL
but must be a real register number.

2.3.8 Macro Details Record
TheDwar f _Macr o_Det ai | s type gies information about a single entry in the .debug.macinfo section.

struct Dwarf_Macro Details_s {
Dwarf O f dnd_of f set;
Dwarf _Small dnd_type;
Dwar f _Si gned dnd_I i neno;
Dwar f _Si gned dnd_fil ei ndex;
char * dnd_nuacr o;
b
typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;

dnd_of f set is the byte offset, within the .debug_macinfo section, of this macro information.

dnd_t ype is the type code of this macro info entry (or 0, the type code indicating that this is the end of
macro information entries for a compilation unifee DW MACI NFO defi ne, ec in the DNARF
document.

dnd_| i neno is the line number where this entry was found, or 0 if there is no applicable line number.

dnd_fil ei ndex is the file ind& of the file involved. Thisis only guaranteed meaningful on a
DW MACI NFO start _file dnd type. Setto -1 if unknown (see the functional interface for more
details).

dnd_nacr o is the applicable stringFor a DW MACI NFO_def i ne this is the macro name andlue.
For a DW MACI NFO_undef , or this is the macro nameror a DW MACI NFO vendor _ext this is the
vendor-defined stringalue. or otherdnd_t ypes this is 0.

2.4 Opaque Types

The opaque types declaredlibdwarf.h are used as descriptors for querieaiagt DNVARF information

stored in various debugging sectiorigach time an instance of an opaque type is returned as a result of a
libdwarf operation Dwar f _Debug excepted), it should be freed, usidgar f _deal | oc() when it is

no longer of use (read the following documentation for details, as in at least one case there is a special
routine provided for deallocation anddwarf _deall oc() is not directly called: see

dwarf _srclines()). Somefunctions return a number of instances of an opaque type in a block, by
means of a pointer to the block and a count of the number of opaque descriptors in the block: see the
function description for deallocation rules for such functions. The list of opaque types defined in
libdwarf.h that are pertinent to the Consumer Librand their intended use is described belo

rev 1.72, 30 Dec 2008 -10 -

-11 -

typedef struct Dwarf_Debug_s* Dwarf_Debug;

An instance of thé®war f _Debug type is created as a result of a successful calivar f _init (), or

dwarf _elf_init(),andis used as a descriptor for subsequent access td ntbdar f functions on

that object. The storage pointed to by this descriptor should be not be freed, using the
dwar f _deal | oc() function. Insteadree it withdwar f _fi ni sh().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of ebwar f _Di e type is returned from a successful call to thwar f _si bl i ngof (),
dwarf _chil d, ordwarf _of fdi e() function, and is used as a descriptor for queries about information
related to that DIE.The storage pointed to by this descriptor should be freed, damgf _deal | oc()

with the allocation typ®W DLA_ DI E when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances ofDwar f _Li ne type are returned from a successful call to tvaarf _srclines()

function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individually freed, usirdwarf_deal | oc() with the allocation type

DW DLA LI NEwhen no longer needed.

typedef struct Dwarf_d obal _s* Dwarf_d obal;

Instances oDwar f _G obal type are returned from a successful call todhar f _get _gl obal s()
function, and are used as descriptors for queries about global names (pubnames).

typedef struct Dwarf_Weak s* Dwarf_Weak;

Instances of Dwarf _\Weak type are returned from a successful call to the SGI-specif
dwar f _get weaks() function, and are used as descriptors for queries about weak names. The storage
pointed to by these descriptors should be individually freed, udimar f _deal | oc() with the
allocation type DW DLA WEAK_ CONTEXT (or DW DLA WEAK, an dder name, supported for
compatibility) when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf _Func type are returned from a successful call to the SGI-specif
dwar f _get funcs() function, and are used as descriptors for queries about static function names.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf_Type type are returned from a successful call to the SGI-specif
dwar f _get _types() function, and are used as descriptors for queries about user defined types.

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf _Var type are returned from a successful call to the SGlI-specif
dwar f _get vars() function, and are used as descriptors for queries about static variables.

typedef struct Dwarf_Error_s* Dwarf_Error;

This descriptor points to a structure that provides detailed information about errors detédtod\ogr f .
Users typically provide a location fdri bdwar f to store this descriptor for the user to obtain more
information about the error The storage pointed to by this descriptor should be freed, using

rev 1.72, 30 Dec 2008 -11 -

-12 -

dwar f _deal | oc() with the allocation typ®wW DLA ERRCRwhen no longer needed.

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances obwar f _At t ri but e type are returned from a successful call todtarf _attrlist(),
ordwarf_attr () functions, and are used as descriptors for queries about attrédués.v Thestorage
pointed to by this descriptor should be individually freed, udiwgr f _deal | oc() with the allocation
typeDW DLA_ATTRwhen no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of @war f _Abbr ev type is returned from a successful calldwar f _get abbrev(),
and is used as a descriptor for queries about wibtions in the .dalg_abbre section. Thestorage
pointed to by this descriptor should be freed, usitvgar f _deal | oc() with the allocation type
DW DLA ABBREV when no longer needed.

typedef struct Dwarf_Fde_s* Dwarf_Fde;

Instances oDwar f _Fde type are returned from a successful call todinar f _get _fde_list(),
dwarf _get _fde for_die(),ordwarf_get fde_at_ pc() functions, and are used as descriptors
for queries about frames descriptors.

typedef struct Dwarf_Cie_s* Dwarf_Cie;

Instances oDwar f _Ci e type are returned from a successful call to dwerf _get _fde_list()
function, and are used as descriptors for queries about information that is commearaidrsenes.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances oDwar f _Ar ange type are returned from successful calls todkar f _get _ar anges(),
ordwar f _get _arange() functions, and are used as descriptors for queries about address fHmges.
storage pointed to by this descriptor should be individually freed, usiagf deal | oc() with the
allocation typeDW DLA ARANGE when no longer needed.

3. Error Handling

The method for detection and disposition of error conditions that arise during accessugdgirmtgb
information vialibdwarf is consistent across dibdwarf functions that are capable of producing an error
This section describes the method usetittmwarf in notifying client programs of error conditions.

Most functions withinlibdwarf accept as an argument a pointer tbwar f _Er r or descriptor where a
Dwar f _Error descriptor is stored if an error is detected by the functiRoutines in the client program
that provide this argument can query Bwvear f _Er r or descriptor to determine the nature of the error and
perform appropriate processing.

A client program can also specify a function to baked upon detection of an error at the time the library

is initialized (seedwar f _i ni t ()). Whenalibdwarf routine detects an errahis function is called with

two alguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(agpin seedwar f _i nit()). Thispointer argument can be used to relay information between the error
handler and other routines of the client prograiclient program can specify or change both the error
handling function and the pointer argument after initialization uslmgrf set errhand() and

dwarf _seterrarg().

rev 1.72, 30 Dec 2008 -12 -

-13 -

In the case wherBbdwarf functions are not provided a pointer tdaar f _Er r or descriptoy and no
error handling function was provided at initializatidipdwarf functions terminate x@cution by calling
abort (3C).

The following lists the processing steps taken upon detection of an error:

1. Checkthe error argument; if not aNULL pointer dlocate and initialize ebwar f _Err or
descriptor with information describing the errptace this descriptor in the area pointed to by
error, and return a value indicating an error condition.

2. If anerrhand amgument was provided tdwar f _i ni t () at initialization, caller r hand()
passing it the error descriptor and the value of #werarg amgument provided to
dwarf _init(). If the error handling function returns, return a value indicating an error
condition.

3. Terminate programxecution by callingabort (3C) .

In all cases, it is clear from thelue returned from a function that an error occurredxatiging the
function, since DW_DLV_ERROR is returned.

As can be seen from the aleogeps, the client program can pide an error handler at initialization, and
still provide aner r or argument tolibdwarf functions when it is not desired toveathe error handler
invoked.

If a libdwarf function is called with imalid arguments, the behavior is unigbefd. In particular,
supplying aNULL pointer to al i bdwar f function (except where explicitly permitted), or pointers to
invalid addresses or uninitialized data causes undefined behavior; the retum im such cases is
undefned, and the function may fail tovioke the caller supplied error handler or to return a meaningful
error number Implementations also may aboxeeution for such cases.

3.1 Returned valuesin the functional interface

Values returned by i bdwar f functions to indicate success and errors are enumerated in Figlife2.
DW DLV_NO ENTRY case is useful for functions need to indicate that while thasen® data to return
there was no error eithefor example,dwar f _si bl i ngof () may returnDW DLV_NO_ENTRY to
indicate that that there was no sibling to return.

SYMBOLIC NAME VALUE MEANING
DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable value

Figure 2. Error Indications

Each function in the interface that returns a value returns one of the integers invihégaive.

If DW DLV_ERRORIs returned and a pointer taDwar f _Er r or pointer is passed to the function, then a
Dwarf_Error handle is returned through the poinlier ather pointer value in the intexée returns aatue.
After the Dwar f _Error is no longer of interest, a
dwar f _deal | oc(dbg, dw _err, DW DLA ERROR) on the error pointer is appropriate to freey an
space used by the error information.

If DW DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW DLV_(Kis returned, th&war f _Err or pointet if supplied, is not touched, butyanther values to
be returned through pointers are returned. In this case calls (depending racthierction returning the

rev 1.72, 30 Dec 2008 -13-

-14 -

error) todwar f _deal | oc() may be appropriate once the particular pointer returned is no longer of
interest.

Pointers passed to allovalues to be returned through them are uniformly the last pointers in each
argument list.

All the interface functions are defined from the point ofwief the writer-of-the-library (as is traditional
for UN*X library documentation), not from the point of wieof the user of the libraryThe caller might
code:

Dwarf_Line |ine;

Dwarf _Signed ret | off;

Dwarf _Error err;

int retval = dwarf_lineoff(line, & et _|off, &err);

for the function defined as

int dwarf_lineoff(Dwarf_Line Iine, Dnarf_Signed *return_Ilineoff,
Dwarf _Error* err);

and this document refers to the function as returning @ahee\through *err or *return_linebbr uses the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

4. Memory M anagement

Several of the functions that comprisdodwarf return pointers (opaque descriptors) to structures that ha
been dynamically allocated by the libraryo ad in the management of dynamic memahe function
dwar f _deal | oc() is provided to free storage allocated as a result of a callibovearf function. This
section describes the strategy that should be taken by a client program in managing dynamic storage.

4.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a resultibfisarf Consumer Library call should be
assumed to point to read-only memofihe results are undeéd forlibdwarf clients that attempt to write
to a region pointed to by a value returned tiypdwarf Consumer Library call.

4.2 Storage Deallocation

See the section "Returned values in the functional adetf abwe, for the general rules where calls to
dwar f _deal | oc() is appropriate.

In some cases the pointers returned bydwarf call are pointers to data which is not freeable. The library
knows from the allocation type praled to it whether the space is freeable or not and will not free
inappropriately whemdwar f _deal | oc() is called. So it is vital thalwar f _deal | oc() be called
with the proper allocation type.

For most storage allocated byibdwarf, the client can free the storage for reuse by calling
dwar f _deal | oc(), providing it with theDwar f _Debug descriptor specifying the object for which the
storage was allocated, a pointer to the area to be free-ed, and ateid#vaif specifies what the pointer
points to (the allocation type)For example, to free @warf _Di e di e belonging the the object
represented byDwar f _Debug dbg, dlocated by a call todwarf _si blingof (), the call to
dwar f _deal | oc() would be:

dwar f _deal | oc(dbg, die, DWDLA DIE);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list

rev 1.72, 30 Dec 2008 -14 -

-15-

should be deallocated, folled by deallocation of the actual list itself. The following code fragment uses
an invocation ofdwarf _attrlist() as an example to illustrate a technique that can be used to free
storage from anlibdwarf routine that returns a list:

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(sonmedie, &atlist,&tcnt, &error);
if (errv == DWDLV_OK) {

for (i =0; i < atcnt; ++i) {
[* use atlist[i] */
dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);

}
dwarf _deal | oc(dbg, atlist, DWDLA LIST);

The Dwar f _Debug returned fromdwarf _init() ordwarf_elf_init() cannot be freed using
dwar f _deal | oc(). The functiondwar f _fi ni sh() will deallocate all dynamic storage associated
with an instance of Bwar f _Debug type. Inparticular it will deallocate all dynamically allocated space
associated with thBwar f _Debug descriptoyand finally male the descriptor walid.

An Dwar f _Error returned fromdwarf _init() ordwarf_elf _init() in case of a failure cannot
be freed usinglwar f _deal | oc() . The only way to free thédwar f _Err or from either of those calls

is to usefree(3) directly. Every Dwarf Error must be freed bylwar f _deal | oc() except those
returned bydwar f _init () ordwarf _elf_init().

The codes that identify the storage pointed to in caliver f _deal | oc() are described in figure 3.

rev 1.72, 30 Dec 2008 -15-

-16 -

IDENTIFIER USED TO FREE
DW_DLA_STRING char*

DW_DLA LOC Dwarf_Loc
DW_DLA_LOCDESC Dvarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA_DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute
DW_DLA_TYPE Dwarf_Type (notused)
DW_DLA_SUBSCR Dvarf_Subscr (not used)
DW_DLA_GLOBAL_CONTEXT Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST alist of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dvarf_Frame_Op
DW_DLA_CIE Dwarf_Cie

DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_Loc Block
DW_DLA_ FRAME_BLOCK Dwarf_Frame Block (not used
DW_DLA_FUNC_CONTEXT Dvarf_Func
DW_DLA_TYPENAME_CONTEXT Dwarf_Type
DW_DLA_VAR_CONTEXT Dwarf_Var
DW_DLA_WEAK_CONTEXT Dwarf_Weak
DW_DLA_PUBTYPES_CONTEXT Dwrf_Pubtype

Figure 3. Allocation/Deallocation Identifiers

5. Functional Interface
This section describes the functionsitable in thelibdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the funstaperation.

The following sections describe these functions.

5.1 Initialization Operations

These functions are concerned with preparing an objecfdr subsequent access by the functions in
libdwarf and with releasing allocated resources when access is complete.

5.1.1 dwarf _init()

rev 1.72, 30 Dec 2008 -16 -

-17 -

int dwarf _init(
int fd,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,
Dwar f _Debug * dbg,
Dwarf _Error *error)

When it returnsDW DLV_OK, the functiondwar f _i ni t () returns throughdbg a Dwar f _Debug
descriptor that represents a handle for accessing debugging records associated with tleedeserigdtor

fd. DWDLV_NO ENTRY is returned if the object does not contailV®RF debugging information.
DW DLV_ERRORis returned if an error occurredheaccess argument indicates what access is\atd

for the section.The DW DLC_READ parameter is valid for read access (only read access is defined or
discussed in this documentlhe err hand argument is a pointer to a function that will besdked
whenever an aror is detected as a result ofibdwarf operation. Theer r ar g agument is passed as an
argument to theer r hand function. Thefile descriptor associated with thd argument must refer to an
ordinary file (i.e. not a pipe, socket, device, /proc en&y.), be opened with the at least as much
permission as specified by tlaecess argument, and cannot be closed or used as an argumery to an
system calls by the client until aftdwar f _f i ni sh() is called. The seek position of thkefassociated
with f d is undefined upon return dfvar f _i nit ().

With SGI IRIX, by default it is allowed that the app ose() fd immediately after calling
dwar f _i ni t (), but that is nota portable approach (that it works is an accidental side effect oftte f
that SGI IRIX use€ELF_C READ MVAP in its hidden internal call tel f _begi n()). The portable
approach is to consider thad must be left open till after the correspondingadiwfinish() call has
returned.

Sincedwar f _i ni t () uses the same error handling processing as ttidwarf functions (seeerror
Handling above), client programs will generally supply @nr or parameter to bypass the delt actions
during initialization unless the default actions are appropriate.

5.1.2 dwarf_df_init()

int dwarf_elf _init(
EIf * elf file_pointer,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf_Ptr errarg,
Dwar f _Debug * dbg,
Dwar f _Error *error)

The functiondwar f _el f _i ni t () is identical todwarf i nit () except that an opeBl f * pointer

is passed instead of @efdescriptor In systems supportingLF object files this may be more space or
time-eficient than usinglwar f _i nit (). The client is allowed to use thg f * pointer for its avn
purposes without restriction during the time twar f _Debug is open, gcept that the client should not
el f _end() the pointer till afterdwar f _fi ni shis called.

5.1.3 dwarf_get_elf()

int dwarf_get_el f(
Dwar f _Debug dbg,
Elf ** el f,
Dwarf _Error *error)

rev 1.72, 30 Dec 2008 -17 -

-18 -

When it returnW DLV_CK, the functiondwar f _get _el f () returns through the pointet f theEl f
* handle used to access the object represented byowhef Debug descriptordbg. It returns
DW DLV_ERROR 0N error.

Becausa nt dwarf _i nit () opens an Elf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran gp should uselwar f _get _el f and should calel f _end with the pointer returned
through theEl f ** handle created biynt dwarf _init().

This function is not meaningful for a system that does not use the EIf format for objects.

5.1.4 dwarf_finish()

int dwarf _finish(
Dwar f _Debug dbg,
Dwarf Error *error)

The functiondwar f _fi ni sh() releases alLibdwarf internal resources associated with the descriptor
dbg, and invalidatesdbg. It returnsDW DLV_ERRORf there is an error during the finishing operatidh.
returnsDW DLV _OK for a successful operation.

Becausa nt dwarf i nit () opens an EIf descriptor on its fd addar f _fi ni sh() does not close

that descriptgran gop should uselwar f _get el f and should calel f _end with the pointer returned
through theel f ** handle created hiynt dwarf _init().

5.2 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries.

5.2.1 Debugging Information Entry Debugger Delivery Oper ations

5.2.2 dwarf_next_cu_header()

i nt dwarf_next _cu_header (
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header _I engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_of f set,
Dwar f _Hal f *addr ess_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

The functiondwar f _next _cu_header () returnsDW DLV_ERROR if it fails, and DW DLV_OX if it
succeeds.

If it succeeds* next _cu_header is set to the offset in the .debug_info section of the next compilation-
unit header if it succeeds. On reading the last compilation-unit header in thg .o section it contains
the size of the .debug_info section. The next call dearf_next cu_header () returns

DW DLV_NO_ENTRY without reading a compilation-unit or settifignext _cu_header. Subsequent
calls todwar f _next _cu_header () repeat the cycle by reading the first compilation-unit and so on.

The other values returned through pointers are the values in the compilation-unit Héeater of
cu_header | engt h, versi on_stanp, abbrev_offset, or address_si ze is NULL, the
argument is ignored (meaning it is not an error to provideld. pointer).

rev 1.72, 30 Dec 2008 -18 -

-19 -

5.2.3 dwarf_siblingof()

i nt dwarf_siblingof(
Dwar f _Debug dbg,
Dwarf _Die die,
Dwarf _Die *return_sib,
Dwar f _Error *error)

The functiondwar f _si bl i ngof () returnsDW DLV_ERROR and sets ther r or pointer on error If
there is no sibling it returnBW DLV_NO _ENTRY. When it succeedsjwar f _si bl i ngof () returns
DW DLV _K and setsreturn_si b to theDwar f _Di e descriptor of the sibling odi e. If di e is
NULL, the Dwar f _Di e descriptor of the first die in the compilation-unit is returndthis die has the
DW TAG comnpi | e_uni t tag.

5.2.4 dwarf_child()

int dwarf_chil d(
Dwarf_Di e die,
Dwarf _Die *return_kid,
Dwarf _Error *error)

The functiondwar f _chi | d() returnsDW DLV_ERRCR and sets ther r or die on error If there is no
child it returnsDW DLV_NO_ENTRY. When it succeedsjwarf _chil d() returnsDW DLV_(K and
sets *return_kid to the Dwarf_Di e descriptor of the first child ofdi e. The function
dwar f _si bl i ngof () can be used with the returralue ofdwarf_chil d() to access the other
children ofdi e.

5.2.5 dwarf_offdie()

int dwarf_offdie(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwarf Die *return_die,
Dwar f _Error *error)

The functiondwar f _of f di e() returnsDW DLV_ERROR and sets therr or die on error When it
succeedsdwar f _of fdi e() returnsDW DLV_OK and sets*r et urn_di e to the theDwarf _Di e
descriptor of the debugging information entryo&f set in the section containing detging information
entries i.e the .dely_info section. A return of DW DLV_NO _ENTRY means that thef f set in the
section is of a byte containing all 0 bits, indicating that there is no\aatioe code. Meaning thisiie
offset’ is not the offset of a real digyths instead an offset of a null die, a padding die, or of some random
zero byte: this should not be returned in normal usds the uses responsibility to ma& sure that

of f set is the start of a valid debugging information entifie result of passing it anvidid offset could

be chaos.

5.3 Debugging Information Entry Query Operations

These queries return specific information aboutudging information entries or a descriptor that can be
used on subsequent queries wherega Dwar f _Di e descriptor Note that some operations are sgecif
to debugging information entries that are representedwaaf Di e descriptor of a specific type-or
example, not all debugging information entries contain an attribute having a name, so consexjaahtly
to dwar f _di ename() using aDwar f _Di e descriptor that does not Ve a rmme attribute will return
DW DLV_NO_ENTRY. This is not an errgii.e. calling a function that needs a specific aftehis not an

rev 1.72, 30 Dec 2008 -19-

-20 -

error for a die that does not contain that specific attribute.
There are seral methods that can be used to obtain the value of an attributevienaigi:

1. Calldwarf_hasattr() to determine if the debugging information entry has the attribute of
interest prior to issuing the query for information about the attribute.

2. Supplyanerror amgument, and check itsalue after the call to a query indicates an unsuccessful
return, to determine the nature of the problérheer r or argument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to hasre a eror handling function iwmoked upon detection of an error (see
dwarf _init()).

4. Calldwarf _attrlist() and iterate through the returned list of attributes, dealing with each one
as appropriate.

5.3.1 dwarf_tag()

int dwarf_tag(
Dwarf _Die die,
Dwarf Hal f *tagval,
Dwarf Error *error)

The functiondwar f _t ag() returns theag of di e through the pointet agval if it succeeds. It returns
DW DLV_Xif it succeeds. It returnBW DLV_ERRORon error.

5.3.2 dwarf_dieoffset()

i nt dwarf_di eof fset(
Dwarf_Di e die,
Dwarf O f * return_offset,
Dwarf _Error *error)

When it succeeds, the functiondwarf dieoffset() returns DWDLV_OK and sets
*return_of f set to the position odi e in the section containing defyging information entries (the
return_of f set is a section-relate dfset). Inother words, it setset ur n_of f set to the offset of
the start of the debugging information entry describeddbg in the section containing dies i.e
.delug_info. ItreturnsDW DLV_ERROR on error.

5.3.3 dwarf_die CU_offset()

int dwarf_di e CU offset(
Dwarf _Die die,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _di e_CU of f set () is similar todwar f _di eof f set (), except that it puts the
offset of the DIE represented by tiwarf Di e di e, from the start of the compilation-unit that it
belongs to rather than the start of .debug_infor(teur n_of f set is a CU-relatre dfset).

rev 1.72, 30 Dec 2008 -20-

-21-

5.34 dwarf_die CU_offset range()

int dwarf_di e CU of fset_range(
Dwarf _Die die,
Dwarf O f *cu_gl obal of fset,
Dwarf O f *cu_l ength,
Dwar f _Error *error)

The functiondwar f _di e_CU of f set _range() returns the offset of the pmning of the CU and the
length of the CU. The &et and length are of the entire CU that this DIE is a part of. It is used by
dwarfdump (for @ample) to check the validity of fsets. Mostpplications will hae o reason to call this
function.

5.3.5 dwarf_diename()

i nt dwarf _di enanme(
Dwarf_Di e die,
char ** return_nane,
Dwarf _Error *error)

When it succeeds, the functidwar f _di enane() returnsDW DLV_OK and setgr et ur n_nane to a
pointer to a null-terminated string of characters that represents the nameteatrfiloli e. It returns
DW DLV_NO ENTRY if di e does not hee a rame attrilnte. It returnsDW DLV_ERROR if an error
occurred. Thestorage pointed to by a successful returdwir f _di ename() should be freed using the
allocation typeDW DLA_STRI NGwhen no longer of interest (sdear f _deal | oc()).

5.3.6 dwarf_die abbrev_code()

int dwarf_di e_abbrev_code(Dwarf _Die die,)

The function returns the abbreviation code of the DIBat is, it returns the abbreviation "index" into the
abbreiation table for the compilation unit of which the DIE is a pdtrtannot fail. No errors are possible.
The pointerdi e() must not be NULL.

5.3.7 dwarf_attrlist()

int dwarf_attrlist(
Dwarf_Di e die,
Dwarf Attribute** attrbuf,
Dwar f _Si gned *attrcount,
Dwarf _Error *error)

When it returndW DLV_CK, the functiondwar f _attrli st () setsattrbuf to point to an array of
Dwar f _Attri but e descriptors corresponding to each of the aitéb in die, and returns the number of
elements in the array througttt r count . DW DLV_NO _ENTRY is returned if the count is zero (no
att r buf is allocated in this casePDW DLV_ERROCR is returned on errorOn a siccessful return from
dwarf _attrlist(), each of theDwarf _Attri but e descriptors should be individually freed using
dwar f _deal | oc() with the allocation typ®W DLA ATTR, followed by free-ing the list pointed to by
*at trbuf using dwar f _deal | oc() with the allocation typeDW DLA LI ST, when no longer of
interest (seewar f _deal | oc()).

Freeing the attrlist:

rev 1.72, 30 Dec 2008 -21-

-22-

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(sonmedie, &atlist,&tcnt, &error);
if (errv == DWDLV_X) {

for (i =0; i < atcnt; ++i) {

/* use atlist[i] */

dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);
}
dwarf _deal | oc(dbg, atlist, DWDLA LIST);

}
5.3.8 dwarf_hasattr()

int dwarf _hasattr(
Dwarf _Die die,
Dwarf Half attr,
Dwar f _Bool *return_bool,
Dwar f _Error *error)

When it succeeds, the functiolwar f _hasattr () returnsDW DLV_OK and sets r et ur n_bool to
non-zero if di e has the attributat t r andzero otherwise. Ifit fails, it returnsDW DLV_ERROR.

5.3.9 dwarf_attr()

int dwarf_attr(
Dwarf_Di e die,
Dwarf_ Hal f attr,
Dwarf Attribute *return_attr,
Dwarf _Error *error)

When it returns DW DLV_OK, the function dwarf_attr() sets *return_attr to the
Dwar f _Attri but e descriptor ofdi e having the attrilnte att r. It returnsDW DLV_NO_ENTRY if
at tr is not contained idi e. It returnsDW DLV _ERRORIf an error occurred.

5.3.10 dwarf_lowpc()

int dwarf | owpc(
Dwarf _Die di e,
Dwarf _Addr * return_I| owpc,
Dwarf _Error * error)

The functiondwar f _| owpc() returnsDW DLV_OK and sets‘r et ur n_| owpc to the lav program
counter value associated with tthiee descriptor ifdi e represents a debugging information entry with this
attribute. ItreturnsDW DLV_NO _ENTRY if di e does not hee tis attritute. ItreturnsDW DLV_ERROR

if an error occurred.

5.3.11 dwarf_highpc()

rev 1.72, 30 Dec 2008 -22-

-23-

i nt dwarf _hi ghpc(
Dwarf_Di e die,
Dwar f _Addr * return_highpc,
Dwarf _Error *error)

The functiondwar f _hi ghpc() returnsDW DLV_OK and sets‘r et ur n_hi ghpc the high program
counter value associated with tihiee descriptor ifdi e represents a dagging information entry with this
attribute. ItreturnsDW DLV_NO _ENTRY if di e does not hee this attritute. ItreturnsDW DLV_ERROR
if an error occurred.

5.3.12 dwarf_bytesize()

Dwar f _Si gned dwarf byt esi ze(

Dwarf _Die di e,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _byt esi ze() returnsDW DLV_OK and setsr et ur n_si ze to the number
of bytes needed to contain an instance of the gggrelebugging information entry representedibe. It
returnsDW DLV_NO _ENTRY if di e does not contain the byte size atttdbDW AT byt e si ze. It
returnsDW DLV_ERRORIf an error occurred.

5.3.13 dwarf_bitsize()

int dwarf_bitsize(
Dwarf_Di e die,
Dwarf _Unsigned *return_size,
Dwarf _Error *error)

When it succeedsiwar f _bi t si ze() returnsDW DLV_OK and set$r et ur n_si ze to the number of
bits occupied by the biidid value that is an attribute of thevgh die. It returnsDW DLV_NO_ENTRY if
di e does not contain the bit size attrib DW AT _bi t _si ze. It returnsDW DLV_ERROR if an error
occurred.

5.3.14 dwarf_bitoffset()

int dwarf_bitoffset(
Dwarf _Die die,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _bi t of f set () returnsDW DLV_OK and setér et ur n_si ze to the number
of bits to the left of the most sigiwént bit of the bit field alue. Thishit offset is not necessarily the net bit
offset within the structure or class , sirid@&/ AT _dat a_nenber | ocati on may give a lyte offset to
this DI E and the bit offset returned through the pointer does not include the bits in the fogte tf
returnsDW DLV_NO _ENTRY if di e does not contain the bit offset attite DW AT bit _of fset. It
returnsDW DLV_ERRORIf an error occurred.

5.3.15 dwarf_srclang()

rev 1.72, 30 Dec 2008 -23-

-24 -

i nt dwarf_srcl ang(
Dwarf_Di e die,
Dwar f _Unsigned *return_| ang,
Dwarf _Error *error)

When it succeedsgwar f _srcl ang() returnsDW DLV_OK and sets*return_|l ang to a code
indicating the source language of the compilation unit represented by the desdriptort returns
DW DLV_NO_ENTRY if di e does not represent a sourie lebugging information entry (i.e. contain the
attributeDW AT _| anguage). It returnsDW DLV_ERRORIf an error occurred.

5.3.16 dwarf_arrayorder()

int dwarf_arrayorder(
Dwarf _Die die,
Dwarf _Unsigned *return_order,
Dwar f _Error *error)

When it succeedgjwar f _arrayorder () returnsDW DLV_OK and sets*ret ur n_order a ode
indicating the ordering of the array represented by the descdptor It returnsDW DLV_NO_ENTRY if
di e does not contain the array order atitdeDW AT _or deri ng. It returnsDW DLV_ERROCRIf an error
occurred.

5.4 Attribute Form Queries

Based on the attriltes form, these operations are concerned with returning uninterpreted attribute data.
Since it is not alays olvious from the return value of these functions if an error occurred, one should
always supply arerror parameter or hee aranged to hee a eror handling function imoked (see

dwar f _i ni t ()) to determine the alidity of the returned value and the nature of emors that may hae
occurred.

A Dwarf_ Attribute descriptor describes an attribute of a specific die. Thus, each
Dwar f _Att ri but e descriptor is implicitly associated with a specific die.

5.4.1 dwarf_hasform()

i nt dwarf _hasforn{
Dwarf Attribute attr,
Dwarf Half form
Dwarf _Bool *return_hasform
Dwar f _Error *error)

The functiondwar f _hasf or m() returnsDW DLV_OK and andhuts anon-zero

value in the*r et urn_hasf or m boolean if the attribute represented by thearf Attri bute
descriptorat t r has the attribute formhor m If the attribute does not & that form zero is put into
*return_hasform DW DLV_ERRORIs returned on error.

5.4.2 dwarf_whatform()

i nt dwarf_what f orm(
Dwarf _Attribute attr,
Dwar f _Hal f *return_form
Dwarf _Error *error)

When it succeedsiwar f _what f or () returnsDW DLV_OK and sets$ r et ur n_f or mto the attrilnte

rev 1.72, 30 Dec 2008 -24 -

-25-

form code of the attrite represented by th®warf Attri bute descriptorattr. It returns
DW DLV_ERROR on error An atribute using DW_FORM_indirect fefctively has two forms. This
function returns the ‘final’ form foDW FORM i ndi r ect , not the DW FORM i ndi r ect itself. This
function is what most applications will want to call.

5.4.3 dwarf_whatform_direct()

int dwarf_whatformdirect(
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwar f _Error *error)

When it succeedgjwar f _what form direct () returnsDW DLV_OK and sets'ret urn_f ormto
the attribute form code of the attribute represented byDtker f _Attri but e descriptorattr. It
returns DW DLV_ERROR on error An atribute usingDW FORM i ndi r ect effectively has two forms.
This returns the forndirectly’ in the initial form feld. Sowhen the form field iDW FORM i ndi r ect

this call returns th&W FORM i ndi r ect form, which is sometimes useful for dump utilities.

5.4.4 dwarf_whatattr ()

int dwarf_whatattr(
Dwarf Attribute attr,
Dwar f _Hal f *return_ attr,
Dwarf _Error *error)

When it succeedsiwar f _what attr () returnsDW DLV_OK and setgret urn_at tr to the attrilute
code represented by tbear f _At t ri but e descriptorat t r. It returns DW DLV_ERROR on error.

5.4.5 dwarf_formref()

int dwarf _fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwar f _Error *error)

When it succeedgjwar f _fornref () returnsDW DLV_COK and sets'ret ur n_of f set to the CU-
relative dfset represented by the descripaott r if the form of the attribte belongs to thREFERENCE
class.att r must be a CU-local reference, not fobw FORM r ef _addr . Itis an eror for the form to
not belong to this class or to be foldV FORM r ef _addr . It returnsDW DLV_ERROR on error See
alsodwar f _gl obal _f ornref below.

5.4.6 dwarf_global formref()

i nt dwarf _gl obal _fornref(
Dwarf Attribute attr,
Dwarf_ O f *return_of fset,
Dwarf _Error *error)

When it succeedsiwar f _gl obal _fornref () returnsDW DLV_OK and setsr et urn_of f set to
the .delng_info-section-relate dfset represented by the descriptdrt r if the form of the attribte
belongs to theREFERENCE class. attr can be ay legd REFERENCE class form including
DW FORM r ef _addr . Itis an eror for the form to not belong to this clads.returnsDW DLV_ERROR
on error See alsalwar f _f or nr ef above.

rev 1.72, 30 Dec 2008 -25-

-26 -

5.4.7 dwarf_formaddr()

i nt dwarf _fornaddr(
Dwarf Attribute attr,
Dwar f _Addr * return_addr,
Dwar f _Error *error)

When it succeedsiwar f _f or maddr () returnsDW DLV_OK and set$r et ur n_addr to the address
represented by the descriptdrt r if the form of the attribte belongs to thADDRESS class. lItis an error
for the form to not belong to this class. It retubW DLV_ERRCR on error.

5.4.8 dwarf_formflag()

int dwarf_fornflag(
Dwarf Attribute attr,
Dwarf _Bool * return_bool,
Dwarf _Error *error)

When it succeedsiwar f _f ornfl ag() returnsDW DLV_OK and setgr et ur n_bool 1 (i.e. true) (if
the attribute has a non-zero value) @r(i.e. false) (if the attribute has a zeralwe). It returns
DW DLV_ERRORonN error or if theat t r does not hae form flag.

5.4.9 dwarf_formudata()

i nt dwarf _fornudata(
Dwarf Attribute attr,
Dwarf _Unsigned * return_uval ue,
Dwar f _Error * error)

The function dwarf fornmudata() returns DWDLV_OK and sets*return_uval ue to the
Dwar f _Unsi gned vaue of the attribute represented by the descriatdrr if the form of the attribte
belongs to theCONSTANT class. Itis an error for the form to not belong to this class.returns
DwW DLV_ERROR 0N error.

5.4.10 dwarf_formsdata()

i nt dwarf_fornsdat a(
Dwarf Attribute attr,
Dwarf _Signed * return_sval ue,
Dwarf _Error *error)

The function dwarf _formsdata() returns DWDLV_OK and sets*return_sval ue to the
Dwar f _Si gned value of the attribte represented by the descriptdrt r if the form of the attribte
belongs to th&CONSTANT class. Itis an error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size dile f _Si gned type, its value is signxéended. It
returnsDW DLV_ERRCR on error.

5.4.11 dwarf_formblock()

int dwarf _fornbl ock(
Dwarf Attribute attr,
Dwarf Bl ock ** return_bl ock,
Dwar f _Error * error)

rev 1.72, 30 Dec 2008 -26-

-27-

The functiondwar f _f or nbl ock() returnsDW DLV_OK and setsr et ur n_bl ock to a pointer to a
Dwar f _Bl ock structure containing the value of the attribute represented by the desatiptorif the
form of the attribute belongs to tlB OCK class. Itis an error for the form to not belong to this clashe
storage pointed to by a successful returnlwér f _f or nbl ock() should be freed using the allocation
type DW DLA BLOCK, when no longer of interest (seelwarf_dealloc()). It returns
DW DLV_ERROR 0N error.

5.4.12 dwarf_formstring()

int dwarf_fornstring(
Dwarf Attribute attr,
char ** return_string,
Dwar f _Error *error)

The functiondwar f _f or nstri ng() returnsDW DLV_OK and set$ret urn_stri ng to a pointer to
a rull-terminated string containinghe value of the attribute represented by the desciaptor if the form
of the attrilute belongs to th&TRI NG class. Itis an error for the form to not belong to this clagée
storage pointed to by a successful returdwér f _f ornstri ng() should not be freed. The pointer
points into existing BWARF memory and the pointer becomes staldlith after a call to
dwarf _finish. dwarf_fornstring() returnsDW DLV_ERRCRon error.

5.4.12.1 dwarf_loclist_n()

int dwarf _loclist_n(
Dwarf Attribute attr,
Dwar f _Locdesc ***| | buf,
Dwarf _Signed *listlen,
Dwarf Error *error)

The functiondwar f _| ocl i st_n() sets*| | buf to point to an array obwar f _Locdesc pointers
corresponding to each of the location expressions in a location list, artd setsl en to the number of
elements in the array and retu\ DLV_CKif the attribute is appropriate.

This is the preferred function for Dwarf_Locdesc as it is the interfaceiaticaccess to an entire loclist.
(use ofdwarf | oclist_n() is suggested as the better interface, thaghr f | ocl i st () is still
supported.)

If the attribute is a reference to a location list (DW_FORM_data4 or DW_FORM_data8) the location list
entries are used to fill in all the fields of thear f _Locdesc(s) returned.

If the attritute is a location description (DW_FORM_block2 or DW_FORM_block4) then some of the
Dwar f _Locdesc vaues of the singl®war f _Locdesc record are set to 'sensibletibarbitrary alues.
Specifically Id_lopc is set to 0 and Id_hipc is set to all-bits-on. Ahdst | en is set to 1.

It returns DW DLV_ERROR on error dwarf loclist _n() works on DWAT |ocation,
DW AT dat a_nenber | ocati on, DW AT vtabl e el em | ocati on,
DW AT string | ength, DWAT use_ | ocati on,andDW AT return_addr attributes.

Storage allocated by a successful caliwér f _| ocl i st_n() should be deallocated when no longer of
interest (sealwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thied_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation yeDLA LOC BLOCK.
and thel | buf [] space pointed to should be deallocated with allocation@ygéLA LOCDESC. This
should be followed by deallocation of thebuf using the allocation typewW DLA LI ST.

rev 1.72, 30 Dec 2008 -27 -

-28 -

Dwar f _Si gned | cnt;
Dwar f _Locdesc **I | buf;
int lres;

Ires = dwarf_loclist_n(soneattr, & |buf, & cnt &error);
if (lres == DWDLV_X) {
for (i =0; i <lecnt; ++i) {
/* use Ilbuf[i] */

dwar f _deal | oc(dbg, Ilbuf[i]->d_s, DWDLA LOC BLOCK);
dwar f _deal | oc(dbg, |1 buf[i], DWDLA LOCDESC);

}
dwar f _deal | oc(dbg, |l buf, DWDLA LIST);

5.4.12.2 dwarf_loclist()

int dwarf_loclist(
Dwarf Attribute attr,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The functiondwar f _| ocl i st () sets*| | buf to point to aDwar f _Locdesc pointer for the single
location expression it can return. It sétsi stlen to 1. and return®W DLV_X if the attribute is
appropriate.

It is less flexible thardwar f _| ocl i st _n() in thatdwarf _| ocli st () can handle a maximum of
one location expression, not a full location list. If a location-list is present it returns onlgstHedation-
list entry location description. Ushwar f _| ocl i st _n() instead.

It returns DWDLV_ERROR on error dwarf_loclist() works on DWAT | ocation,
DW AT dat a_nenber | ocati on, DW AT vtabl e_el em | ocati on,
DW AT _string_I| engt h, DWAT use_| ocati on,andDW AT_r et ur n_addr attributes.

Storage allocated by a successful caldear f _| ocli st () should be deallocated when no longer of
interest (seelwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thied_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HypeDLA LOC BLOCK.
This should be followed by deallocation of thebuf using the allocation typBW DLA L OCDESC.

rev 1.72, 30 Dec 2008 -28-

-29 -

Dwar f _Si gned | cnt;
Dwar f _Locdesc *I | buf;
int lres;

Ires = dwarf_loclist(soneattr, & |buf, & cnt, &error);
if (lres == DWDLV_X) {
/* lcnt is always 1, (and has al ways been 1) */ */

/* Use || buf here. */

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

uf->ld_s, DWDLA LOC BLOCK);

I1b
Il buf, DWDLA LOCDESC);

/* Earlier version.

* for (i =0; i <lcnt; ++i) {

* /[* use |lbuf[i] */

*

* /* Deallocate Dwarf_Loc block of Ilbuf[i] */

* dwarf _deal | oc(dbg, Ilbuf[i].ld_s, DWDLA LOC BLOCK);
* }

* dwar f _deal | oc(dbg, |Ibuf, DWDLA LOCDESC);

*/

}

5.4.12.3 dwarf_loclist_from_expr()

int dwarf_loclist_fromexpr(
Dwarf _Ptr bytes_in,
Dwar f _Unsi gned bytes_I en,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The functiondwar f _| ocl i st _from expr () sets*| | buf to point to abwar f _Locdesc pointer
for the single locationx@ression which is pointed to Byt es_i n (whose length isbyt es_I| en). It
sets*listlen to 1. and return&W DLV_X if decoding is successfulSome sources of bytes of
expressions are dwarf expressions in frame operations DWW CFA def cfa_expression,
DW CFA expressi on, and DW CFA _val _expressi on.

It returnsDW DLV_ERROR on error.

Storage allocated by a successful callefir f _| ocl i st _from expr () should be deallocated when
no longer of interest (sedwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by the

| d_s field of eachDwarf_Locdesc structure should be deallocated with the allocation type
DW DLA LOC BLQOCK. This should be followed by deallocation of thebuf using the allocation type
DW DLA_LOCDESC.

rev 1.72, 30 Dec 2008 -29-

-30-

Dwar f _Si gned | cnt;

Dwar f _Locdesc *I | buf;

int lres;

/* Exanmple with an enpty buffer here. */
Dwarf Ptr data = "";

Dwar f _Unsi gned len = 0;

Ires = dwarf_loclist_fromexpr(data,len, & Ibuf,& cnt, &error);
if (lres == DWDLV_X) {
/* lcnt is always 1 */

/* Use || buf here.*/

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

uf->ld_s, DWDLA LOC BLOCK);

I1b
Il buf, DWDLA LOCDESC);

5.5 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging information entry
objects to their corresponding source lines, and providing a mechanism for obtaining information about line
number entries. Although, the intacke talks of "lines" what is really meant is "statements". In case there

is more than one statement on the same line, there will be at least one descriptor per statement, all with the
same line numberlf column number is also being represented thél have the column numbers of the

start of the statements also represented.

There can also be more than one Dwarf_Line per staterfentexample, if a fle is preprocessed by a
language translatpthis could result in translator output shing 2 or more sets of line numbers per
translated line of output.

55.1 Get A Set of Lines

The function returns information abouwegy source line for a particular compilation-unifThe
compilation-unit is specified by the corresponding die.

55.1.1 dwarf_srclines()

int dwarf_srclines(
Dwarf_Di e die,
Dwarf _Line **|i nebuf,
Dwar f _Si gned *1inecount,
Dwarf _Error *error)

The functiondwar f _srcl i nes() places all line number descriptors for a single compilation unit into a
single block, set§l i nebuf to point to that block, setd i necount to the number of descriptors in this
block and return©W DLV_OK. The compilation-unit is indicated by theven di e which must be a
compilation-unit die. It returnBW DLV_ERROR on error On successful return, line number information
should be freed usindwar f _srcl i nes_deal | oc() when no longer of interest.

rev 1.72, 30 Dec 2008 -30-

-31-

Dwar f _Si gned cnt;
Dwarf _Line *Iinebuf;
int sres;

sres = dwarf_srclines(sonedie, & inebuf,&nt, &error);
if (sres == DWDLV_X) {
for (i =0; i <cnt; ++i) {
/* use linebuf[i] */
}

dwar f _srclines_deal | oc(dbg, |inebuf, cnt);

The folloving dealloc code (the only documented method before July 2005) still works, but does not
completely free all data allocatedhe dwar f _srcl i nes_deal | oc() routine was created to fix the
problem of incomplete deallocation.

Dwar f _Si gned cnt;
Dwarf _Line *linebuf;
int sres;

sres = dwarf_srclines(sonedie, & inebuf,&nt, &error);
if (sres == DWDLV_X) {
for (i =0; i <cnt; ++i) {
/* use linebuf[i] */
dwarf _deal | oc(dbg, linebuf[i], DWDLA LINE);

}
dwar f _deal | oc(dbg, |inebuf, DWDLA LIST);

5.5.2 Get the set of Source File Names

The function returns the names of the source files theg @mntributed to the compilation-unit represented
by the gven DIE. Onlythe source files named in the statement program prologue are returned.

int dwarf_srcfiles(
Dwarf _Die die,
char ***srcfil es,
Dwar f _Si gned *srccount,
Dwarf Error *error)

When it succeeddwar f _srcfil es() returnsDW DLV_CK and puts the number of source files named
in the statement program prologue indicated by thiengdi e into * sr ccount . Source files defined in

the statement program are ignorékhe given di e should hae the tagDW TAG conpi l e_unit. The
location pointed to bgr cfi | es is set to point to a list of pointers to null-terminated strings that name the
source fles. Ona auccessful return from this function, each of the strings returned should tiel uradliy

freed usingdwar f _deal | oc() with the allocation typ®W DLA STRI NG when no longer of interest.
This should be follwed by free-ing the list usinglwarf _deal | oc() with the allocation type

DW DLA LI ST. It returnsDW DLV_ERROR on error It returnsDW DLV_NO _ENTRY if there is no
corresponding statement program (i.e., if there is no line information).

rev 1.72, 30 Dec 2008 -31-

-32-

Dwar f _Si gned cnt;
char **srcfil es;
int res;

res = dwarf_srcfil es(sonedie, &srcfiles,&nt &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {

/* use srcfiles[i] */

dwarf _deal | oc(dbg, srcfiles[i], DWDLA STRING;
}
dwar f _deal | oc(dbg, srcfiles, DWDLA LIST);

}

5.5.3 Get information about a Single Table Line

The following functions can be used on thear f _Li ne descriptors returned tgwar f _srcl i nes()
to obtain information about the source lines.

5.5.3.1 dwarf_linebeginstatement()

int dwarf _|inebegi nstatenent(
Dwar f _Li ne |ine,
Dwar f _Bool *return_bool,
Dwarf Error *error)

The functiondwar f _| i nebegi nst at enent () returnsDW DLV_OK and sets*r et urn_bool to
non-zero (if | i ne represents a line number entry that is marked as beginning a stateorers)o ((if

i ne represents a line number entry that is not marked as beginning a statement). It returns
DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

5.5.3.2 dwarf_lineendsequence()

int dwarf_|ineendsequence(
Dwar f _Li ne |ine,
Dwar f _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i neendsequence() returnsDW DLV_OK and setsr et ur n_bool non-zero

(in which casd i ne represents a line number entry that is radrlas ending a text sequenceyap (in

which casd i ne represents a line number entry that is not marked as ending a text sequehice).
number entry that is marked as endingx $equence is an entry with an address one beyond the highest
address used by the current sequence of line table entries (that is, the table entry is a
DW_LNE_end_sequence entry (see thARF specification)).

The function dwar f _| i neendsequence() returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.5.3.3 dwarf_lineno()

int dwarf _lineno(
Dwar f _Li ne l'ine,
Dwar f _Unsigned * returned_Iineno,
Dwar f _Error * error)

rev 1.72, 30 Dec 2008 -32-

-33-

The functiondwarf _| i neno() returnsDW DLV_OK and sets*return_li neno to the source
statement line number corresponding to the descriptore. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO _ENTRY.

5.5.3.4 dwarf_line_srcfileno()

int dwarf_line_srcfileno(
Dwar f _Li ne line,
Dwar f _Unsigned * returned_fil eno,
Dwar f _Error * error)

The functiondwar f _| i ne_srcfil eno() returnsDW DLV_COK and set$ret urned_fil eno to the
source statement line number corresponding to the desdripta nurber . When the number returned
through*r et ur ned_fi | eno is zero it means thelé name is unknown (see thaABRF2/3 line table
specifcation). Whenthe number returned throudi et ur ned_f i | eno is non-zero it is a file number:
subtract 1 from this file number to get an ixdeto the array of strings returned twar f _srcfil es()
(verify the resulting indeis in range for the array of strings before indexing into the array of strifde.
file number may »xeed the size of the array of strings returneddimar f _srcfil es() because
dwarf _srcfil es() does not return files names defined with thé&/ DLE_defi ne_fi | e operator.
The function dwarf _|ine_srcfil eno() returns DWDLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

5.5.3.5 dwarf_lineaddr ()

int dwarf _|ineaddr(
Dwar f _Li ne l'ine,
Dwarf _Addr *return_lineaddr,
Dwar f _Error *error)

The functiondwar f _| i neaddr () returnsDW DLV_OK and set$ret urn_| i neaddr to the address
associated with the descriptdri ne. It returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.5.3.6 dwarf_lineoff()

int dwarf _|ineoff(
Dwarf _Line |ine,
Dwar f _Si gned * return_Ilineoff,
Dwar f _Error *error)

The functiondwar f _| i neof f () returnsDW DLV_K and sets‘ret urn_I| i neof f to the column
number at which the statement represented ibye begins. It setsreturn_| i neof f to -1 if the

column number of the statement is not represented (meaning the producer library calewasrgias the
column number).

On error it return®W DLV_ERROR. It neve returnsDW DLV_NO _ENTRY.

5.5.3.7 dwarf_linesrc()

int dwarf _|inesrc(
Dwarf _Line |ine,
char ** return_linesrc,
Dwarf Error *error)

The functiondwar f _| i nesrc() returnsDW DLV_OK and set$return_| i nesrc to a pointer to a

rev 1.72, 30 Dec 2008 -33-

-34 -

null-terminated string of characters that represents the name of the sleumbdrel i ne occurs. It
returnsDW DLV_ERRCR on error.

If the applicableife name in the line table Statement Program Prolog does not start with a '/’ character the
string in DW AT_conp_di r (if applicable and present) or the applicable directory name from the line
Statement Program Prolog is prepended to the file name in the line table Statement Program Protg to mak
a full path.

The storage pointed to by a successful returndegarf |inesrc() should be freed using
dwar f _deal | oc() with the allocation typeDW DLA STRI NG when no longer of interest. It v
returnsDW DLV_NO _ENTRY.

5.5.3.8 dwarf_lineblock()

int dwarf_I|inebl ock(
Dwarf_Line |ine,
Dwar f _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i nebl ock() returnsDW DLV_CK and sets‘return_| i nesrc to non-zero
(i.e. true)(if the line is marked as beginning a basic block) or zero (i.e. false) (if the line edraarkot
beginning a basic block). It returi®V DLV_ERRORon error It neve returnsDW DLV_NO_ENTRY.

5.6 Global Name Space Oper ations

These operations operate on the .debug_pubnames section of the debugging information.

5.6.1 Debugger Interface Operations

5.6.1.1 dwarf_get_globals()

i nt dwarf_get gl obal s(
Dwar f _Debug dbg,
Dwar f _d obal **gl obal s,
Dwar f _Si gned * return_count,
Dwarf _Error *error)

The functiondwar f _get _gl obal s() returnsDW DLV_OK and set$ r et ur n_count to the count of
pubnames represented in the section containing pubnames i.ag_pebnames. lalso stores at
*gl obal s, a pointer to a list ofbwar f _Qd obal descriptors, one for each of the pubnames in the
.delug_pubnames sectioflhe returned results are for the entire section. It retDvld<DLV_ ERROR on
error. It returnsDW DLV_NO_ENTRY if the .debug_pubnames section does not exist.

On a successful return frodwar f _get _gl obal s(), theDwar f _G obal descriptors should be freed
usingdwar f _gl obal s_deal | oc() . dwarf_gl obal s_deal | oc() is nav as of dily 15, 2005 and
is the preferred approach to freeing this memory..

rev 1.72, 30 Dec 2008 -34 -

-35-

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf_get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use globs[i] */
}
dwar f _gl obal s_deal | oc(dbg, globs, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as it ver did. On a wccessful return fromdwar f _get gl obal s(), the
Dwar f _d obal descriptors should be individually freed usihgar f _deal | oc() with the allocation
type DW DLA GLOBAL_CONTEXT, (or DW DLA GLOBAL, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation tgéDLA LI ST when the descriptors
are no longer of interest.

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf_get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use globs[i] */
dwarf _deal | oc(dbg, globs[i], DWDLA G.-OBAL_CONTEXT);

}
dwar f _deal | oc(dbg, gl obs, DWDLA LIST);

5.6.1.2 dwarf_globname()

i nt dwarf_gl obnanme(
Dwar f _d obal gl obal,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _gl obname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the pubname represented bying G obal descriptor,gl obal .

It returnsDW DLV_ERROR on error On a successful return from this function, the string should be freed
usingdwar f _deal | oc(), with the allocation typddW DLA_ STRI NG when no longer of interestit
never returnsDW DLV_NO_ENTRY.

5.6.1.3 dwarf_global_die_offset()

rev 1.72, 30 Dec 2008 -35-

-36 -

i nt dwarf_gl obal die_offset(
Dwar f _d obal gl obal,
Dwarf O f *return_of fset,
Dwarf _Error *error)

The functiondwar f _gl obal _di e_of f set () returnsDW DLV_CK and setsr et urn_of f set to

the ofset in the section containing DIEs, i.e. .debug_info, of the DIE representing the pubname that is
described by th®war f _G obal descriptorgl ob. It returnsDW DLV_ERRCR on error It neve returns

DW DLV_NO_ENTRY.

5.6.1.4 dwarf_global_cu_offset()

i nt dwarf_gl obal cu_offset(
Dwar f _d obal gl obal,
Dwarf_ O f *return_of fset,
Dwarf _Error *error)

The functiondwar f _gl obal _cu_of f set () returnsDW DLV_OK and setgr et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the pubname described by Eerf G obal descriptor, gl obal . It returns

DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

5.6.1.5 dwarf_get_cu_die offset_given_cu_header_offset()

int dwarf_get cu _die offset given _cu_header_ offset(
Dwar f _Debug dbg,
Dwar f O f i n_cu_header _of fset,
Dwarf Of * out_cu_die offset,
Dwar f _Error *error)

The functiondwar f _get cu_di e_of fset _gi ven_cu_header _of fset () returnsDW DLV_COK
and sets*out cu_di e offset to the offset of the compilation-unit DIE wgh the ofset
i n_cu_header of f set of a compilation-unit headeit returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO_ENTRY.

This efectively turns a compilation-unit-header offset into a compilation-unit DIE offset (by adding the
size of the applicable CU header). This function is also sometimes useful with the
dwarf_weak cu offset(), dwarf _func_cu offset(), dwarf _type cu offset(), and

int dwarf_var_cu_of fset () functions.

dwarf _get cu_di e _offset given _cu_header offset() added Re 1.45, June, 2001.
This function is declared as 'optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT

predicate may be used at run time to determine if ¢éhgion of libdwarf linked into an application has this
function.

5.6.1.6 dwarf_global_name offsets()

rev 1.72, 30 Dec 2008 -36 -

-37-

i nt dwarf_gl obal _name_of f set s(
Dwar f _d obal gl obal,
char **return_narme,
Dwarf O f *die_offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The functiondwar f _gl obal _nane_of f set s() returnsDW DLV_OK and set$r et urn_nane to a
pointer to a null-terminated string thaveg the name of the pubname described byDivar f _G obal
descriptorgl obal . It returnsDW DLV_ERROR on error It neve returnsDW DLV _NO _ENTRY. It aso
returns in the locations pointed to 8iye_of f set , and cu_of f set , the offsets of the DIE representing
the pubname, and the DIE representing the compilation-unit containing the pubname,vebsp€ii a
successful return frordwar f _gl obal _nane_of f set s() the storage pointed to byet ur n_name
should be freed usindgwar f _deal | oc(), with the allocation typ®W DLA STRI NG when no longer
of interest.

5.7 DWARF3 Type Names Oper ations
Section ".debug_pubtypes" issmen DWARF3.

These functions operate on the .debug pubtypes section of the debugging infornigtien.
.delug_pubtypes section contains the namesl®fstope usedefined types, the offsets of th# Es that
represent the definitions of those types, and tfeetsf of the compilation-units that contain theirdébns
of those types.

5.7.1 Debugger Interface Operations

5.7.1.1 dwarf_get_pubtypes()

int dwarf_get pubtypes(
Dwar f _Debug dbg,
Dwar f _Type **types,
Dwar f _Si gned *typecount,
Dwarf _Error *error)

The functiondwar f _get pubt ypes() returnsDW DLV_CK and sets't ypecount to the count of
user-dehed type names represented in the section containing-deteed type names, i.e.
.delug_pubtypes. lalso stores att ypes, a pointer to a list ofbwar f _Pubt ype descriptors, one for

each of the usetefined type names in the .debug_pubtypes section. The returned results are for the entire
section. ItreturnsDW DLV_NOCOUNT on error It returnsDW DLV_NO_ENTRY if the .delug_pubtypes
section does not exist.

On a successful return frodwar f _get _pubt ypes(), theDwar f _Type descriptors should be freed
using dwarf_types_deal |l oc(). dwar f _types_deal | oc() is used for both
dwar f _get pubt ypes() anddwarf_get types() asthe data types are the same.

rev 1.72, 30 Dec 2008 -37 -

-38 -

Dwar f _Si gned cnt;
Dwar f _Pubt ype *types;
int res;

res = dwarf_get_ pubtypes(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use types[i] */
}
dwarf _types_deal | oc(dbg, types, cnt);

5.7.1.2 dwarf_pubtypename()

i nt dwarf_pubt ypename(
Dwar f _Pubt ype type,
char **return_narme,
Dwarf _Error *error)

The functiondwar f _pubt ypename() returnsDW DLV_OK and set$ r et ur n_nane to a pointer to a
null-terminated string that names the wdefned type represented by tBmar f _Pubt ype descriptor,
type. It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a siccessful
return from this function, the string should be freed usingr f _deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

5.7.1.3 dwarf_pubtype die offset()

int dwarf_pubtype die offset(
Dwar f _Pubt ype type,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _pubt ype_di e_of f set () returnsDW DLV_COK and set$ret urn_of f set to
the offset in the section containing DIEs, i.e. .debug_info, of the DIE representing tuefuss type that
is described by th&war f _Pubt ype descriptor,t ype. It returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO_ENTRY.

5.7.1.4 dwarf_pubtype cu_offset()

int dwarf_pubtype cu_of fset(
Dwar f _Pubt ype type,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _pubt ype_cu_of f set () returnsDW DLV_OK and setsret urn_of f set to

the ofset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the
compilation-unit that contains the usafined type described by tliaar f _Pubt ype descriptort ype.

It returnsDW DLV_ERRCR on error It neve returnsDW DLV_NO_ENTRY.

5.7.1.5 dwarf_pubtype_name_offsets()

rev 1.72, 30 Dec 2008 -38-

-39 -

i nt dwarf_pubtype_name_of f set s(
Dwar f _Pubt ype type,
char ** returned_nane,
Dwarf O f * die_offset,
Dwarf O f * cu_offset,
Dwarf _Error *error)

The functiondwar f _pubt ype_nane_of f set s() returnsDW DLV_COK and set$r et ur ned_nane

to a pointer to a null-terminated string thavegi the name of the uselefined type described by the
Dwar f _Pubt ype descriptort ype. It also returns in the locations pointed to 8ye_of f set, and
cu_of f set, the offsets of the DIE representing the useined type, and the DIE representing the
compilation-unit containing the usdefined type, respestdly. It returnsDW DLV_ERROR on error It
never returns DW DLV_NO _ENTRY. On a siccessful return from
dwar f _pubt ype_nane_of f set s() the storage pointed to hyet ur ned_name should be freed
usingdwar f _deal | oc() , with the allocation typ®W DLA_ STRI NGwhen no longer of interest.

5.8 User Defined Static Variable Names Oper ations
This section is SGI specific and is not part of standaM\RF version 2.

These functions operate on the ugbarnames section of the deging information. The
.debug_warnames section contains the names of file-scope static variables, the offsetDioEghibat
represent the digfitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

5.9 Weak Name Space Oper ations
These operations operate on the .debug_weaknames section of the debugging information.

These operations are SGI specific, not part of standadiRF.

5.9.1 Debugger Interface Operations

5.9.1.1 dwarf_get weaks()

int dwarf_get weaks(
Dwar f _Debug dbg,
Dwar f _Weak **weaks,
Dwar f _Si gned *weak_count,
Dwar f _Error *error)

The functiondwar f _get weaks() returnsDW DLV_OK and set$ weak count to the count of weak
names represented in the section containing weak names i.eug_.deaknames. Itreturns
DW DLV_ERROR on error It returnsDW DLV_NO _ENTRY if the section does nokist. It also stores in
*weaks, a pointer to a list ofDwar f _Weak descriptors, one for each of the weak names in the
.debug_weaknames section. The returned results are for the entire section.

On a successful return from this function, tBearf Weak descriptors should be freed using
dwar f _weaks_deal | oc() when the data is no longer of interestwar f _weaks_deal | oc() is
new as of dily 15, 2005.

rev 1.72, 30 Dec 2008 -39-

-40 -

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;
int res;

res = dwarf_get weaks(dbg, &weaks, &cnt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use weaks[i] */
}

dwar f _weaks_deal | oc(dbg, weaks, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did. Ona auccessful return frordwar f _get _weaks() the Dwar f _Weak
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA WEAK CONTEXT, (or DW DLA WEAK, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;
int res;

res = dwarf_get weaks(dbg, &weaks, &cnt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use weaks[i] */
dwar f _deal | oc(dbg, weaks[i], DWDLA WEAK CONTEXT);

}
dwar f _deal | oc(dbg, weaks, DWDLA LI ST);

5.9.1.2 dwarf_weakname()

i nt dwarf_weaknane(
Dwar f _Weak weak,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _weakname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the weak name represented bywdané Weak descriptorweak. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

rev 1.72, 30 Dec 2008 - 40 -

-41 -

int dwarf_weak _die_of fset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _weak_di e_of f set () returnsDW DLV_OK and setsr et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the weak name that is
described by th®war f _Weak descriptorweak. It returnsDW DLV_ERRCR on error It neve returns

DW DLV_NO_ENTRY.

5.9.1.3 dwarf_weak_cu_offset()

int dwarf_weak_cu_offset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _weak_cu_of f set () returnsDW DLV_OK and sets‘r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the weak name described by @warf_ \Weak descriptor, weak. It returns

DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

5.9.1.4 dwarf_weak _name offsets()

int dwarf_weak nane_of f set s(
Dwar f _Weak weak,
char ** weak_nane,
Dwarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwar f _weak name_of fset s() returns DW DLV_OK and sets*weak nane to a

pointer to a null-terminated string thaves the name of the weak name described byDiher f _Weak
descriptorweak. It aso returns in the locations pointed to tye of f set, and cu_of f set, the

offsets of the DIE representing the weakname, and the DIE representing the compilation-unit containing the
weakname, respeedly. It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On

a aiccessful return fromdwar f _weak name_of f set s() the storage pointed to byweak nane

should be freed usingwar f _deal | oc(), with the allocation typ®W DLA STRI NG when no longer

of interest.

5.10 Static Function Names Operations
This section is SGI specific and is not part of standaM\RF version 2.

These function operate on the .debug_funcnames section of thgggdeb information. The
.delug_funcnames section contains the names of static functioimedldéf the object, the offsets of the
Dl Es that represent the definitions of the corresponding functions, and féetsobf the start of the
compilation-units that contain the definitions of those functions.

5.10.1 Debugger Interface Operations

5.10.1.1 dwarf_get_funcs()

rev 1.72, 30 Dec 2008 -41 -

=42 -

int dwarf_get funcs(
Dwar f _Debug dbg,
Dwarf _Func **funcs,
Dwar f _Si gned *func_count,
Dwarf _Error *error)

The functiondwar f _get _funcs() returnsDW DLV_OK and set$ f unc_count to the count of static
function names represented in the section containing static function names, ug. faetnames. llso
stores, at f uncs, a inter to a list oDwar f _Func descriptors, one for each of the static functions in
the .debug_funcnames section. The returned results are for the entire skctturnsDW DLV _ERROR

on error It returnsDW DLV_NO_ENTRY if the .debug_funcnames section does not exist.

On a successful return frodwar f _get _funcs(), theDwar f _Func descriptors should be freed using
dwarf _funcs_deal | oc(). dwarf _funcs_deal | oc() is nev as of dily 15, 2005.

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

fres = dwarf_get funcs(dbg, &funcs, &cnt, &error);
if (fres == DWDLV_XK) {

for (i =0; i <cnt; ++i) {
/* use funcs[i] */
}

dwarf _funcs_deal | oc(dbg, funcs, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did. Ona successful return frordwar f _get _f uncs(), theDwar f _Func
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA FUNC_CONTEXT, (or DW DLA FUNC, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

fres = dwarf_get _funcs(dbg, &funcs, &error);
if (fres == DWDLV_XK) {

for (i =0; i <ecnt; ++i) {
/* use funcs[i] */
dwar f _deal | oc(dbg, funcs[i], DWDLA FUNC CONTEXT);

}
dwar f _deal | oc(dbg, funcs, DWDLA LIST);

rev 1.72, 30 Dec 2008 -42 -

-43-

5.10.1.2 dwarf_funcname()

i nt dwarf_funcnanme(
Dwar f _Func func,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _f uncname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the static function represented Byéing _Func descriptorf unc. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

5.10.1.3 dwarf_func_die offset()

int dwarf_func_di e offset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _func_di e_of f set (), returnsDW DLV_OK and setgr et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the static function that is
described by thé&war f _Func descriptor,f unc. It returnsDW DLV_ERRCR on error It neve returns

DW DLV_NO_ENTRY.

5.10.1.4 dwarf_func_cu_offset()

int dwarf_func_cu_offset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _func_cu_of fset () returnsDW DLV_OK and sets r et urn_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the static function described by Bw&rf Func descriptor,func. It returns

DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

5.10.1.5 dwarf_func_name_offsets()

int dwarf_func_name_of f set s(
Dwar f _Func func,
char **func_nane,
Dwarf O f *di e offset,
Dwarf O f *cu_of fset,
Dwarf Error *error)

The functiondwarf func_name_of fsets() returns DW DLV_OK and sets*f unc_nane to a
pointer to a null-terminated string thaveg the name of the static function described byDhar f _Func
descriptorf unc. It aso returns in the locations pointed to tiye of f set, and cu_of f set, the

offsets of the DIE representing the static function, and the DIE representing the compilation-unit containing
the static function, respeedly. It returns DW DLV _ERROR on error It neve returns

DW DLV_NO ENTRY. On a successful return frondwarf func_nane_of f set s() the storage
pointed to by func_nane should be freed usinglwarf deal | oc(), with the allocation type

DW DLA_STRI NGwhen no longer of interest.

rev 1.72, 30 Dec 2008 -43 -

-44 -

5.11 User Defined Type Names Oper ations

Section "debug_typenames" is SGI specdind is not part of standardNMARF version 2.(However, an
identical section is part of\BARF version 3 named ".debug_pubtypes", dear f _get pubt ypes()
above)

These functions operate on the uwghtypenames section of the debugging informatidrhe
.delug_typenames section contains the names of file-scopeleerd types, the tdets of theDl Es that
represent the definitions of those types, and tfeetsf of the compilation-units that contain theirdébns
of those types.

5.11.1 Debugger Interface Operations

5.11.1.1 dwarf_get_types()

int dwarf_get _types(
Dwar f _Debug dbg,
Dwar f _Type **types,
Dwar f _Si gned *typecount,
Dwarf _Error *error)

The functiondwar f _get _t ypes() returnsDW DLV_OK and sets't ypecount to the count of user
defined type names represented in the section containingle®ed type names, i.e. .dalp typenames.

It also stores att ypes, a pointer to a list oDwar f _Type descriptors, one for each of the udefined
type names in the .debug_typenames sectidmre returned results are for the entire section. It returns
DW DLV_NOCOUNT on error It returnsDW DLV_NO_ENTRY if the .debug_typenames section does not
exist.

On a successful return frodwar f _get _t ypes(), theDwar f _Type descriptors should be freed using
dwarf _types_deal l oc(). dwarf_types_deal | oc() is nev as of dily 15, 2005 and frees all
memory allocated bgiwar f _get _types().

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get _types(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use types[i] */
}
dwarf _types_deal | oc(dbg, types, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did. Ona auccessful return fromdwar f _get _t ypes(), theDwarf _Type
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA TYPENAME_CONTEXT, (or DW DLA TYPENAME, an dder name, supported for compatibility)

rev 1.72, 30 Dec 2008 -44 -

-45 -

followed by the deallocation of the list itself with the allocation tgéDLA LI ST when the descriptors
are no longer of interest.

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get _types(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use types[i] */
dwar f _deal | oc(dbg, types[i], DWDLA TYPENAME CONTEXT);

}
dwar f _deal | oc(dbg, types, DWDLA LIST);

5.11.1.2 dwarf_typename()

i nt dwarf_typenane(
Dwar f _Type type,
char **return_narme,
Dwarf _Error *error)

The functiondwar f _t ypename() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the vdefned type represented by thear f _Type descriptorf ype.
It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a successful return from
this function, the string should be freed usidgwarf_deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

5.11.1.3 dwarf_type die offset()

int dwarf _type die offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _type_di e_of fset () returnsDW DLV_OK and set$r et urn_of f set to the
offset in the section containing DIES, i.e. .dgbinfo, of the DIE representing the usiefined type that is
described by thé&war f _Type descriptort ype. It returnsDW DLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

5.11.1.4 dwarf_type cu_offset()

int dwarf_type cu_offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _type _cu_of fset () returnsDW DLV_OK and sets r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the usdefined type described by thewar f _Type descriptor,t ype. It returns

DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

rev 1.72, 30 Dec 2008 -45 -

- 46 -

5.11.1.5 dwarf_type name offsets()

int dwarf_type_name_of f set s(
Dwar f _Type type,
char ** returned_nane,
Dwarf_ _Of * die_offset,
Dwarf O f * cu_offset,
Dwarf _Error *error)

The functiondwar f _t ype_name_of f set s() returnsDW DLV_CK and set$r et ur ned_nane to a
pointer to a null-terminated string thatves the name of the useefined type described by the
Dwar f _Type descriptort ype. It also returns in the locations pointed to bye_of f set, and
cu_of fset, the ofsets of the DIE representing the udefined type, and the DIE representing the
compilation-unit containing the usdefined type, respectdly. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO_ENTRY. On a successful return frodwar f _t ype_nane_of f set s() the
storage pointed to byet ur ned_nane should be freed usindwar f _deal | oc() , with the allocation
typeDW DLA_STRI NGwhen no longer of interest.

5.12 User Defined Static Variable Names Operations
This section is SGI specific and is not part of standaM\RF version 2.

These functions operate on the uagbarnames section of the debugging informatioimhe
.debug_warnames section contains the names of file-scope static variables, the offsetDioEghibat
represent the definitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

5.12.1 Debugger Interface Operations

5.12.1.1 dwarf_get_vars()

i nt dwarf_get_vars(
Dwar f _Debug dbg,
Dwarf_Var **vars,
Dwar f _Si gned *var _count,
Dwarf _Error *error)

The functiondwar f _get _vars() returnsDW DLV_OK and setsfvar _count to the count ofife-

scope static variable names represented in the section containing file-scope static variable names, i.e.
.debug_wrnames. lalso stores, atvar s, a pointer to a list oDwar f _Var descriptors, one for each of

the file-scope static variable names in the udebarnames section. The returned results are for the entire
section. ItreturnsDW DLV_ERROCR on error It returnsDW DLV_NO_ENTRY if the .delug_varnames

section does not exist.

The following is nev as d July 15, 2005. On a successful return framarf _get _vars(), the
Dwar f _Var descriptors should be freed usithgar f _vars_deal | oc() .

rev 1.72, 30 Dec 2008 - 46 -

-47 -

Dwar f _Si gned cnt;
Dwar f _Var *vars;
int res;

res = dwarf_get_vars(dbg, &vars, &nt &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use vars[i] */
}

dwarf _vars_deal | oc(dbg, vars, cnt);

The following code is deprecated as of July 15, 2005 as it does not freeahteteemory This approach
still works as well as itver did. Ona successful return frondwar f _get _vars(), the Dwarf_Var
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA VAR_CONTEXT, (or DW DLA VAR, an dder name, supported for compatibility) folled by the
deallocation of the list itself with the allocation tyP@&/ DLA LI ST when the descriptors are no longer of
interest.

Dwar f _Si gned cnt;
Dwar f _Var *vars;
int res;

res = dwarf_get_vars(dbg, &vars, &nt &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use vars[i] */
dwar f _deal | oc(dbg, vars[i], DWDLA VAR CONTEXT);

}
dwar f _deal | oc(dbg, vars, DWDLA LIST);

5.12.1.2 dwarf_varname()

i nt dwarf_var name(
Dwarf _Var var,
char ** returned_nane,
Dwarf _Error *error)

The functiondwar f _var nane() returnsDW DLV_CK and setsr et ur ned_name to a pointer to a
null-terminated string that names the file-scope static variable representedwatife Var descriptor,
var . It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a siccessful return
from this function, the string should be freed usiohgar f _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

5.12.1.3 dwarf_var_die offset()

rev 1.72, 30 Dec 2008 -47 -

-48 -

int dwarf_var_die_offset(
Dwar f _Var var,
Dwarf O f *returned of fset,
Dwarf _Error *error)

The functiondwar f _var _di e_of f set () returnsDW DLV_OK and set$ r et ur ned_of f set to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the file-scopeasialtie v
that is described by thBwar f _Var descriptor,var. It returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO _ENTRY.

5.12.1.4 dwarf_var_cu_offset()

int dwarf_var_cu_offset(
Dwarf_Var var,
Dwarf_ O f *returned_of fset,
Dwarf _Error *error)

The functiondwar f _var _cu_of f set () returnsDW DLV_CK and setsr et ur ned_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains thdlé-scope static variable described by twar f _Var descriptoryvar . It returns

DW DLV_ERRORoON error It neve returnsDW DLV _NO_ENTRY.

5.12.1.5 dwarf_var_name_offsets()

int dwarf_var_name_of fset s(
Dwar f _Var var,
char **r et urned_nane,
Dwarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwar f _var _nane_of f set s() returnsDW DLV_OK and setsr et ur ned_nane to a
pointer to a null-terminated string thatveg the name of the file-scope statiariable described by the
Dwar f _Var descriptorvar. It aso returns in the locations pointed to loy e of fset, and
cu_of f set, the offsets of the DIE representing tile-5cope static variable, and the DIE representing the
compilation-unit containing the file-scope static variable, resyabgti It returns DW DLV_ERROR on
error. It neve returns DWW DLV_NO ENTRY. On a successful return from
dwar f _var_nane_of f set s() the storage pointed to hyet ur ned_nane should be freed using
dwar f _deal | oc() , with the allocation typ®W DLA STRI NGwhen no longer of interest.

5.13 Macro Information Operations

5.13.1 General Macro Operations
5.13.1.1 dwarf_find_macro_value start()

char *dwarf_find nmacro_value_start(char * macro_string);

Given a macro string in the standard form defined in th&/ARF document ("name <space> value" or
"name(args)<spacealue") this returns a pointer to the first byte of the maatae: Itdoes not alter the
string pointed to by macro_string or gofine string: it returns a pointer into the string whose addrass w
passed in.

5.13.2 Debugger Interface Macro Operations

Macro information is accessed from the ughinfo section via the W _AT_macro_info attribute (whose

rev 1.72, 30 Dec 2008 -48 -

- 49 -

value is an offset into .debug_macinfo).

No Functions yet defined.

5.13.3 Low Level Macro Information Operations
5.13.3.1 dwarf_get_macro_details()

int dwarf_get macro_detail s(Dwarf_Debug /*dbg*/,

Dwar f O f nmacr o_of f set,
Dwar f _Unsi gned maxi mum count,
Dwar f _Si gned * entry_count,
Dwarf _Macro_Details ** details,

Dwarf Error * err);

dwarf _get macro_detail s() returnsDW DLV_OK and setsentry_count to the number of
det ai | s records returned through tldet ai | s pointer The data returned througtiet ai | s should

be freed by a call tdwar f _deal | oc() with the allocation typ®@W DLA STRI NG. If DW DLV_K is

returned, theent ry _count will be at least 1, since a compilation unit with macro informatiohrm

macros will hae & least one macro data byte of 0.

dwarf _get macro_detail s() beagins at tharacr o_of f set offset you supply and ends at the end
of a compilation unit or atmaxi num count detail records (whicher comes frst). If
maxi mum _count is 0, it is treated as if it were the maximum possible unsigned integer.

dwarf _get macro_detail s() attempts to sednd fil ei ndex to the correct file in wery
det ai |l s record. If it is unable to do so (or wheee the current ife index is unknown, it sets
dnd_fil ei ndex to -1.

dwarf get macro_detail s() returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY
if there is no more macro information at tmatcr o_of f set . If macr o_of f set is passed in as 0, a
DW DLV_NO_ENTRY return means there is no macro information.

Dwar f _Unsi gned max = O;
Dwarf O f cur_off = 0;
Dwar f _Si gned count = O;

Dwarf _Macro_Details *nmaclist;
int errv;

/* loop through all the conpilation units macro info */
while((errv = dwarf_macro_detail s(dbg, cur_off, nax,
&count, &macl i st, &rror))== DWDLV_OK) {
for (i =0; i < count; ++i) {
/* use maclist[i] */
}
cur_off = maclist[count-1].dnmd_offset + 1;
dwar f _deal | oc(dbg, naclist, DWDLA STRI NG ;

5.14 Low Level Frame Operations

These functions provide information about stack frames to be used to perform stack Trhaees.
information is an abstraction of a table with a/nger instruction and a column per register and a column
for the canonical frame address £CRvhich corresponds to the notion of a frame pointer), as well as a
column for the return address.

rev 1.72, 30 Dec 2008 - 49 -

-50 -

From 1993-2006 the interface we’ll here refer to ##ARF2 made the Gkbe a ®lumn in the matrix, bt
left DW_FRAME_UNDEFINED ML, and DN_FRAME_SAME_\AL out of the matrix (giving them
high numbers). As of the\BARF3 interfaces introduced in this document in April 2006, there arg**tw
interfaces.

The original still exists (seedwarf _get fde_info_for_g) and dvarf_get fde_info_for_all_ggs() belav)
and works adequately for MIPS/IRIXVMARF2 and ABI/ISA sets that are figfently similar (but the
settings for non-MIPS must be set into libdwarf.h and cannot be changed at runtime).

A new interface set of dwarf get fde_info_for @g3(), dwarf get fde_info_for_cfa_reg3(),
dwarf_get_fde_info_for_all gs3() dvarf_set_frame_rule_inital_value(),
dwarf_set frame_rule_table size() is more flexible and should work foy mare architectures and the
setting of DW_FRAME_CFA_COL and the size of the table can be set at runtime.

Each cell in the table contains one of the following:

1. Aregister + offset(a)(b)

2. Aregister(c)(d)

3. Amarker (DW_FRAME_UNDEFINED_VAL) meaningegister value undefined

4. Amarker (DW_FRAME_SAME_VAL) meaningggister value same asin caller

(a old DNARF2 interface) When the column isSAD FRAME_CFA_COL: the rgister number is a real
hardware r@ister not a reference to W_FRAME_CIRA_COL, not DW_FRAME_UNDEFINED_ VAL,
and not W_FRAME_SAME_\AL. The CFA rule value should be the stack pointer pldseif0 when no
other value makes sensA.value of DN_FRAME_SAME_\AL would be semi-logical, it since the C&

is not a real rgister not really correct. A value of DNV_FRAME_UNDEFINED_ ML would imply the
CFA is indeined --this seems to be a useless notion, as the i€B means to finding real registers, so
those real registers should be marked/ FRAME_UNDEFINED_M\AL, and the CR column content
(whatever regster it specifies) becomes unreferenced by anything.

(a nev April 2006 DNARF2/3 interface): The @G¥is separately accessible and not part of the talblee
'rule number’ for the Ck is a rumber outside the table. So theACE a marker not a register number
See DW_FRAME_CFA_COL3 in libdwarf.h and dwarf_get_fde_info_for_cfa_reg3().

(b) When the column is not W FRAME_CFA_COL, the tegister will and must be
DW_FRAME_CFA_COL, implying that to get therfal location for the column one must add théseif
here plus the DW_FRAME_CFA_COL rule value.

(c) When the column is\W_FRAME_CFA_COL, then the register number is (must be) a real renelw
register . If it were WW_FRAME_UNDEFINED ML or DW_FRAME_SAME_\AL it would be a
marker not a register number.

(d) When the column is notW®_FRAME_CF_COL, the register may be a hardwargiseer It will not
be DW_FRAME_CFA_COL.

There is no 'column’ for DW_FRAME_UNDEFINED_ VAL or DW_FRAME_SAME_VAL.

Figure 3 is machine dependent and represents MIPS CPU register assignments.

rev 1.72, 30 Dec 2008 -50 -

-51 -

NAME value PURPOSE
DW_FRAME_CFA_COL 0 column used for CFA
DW_FRAME_REG1 1 integer register 1
DW_FRAME_REG2 2 integer register 2

olvious names and values he
DW_FRAME_REG30 30 integer register 30
DW_FRAME_REG31 31 integer register 31
DW_FRAME_FREGO 32 floating point register O
DW_FRAME_FREG1 33 floating point register 1
olvious names and values he
DW_FRAME_FREG30 62 floating point register 30
DW_FRAME_FREG31 63 floating point register 31
DW_FRAME_RA COL 64 column recording ra
DW_FRAME_UNDEFINED ML 1034 rayister val undefined
DW_FRAME_SAME \AL 1035 register same as in caller

Figure4. Frame Information Rule Assignments

The following table shows SGI/MIPS specific special calues: these values mean that the cell has the
value undefined or same value respectiely, rather than containing ragister or register+offset. It assumes
DW_FRAME_CFA_COL is a table rule, which is not readily accomplished or sensible for some

architectures.

NAME value PURPOSE
DW_FRAME_UNDEFINED_ML 1034 meansindefined value.

Not a column or register valy
DW_FRAME_SAME_\AL 1035 means 'same value’ as

caller had. Not a column or
register value

Figure5. Frame Information Special Values

The following table sheos more general special celalues. Theseralues mean that the cell gister-

number refers to thefa-register or undefined-value or same-value respectrely, rather than referring to a
register in the table. The generality arises from making\D FRAME_CFA_COL3 be outside the set of
registers and making thesciule accessible from outside the rule-table.

not a real registenot a column, but the afthe cfa
does hae a alue, but in the B/ARF3 libdwarf interface

NAME value PURPOSE
DW_FRAME_UNDEFINED ML 1034 meansindefined value.

Not a column or register value
DW_FRAME_SAME_M\AL 1035 means 'same value’ as

caller had. Not a column or

register value
DW_FRAME_CHRA_COL3 1036 means 'ch regster’ is referred to,

it does not hee a teal register number’).

rev 1.72, 30 Dec 2008

-51 -

-52 -

5.14.0.1 dwarf_get_fde list()

int dwarf_get _fde_ |ist(
Dwar f _Debug dbg,
Dwarf_Cie **cie_data,
Dwar f _Si gned *ci e_el ement _count,
Dwarf _Fde **fde_dat a,
Dwar f _Si gned *fde_el ement _count,
Dwarf_Error *error);

dwarf _get _fde_list() stores a pointer to a list &ivar f _Ci e descriptors irf ci e_dat a, and the
count of the number of descriptors*ini e_el ement _count . There is a descriptor for each CIE in the
.delug_frame sectionSimilarly, it stores a pointer to a list dwar f _Fde descriptors irf f de_dat a,
and the count of the number of descriptor§fide_el enent _count . There is one descriptor per FDE
in the .debug_frame sectionlwar f _get _fde |ist() returnsDW DLV_ERRCR on error It returns
DW DLV_NO _ENTRY if it cannot find frame entries. It returt® DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf _fde_cie_list_deall oc(). This dealloc approach iswes of dily 15, 2005.

Dwar f _Si gned cnt;
Dwarf_Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get_fde_list(dbg, &i e_dat a, &ci e_count ,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_OK) {
dwarf_fde_cie_list_deall oc(dbg, cie_data, cie_count,
fde_dat a, fde_count);

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did.

rev 1.72, 30 Dec 2008 -52-

-53 -

Dwar f _Si gned cnt;

Dwarf _Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get _fde_list(dbg, &ci e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_XK) {

for (i =0; i < cie_count; ++i) {
/* use cie[i] */
dwarf _deal | oc(dbg, cie_data[i], DWDLA CIE);

}
for (i =0; i < fde_count; ++i) {

/* use fde[i] */

dwar f _deal | oc(dbg, fde_data[i], DWDLA FDE);
}

dwar f _deal | oc(dbg, cie_data, DWDLA LIST);
dwar f _deal | oc(dbg, fde_data, DWDLA LIST);

5.14.0.2 dwarf_get_fde list_eh()

int dwarf_get _fde |ist_eh(
Dwar f _Debug dbg,
Dwarf_Cie **cie_data,
Dwar f _Si gned *ci e_el ement _count,
Dwarf _Fde **fde_dat a,
Dwar f _Si gned *fde_el ement _count,
Dwarf_Error *error);

dwarf_get _fde_list_eh() is identical to dwarf_get fde list() except that
dwarf _get _fde_list_eh() reads the GNU gcc section named .eh_frame (C++ exception handling
information).

dwarf _get fde_list_eh() stores a pointer to a list @war f _Ci e descriptors in*ci e_dat a,
and the count of the number of descriptors @ e_el ement _count. There is a descriptor for each
CIE in the .debug_frame sectioigimilarly, it stores a pointer to a list dwar f _Fde descriptors in
*f de_dat a, and the count of the number of descriptors*inde_el ement _count. There is one
descriptor per FDE in the .debug_frame sectidnar f _get _fde_l|i st () returnsDW DLV_ERROR

on error It returns DW DLV_NO ENTRY if it cannot find exception handling entries. It returns
DW DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf_fde_cie_list_deall oc(). This dealloc approach iswes of dily 15, 2005.

rev 1.72, 30 Dec 2008 -53-

-54 -

Dwar f _Si gned cnt;

Dwarf _Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get _fde_list(dbg, &ci e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_XK) {
dwarf_fde_ cie_list_deall oc(dbg, cie_data, cie_count,
fde_dat a, fde_count);

5.14.0.3 dwarf_get_cie of_fde()

int dwarf_get _cie_of_fde(Dwarf_Fde fde,
Dwarf_Cie *cie_returned,
Dwarf_Error *error);

dwarf _get _cie_of fde() stores &warf _Ci e into the Dwar f _Ci e thatci e_r et ur ned points
at.

If one has called darf get fde_list and does not wish to dwarf dealloc() all the individual FDEs
immediately one must alsowmid dwarf_dealloc-ing the CIEs for those FDEs not immediately dedlloc’
Faling to obsere this restriction will cause the FDE(s) not dealtbtd become inalid: an FDE contains

(hidden in it) a CIE pointer which will be bevalid (stale, pointing to freed memory) if the CIE is
deallocd. Theinvalid CIE pointer internal to the FDE cannot be detected aidnby libdwarf. If one

later passes an FDE with a stale internal CIE pointer to one of the routines taking an FDE as input the result
will be failure of the call (returning @W_DLV_ERROR) at best and it is possible a coredump or worse will
happen (eentually).

dwarf _get _cie_of fde() returnsDW DLV_OX if it is successful (it will be unless fde is the NULL
pointer). ItreturnsDW DLV_ERRORf the fde is ivalid (NULL).

EachDwar f _Fde descriptor describes information about the frame for a particular subroutine or function.

int dwarf_get _fde_for_dieis SGI/MIPS specific.

5.14.0.4 dwarf_get fde for_dig()

int dwarf_get fde for die(
Dwar f _Debug dbg,
Dwarf _Die die,
Dwarf Fde * return_fde,
Dwar f _Error *error)

When it succeedgjwarf _get fde for _die() returnsDW DLV_OK and setsreturn_fde to a
Dwar f _Fde descriptor representing frame information for thevegi die. It looks for the
DW AT_M PS f de attribute in the gren di e. If it finds it, is uses the value of the attribute as tifeebf
in the .debug_frame section where the FDHit® If there is noDW AT _M PS fde it returns
DW DLV_NO _ENTRY. Ifthere is an error it returidV DLV_ERROR.

rev 1.72, 30 Dec 2008 -54 -

-55-

5.14.0.5 dwarf_get_fde range()

int dwarf_get fde_range(
Dwar f _Fde fde,
Dwar f _Addr *I| ow_pc,
Dwar f _Unsi gned *func_I engt h,
Dwarf_Ptr *fde_bytes,
Dwar f _Unsi gned *fde_byte_| ength,
Dwarf_ O f *cie_offset,
Dwar f _Si gned *ci e_i ndex,
Dwarf_ O f *fde_offset,
Dwarf_Error *error);

On succesgiwar f _get _fde_range() returnsDW DLV_OK. The location pointed to blyow pc is
set to the lar pc value for this function.The location pointed to bfyunc_| engt h is set to the length of
the function in bytes. This is essentially the length of thx $ection for the function. The location
pointed to byf de_byt es is set to the address where the FDEBih® in the .debug_frame sectiomhe
location pointed to by de_byt e | engt h is set to the length in bytes of the portion of .debug_frame for
this FDE. This is the same as thaue returned byiwar f _get f de_r ange. The location pointed to
by ci e_of f set is set to the d$et in the .debug_frame section of the CIE used by this FOie
location pointed to bgi e_i ndex is set to the indeof the CIE used by this FDE. The indis the inde

of the CIE in the list pointed to bgi e_dat a as set by the functiodwarf _get fde list().
However, if the functiondwar f _get _fde_for _di e() was used to obtain the gén f de, this inde
may not be correct. The location pointed toflae of f set is set to the déet of the start of this FDE in
the .debug_frame sectiodwar f _get fde_range() returnsDW DLV_ERRCRon error.

5.14.0.6 dwarf_get_cie info()

int dwarf_get cie_info(

Dwarf _Ci e ci e,
Dwar f _Unsi gned *bytes in_cie,
Dwar f _Smal | *version,

char **augnent er,

Dwar f _Unsi gned *code_al i gnnent _factor,

Dwarf _Si gned *data_al i gnment _factor,
Dwar f _Hal f *return_address _register_rule,
Dwarf _Ptr *initial _instructions,

Dwarf _Unsigned *initial _instructions_|ength,
Dwar f _Error *error);

dwarf _get cie_info() is primarily for Internal-lgel Interface consumers. If successful, it returns
DW DLV_OK and setg byt es_i n_ci e to the number of bytes in the portion of the frames section for
the CIE represented by thesgh Dwar f _Ci e descriptorci e. The other fields are directly tak from the

cie and returned, via the pointers to the callereturnsDW DLV_ERROR on error.

5.14.0.7 dwarf_get_fde instr_bytes()

int dwarf_get fde_ instr_bytes(
Dwar f _Fde fde,
Dwarf Ptr *outinstrs,
Dwar f _Unsi gned *outl en,
Dwarf _Error *error);

dwarf _get fde_instr_bytes() returnsDW DLV_CK and set$outi nstrs to a pointer to a set
of bytes which are the actual frame instructions for this fde. It alsd eets| en to the length, in bytes,

rev 1.72, 30 Dec 2008 -55-

-56 -

of the frame instructions. It returridV DLV_ERROR on error It neve returnsDW DLV _NO_ENTRY.
The intent is to allw low-level consumers lik a dvarf-dumper to print the bytes in somashion. The
memory pointed to bgut i nst r s must not be changed and there is nothing to free.

5.14.0.8 dwarf_get_fde info_for_reg()

This interface is suitable for MWARF2 hut is not sufcient for DNARF3. See int
dwarf _get _fde_info_for_reg3.

int dwarf_get _fde_info_for_reg(
Dwar f _Fde fde,
Dwarf_Hal f tabl e_col um,
Dwar f _Addr pc_requested,
Dwar f _Si gned *of fset _rel evant,
Dwar f _Si gned *regi ster_num
Dwar f _Si gned *of f set,
Dwar f _Addr *row_pc,
Dwarf_Error *error);

dwarf _get _fde_info_for_reg() returnsDW DLV_CK and sets*of f set _rel evant to non-

zero if the offset is relent for the rov specified by pc_requested and column specified by

t abl e_col um, for the FDE spedid byf de. The intent is to return the rule for thevgn pc value and
register The location pointed to biyegi st er _numis set to the registeralue for the rule. The location
pointed to byof f set is set to the offset value for the rule. If offset is not vaie for this rule,

*of f set _rel evant is set to zero. Since more than one pc value wilehraws with identical entries,

the user may want to knothe earliest pc value after which the rules for all the columns remained
unchanged. Recdlhat in the virtual table that the frame information represents there may be one or more
table rows with identical data (each such table ab a dfferent pc alue). Gven apc_r equest ed
which refers to a pc in such a group of identicatgothe location pointed to byow pc is set to the
lowest pc value within the group afientical ravs. The walue put in*regi st er _numary of the

DW FRAME_* table columns values specifiedlinbdwar f . h ordwar f . h.

dwarf _get _fde_info_for_regreturnsDW DLV_ERRORIf there is an error.

It is usable with eithedwar f _get _fde_n() ordwarf_get fde_at_pc().

5.14.0.9 dwarf_get_fde info for_all_regs()

int dwarf_get fde info for_all_regs(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwarf _Regtable *reg table,
Dwar f _Addr *row pc,
Dwarf _Error *error);

dwarf _get fde info for_all _regs() returnsDW DLV_OK and setgr eg_t abl e for the rav
specified bypc_r equest ed for the FDE specified bfde.

The intent is to return the rules for decoding all the registeran gi pc \alue. r eg_t abl e is an array of
rules, one for each gester specified indwar f . h. The rule for each register contains three items -
dw_r egnumwhich denotes the registealue for that rulegw_of f set which denotes the offset value for
that rule anddw_of f set _r el evant which is set to zero if offset is not redmt for that rule. See
dwarf _get fde_ info_for_reg() fora description of ow pc.

dwarf _get fde info for_all _regs returnsDW DLV_ERRORIf there is an error.
int dwarf_get fde info for_all _regsis SGI/MIPS specific.

rev 1.72, 30 Dec 2008 -56 -

-57-

5.14.0.10 dwarf_set_frame rule table size()

This allovs consumers to set the size of the (internal to libdwarf) rule table. It should be at least as large as
the number of real ggsters in the ABI which is to be read in for theattvget fde_info_for_ig3() or
dwarf_get_fde_info_for_all_gs3() functions to work properlylt must be less than the markealues
DW_FRAME_UNDEFINED_VAL, DW_FRAME_SAME_VAL, DW_FRAME_CFA_COLS3.

Dwar f _Hal f
dwarf_set_frame_rul e_tabl e_size(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

ddwarf_set _frame_rul e_tabl e_size() sets the &lueval ue as the size of libdarf-internal
rules tablesof dbg. The function returns the pr@us value of the rules table size setting (taken from the
dbg structure).

5.14.0.11 dwarf_set_frame rule inital_value()

This allows consumers to set the initial value fovsadn the frame tables. By default it is taken from
libdwarf.h and is V_FRAME_REG_INITIAL_\VALUE (which itself is either
DW_FRAME_SAME_MAL or DW_FRAME_UNDEFINED_ML). The MIPS/IRIX default is
DW_FRAME_SAME_\AL. Consumercode should set this appropriately and for ynarchitectures (bt
probably not MIPS) DW_FRAME_UNDEFINED_VAL is an appropriate setting.

Dwar f _Hal f
dwarf _set frame_rul e_inital _val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_inital val ue() sets the &lueval ue as the initial alue for thisdbg
when initializing rules tablesThe function returns the previous value of the initial setting (taken from the
dbg structure).

5.14.0.12 dwarf_get_fde info_for_reg3()

This interface is suitable for WARF3 and DVARF2. Itreturns the values for a particular reajjister
(Not for the CIA regster, see dwarf_get_fde_info_for_cfa_reg3() below).

int dwarf_get fde_ info for_reg3(
Dwar f _Fde fde,
Dwarf Hal f tabl e _col um,
Dwar f _Addr pc_requested,
Dwarf_Smal|l *val ue_type,
Dwarf _Si gned *of fset rel evant,
Dwarf _Si gned *regi ster_num
Dwar f _Signed *of fset_or_bl ock | en,
Dwarf _Ptr *bl ock_ptr,
Dwar f _Addr *row_pc,
Dwarf Error *error);

dwarf get fde_ info for_re3() returnsDW DLV_OK on success. It setsval ue_t ype to one

of DW_EXPR_OFFSET (0), W_EXPR_\AL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_MAL _EXPRESSION(3). Orzall, t abl e_col unm must be set to the register number of a
real rgister Not the ch ‘register’ or DN_FRAME_SAME_\ALUE or
DW_FRAME_UNDEFINED_VALUE.

rev 1.72, 30 Dec 2008 -57 -

-58 -

if *val ue_t ype has the value DW_EXPR_OFFSET (0) then:

It sets*of f set _rel evant to non-zero if the offset is relant for the rov specified by
pc_request ed and column specified blyabl e_col um or, for the FDE specified bf/de.

In this casethe *regi ster_num will be set to WW_FRAME_CFA_COL3. Thisis an
offset(N) rule as specified in the VIARF3/2 documents. Adding the value of
*of f set _or _bl ock_I| en to the value of the GFkregster gives the address of a location
holding the previous value of registeaibl e_col um.

If offset is not relgant for this rule,* of f set _rel evant is set to zero.*r egi st er _num
will be set to the number of the reafjiger holding the value of thteabl e_col um register.
This is the register(R) rule as specified WBRF3/2 documents.

The intent is to return the rule for theven pc \alue and rgister The location pointed to by
regi st er _numis set to the register value for the rule. The location pointed tif bget is

set to the offset value for the rul&ince more than one pc value willearows with identical
entries, the user may want to knthe earliest pc value after which the rules for all the columns
remained unchangedRecall that in the virtual table that the frame information represents there
may be one or more table rows with identical data (each such tabk eodfferent pc alue).
Given apc_request ed which refers to a pc in such a group of identical rows, the location
pointed to byr ow_pc is set to the lowest pc value within the group of identical rows.

If *val ue_t ype has the value DW_EXPR_VAL_OFFSET (1) then:
This will be a al ofiset(N) rule as specified in the VIARF3/2 documents so
*of fset _relevant will be non zero. The -calculation is identical to the
DW_EXPR_OFFSET (0) calculation witttof f set _rel evant non-zero, but the alue
resulting is the actualabl e_col unm value (rather than the address where the value may be
found).

If *val ue_t ype has the value DW_EXPR_EXPRESSION (1) then:
*of f set _or _bl ock_I en is set to the length in bytes of a block of memory withVdAIRF
expression in the block* bl ock_ptr is set to point at the block of memoryhe consumer
code shouldevduate the block as a\MARF-expression. The result is the address where the
previous value of the register may be found. This isNABF3/2 expression(E) rule.

If *val ue_t ype has the value DW_EXPR_VAL_EXPRESSION (1) then:
The calculation is exactly as for DW_EXPR_EXPRESSION (1) but the result of \WWAeRDB-
expression ealuation is the value of thet abl e_col umm (not the address of theble). This
is a DNARF3/2 val_expression(E) rule.

dwarf _get fde_info_for_reg returnsDW DLV_ERRORf there is an error and if there is an error
only theer r or pointer is set, none of the other output arguments are touched.

It is usable with eithedwar f _get _fde_n() ordwarf_get fde_at_pc().

5.14.0.13 dwarf_get_fde info_for_cfa_reg3()

rev 1.72, 30 Dec 2008 -58 -

-59 -

int dwarf_get fde_ info for_cfa reg3(Dwarf_Fde fde,

Dwar f _Addr pc_requested,

Dwarf _Smal | * val ue_type,

Dwar f _Si gned* of fset _rel evant,
Dwar f _Si gned* regi ster_num
Dwar f _Si gned* of fset _or_bl ock_I| en,
Dwarf Ptr * bl ock_ptr ,
Dwar f _Addr * row_pc_out,

Dwarf _Error * error)

This is identical todwar f _get _fde_i nfo_for_reg3() except the returned values are for theACF
rule. Soregister numbefr egi st er _numwill be set to a real mgster not DW_FRAME_CFA_COL3,
DW_FRAME_SAME_VALUE, or DW_FRAME_UNDEFINED_VALUE.

5.14.0.14 dwarf_get_fde info_for_all_regs3()

int dwarf_get _fde_info_for_all_regs3(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwar f _Regt abl e3 *reg_t abl e,
Dwar f _Addr *row_pc,
Dwarf _Error *error)

dwarf_get _fde_info_for_all_regs3() returnsDWDLV_CK and sets*reg_t abl e for the
row specified by pc_request ed for the FDE specified by de. The intent is to return the rules for
decoding all the registers,vgn a pc alue. r eg_t abl e is an array of rules, the array size spedifby
the caller plus a rule for the G&. Therule for the cé returned in*r eg_t abl e defines the CR value

at pc_requested The rule for each register contairsveral values that enable the consumer to
determine the previousalue of the register (see the earlier documentation ofrDWRegtable3).
dwarf_get _fde_info_for_reg3() and the Dwarf_Retable3 documentation a® for a
description of the values for eaclwro

dwarf _get _fde_info_for_all _regs returnsDW DLV_ERRORIf there is an error.

It is up to the caller to allocate spaceforeg_t abl e and initialize it properly.

5.14.0.15 dwarf_get_fde n()

i nt dwarf _get fde_ n(
Dwarf _Fde *fde_dat a,
Dwar f _Unsi gned fde_i ndex,
Dwar f _Fde *returned_fde
Dwar f _Error *error)

dwarf _get fde_n() returnsDW DLV_OK and sets et ur ned_f de to theDwar f _Fde descriptor
whose inde isf de_i ndex in the table oDwar f _Fde descriptors pointed to Hyde dat a. The ind
starts with 0. The table pointed to by fde data is required to contain at least on# &méryable has no
entries at all the error checks may refer to uninitialized memBgturnsDW DLV_NO _ENTRY if the
index does not exist in the table Bfivar f _Fde descriptors. ReturnBW DLV_ERROR if there is an error
This function cannot be used unless the blockowdr f _Fde descriptors has been created by a call to
dwarf _get fde list().

rev 1.72, 30 Dec 2008 -59-

-60 -

5.14.0.16 dwarf_get_fde at_pc()

i nt dwarf _get fde_at_pc(
Dwarf _Fde *fde_dat a,
Dwar f _Addr pc_of _interest,
Dwarf _Fde *returned_fde,
Dwar f _Addr *1 opc,
Dwar f _Addr *hi pc,
Dwarf _Error *error)

dwarf _get fde_at pc() returns DWDLV_CK and setsreturned_fde to a Dwarf_Fde
descriptor for a function which contains the pc value specifigoichyf _i nt er est . In addition, it sets
the locations pointed to Hyopc andhi pc to the lav address and the high addressered by this FDE,
respectiely. The table pointed to by fde_data is required to contain at least oneletttg/table has no
entries at all the error checks may refer to uninitialized memiomgturnsDW DLV_ERROR on error It
returnsDW DLV_NO _ENTRY if pc_of _i nt er est is not in ay of the FDEs represented by the block of
Dwar f _Fde descriptors pointed to biyde_dat a. This function cannot be used unless the block of
Dwar f _Fde descriptors has been created by a calvtar f _get _fde_list().

5.14.0.17 dwarf_expand_frame_instructions()

int dwarf_expand franme_instructions(
Dwar f _Debug dbg,
Dwarf Ptr instruction,
Dwar f _Unsigned i | ength,
Dwarf _Frame_Op **returned_op_list,
Dwar f _Si gned * returned_op_count,
Dwarf _Error *error);

dwar f _expand_frane_i nstructions() is a High-level interface function which expands a frame
instruction byte stream into an array Bfar f _Fr ane_Qp structures. @ indicate success, it returns
DW DLV_OK. The address where the byte stream begins is specifiedstyr uct i on, and the length of

the byte stream is specified by | engt h. The location pointed to byet urned_op_|i st is set to

point to a table ofr et urned_op_count pointers toDwar f _Franme_Op which contain the frame
instructions in the byte stream. It returnBW DLV_ERROR on error It neve returns

DW DLV_NO ENTRY. After a successful return, the array of structures should be freed using
dwar f _deal | oc() with the allocation typeDW DLA FRAME BLOCK (when thg are no longer of
interest).

Dwar f _Si gned cnt;

Dwarf _Franme_Qp *frameops;
Dwarf _Ptr instruction;
Dwar f _Unsi gned | en;

int res;

res = expand_frame_instructions(dbg,instruction,len, & raneops, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use franeops[i] */
}
dwar f _deal | oc(dbg, franeops, DW DLA FRAME BLOCK) ;

rev 1.72, 30 Dec 2008 - 60 -

-61 -

5.14.0.18 dwarf_get_fde exception_info()

int dwarf_get fde_exception_info(
Dwar f _Fde fde,
Dwarf _Signed * offset_into_exception_tables,
Dwarf _Error * error);

dwarf _get _fde_exception_info() is an IRIX specific function which returns an exception table
signed ofset through of fset _into_exception_tables. The function neer returns

DW DLV_NO_ENTRY. If DW DLV_NO ENTRY is NULL the function returndwW DLV_ERRCR. For
non-IRIX objects the offset returned willvedys be zero.For non-C++ objects the offset returned will
always be zero.The meaning of the offset and the content of the tables is not defined in this document.
The applicable CIE augmentation string (seevabdetermines whether the value returned has meaning.

5.15 Location Expression Evaluation

An "interpreter" which ealuates a location expression is required ig debugger There is no integce
defined here at this time.

One problem with defining an interface is that operations are machine dependgrdefbad on the
interpretation of register numbers and the methods of getting values from the environment the expression is
applied to.

It would be desirable to specify an interface.

5.15.1 Location List Internal-level Interface

5.15.1.1 dwarf_get_loclist_entry()

int dwarf_get _loclist_entry(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Addr *hi pc_of f set,
Dwar f _Addr *| opc_of f set,
Dwarf_Ptr *data,
Dwar f _Unsi gned *entry_l en,
Dwar f _Unsi gned *next_entry,
Dwarf _Error *error)

The function reads a location list entry startingfat set and returns through pointers (when successful)
the high pachi pc_of f set, low pc| opc_of f set, a pointer to the location description datat a, the

length of the location description dagat ry_| en, and the offset of the next location description entry
next _entry. dwarf_dwarf_get loclist_entry() returns DWDLV_OK if successful.

DW DLV_NO_ENTRY is returned when the offset passed in is beyond the end of the .debug_loc section
(expected if you start at offset zero and proceed through all the enttsPLY ERROR is returned on

error.

Thehi pc_of fset, low pc| opc_of f set are offsets from the beginning of the current procedure, not
genuine pc values.

rev 1.72, 30 Dec 2008 -61-

-62 -

/* Loopi ng through the dwarf_loc section finding loclists:
an exanple. */

int res;

Dwar f _Unsi gned next _entry;

Dwar f _unsi gned of f set =0;

Dwar f _Addr hi pc_off;

Dwar f _Addr | opc_off;

Dwarf Ptr dat a;

Dwar f _Unsi gned entry_I en;

Dwar f _Unsi gned next _entry;

Dwarf_ Error err;

for(;;) {
res = dwarf_get | oclist_entry(dbg, newof fset, &i pc_of f,
& owpc_off, &data, &entry_len, &ext_entry, &err);
if (res == DWDLV_OK) {
/* Avalid entry. */
newof f set = next_entry;
conti nue;
} else if (res ==DW DLV_NO ENTRY) {
/* Done! */
br eak;
} else {
[* Errorl */
br eak;

5.16 Abbreviations access

These are Internaldel I nterface functions. Debuggers can ignore this.

5.16.1 dwarf_get_abbrev()

i nt dwarf_get abbrev(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Abbr ev *returned_abbrev,
Dwar f _Unsi gned *I engt h,
Dwar f _Unsi gned *attr_count,
Dwarf _Error *error)

The function dwarf _get abbrev() returns DWDLV_OK and sets*returned_abbrev to
Dwar f _Abbr ev descriptor for an abbreviation atfse#t * of f set in the abbreviations section (i.e
.debug_abbrg on success. The user is responsible for making sure that a valid abbreviation begins at
of f set in the abbreviations section. The location pointed td &ggt h is set to the length in bytes of

the abbreviation in the abbreviations section. The location pointed t@t by count is set to the
number of attributes in the ablitation. Anabbreiation entry with a length of 1 is the 0 byte of the last
abbreiation entry of a compilation unitdwar f _get _abbr ev() returnsDW DLV_ERROR on error If

rev 1.72, 30 Dec 2008 -62 -

-63 -

the call succeeds, the storage pointed to *hyet ur ned_abbrev should be freed, using
dwar f _deal | oc() with the allocation typ®W DLA ABBREV when no longer needed.

5.16.2 dwarf_get _abbrev_tag()

int dwarf_get abbrev_tag(
Dwar f _abbrev abbrev,
Dwarf Half *return_tag,
Dwarf _Error *error);

If successfuldwar f _get abbrev_tag() returnsDW DLV_OK and set$r et ur n_t ag to thetag of
the given abbreviation. ItreturnsDW DLV _ERRORon error It neve returnsDW DLV_NO_ENTRY.

5.16.3 dwarf_get_abbrev_code()

i nt dwarf_get abbrev_code(

Dwar f _abbr ev abbr ev,
Dwar f _Unsigned *return_code,
Dwar f _Error *error);

If successful,dwarf_get abbrev_code() returnsDW DLV_CK and sets‘r et ur n_code to the
abbreviation code of the gen abreviation. It returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.16.4 dwarf_get_abbrev_children_flag()

int dwarf_get abbrev_chil dren_fl ag(
Dwar f _Abbrev abbrev,
Dwarf _Signed *returned_flag,
Dwar f _Error *error)

The function dwarf _get abbrev_children_flag() returns DWDLV _OK and sets
returned flag to DWchildren_no (if the given abbreviation indicates that a die with that
abbreviation has no children) dW chi | dr en_yes (if the given abreviation indicates that a die with
that abbreviation has a child). It retudd@/ DLV _ERROR on error.

5.16.5 dwarf_get_abbrev_entry()

int dwarf_get _abbrev_entry(
Dwar f _Abbrev abbrev,
Dwar f _Si gned i ndex,
Dwar f _Hal f *attr_num
Dwar f _Si gned *form
Dwarf O f *offset,
Dwarf _Error *error)

If successful,dwarf_get abbrev_entry() returnsDW DLV_CK and sets*attr_num to the
attribute code of the attriie whose indeis ecifed byi ndex in the given abreviation. Theindex
starts at 0. The location pointed to bgr mis set to the form of the attrike. Thelocation pointed to by

of fset is set to the byte offset of the attribute in the abbreviations section. It returns
DW DLV_NO_ENTRY if the index specified is outside the range of attributes in this atibten. Itreturns

rev 1.72, 30 Dec 2008 -63 -

-64 -

DW DLV_ERROR 0N error.

5.17 String Section Operations

The .debug_str section contains only strind@eluggers need wer use this interface: it is only for
debugging problems with the string section itself.

5.17.1 dwarf_get_str()

int dwarf_get _str(
Dwar f _Debug dbg,
Dwar f _Of f of f set,
char **string,
Dwar f _Si gned *returned_str_| en,
Dwarf _Error *error)

The functiondwar f _get _str () returnsDW DLV_OK and setsr et urned_str _I| en to the length

of the string, not counting the null termingtthat begins at the offset specified by f set in the
.delug_str section. The location pointed tostyr i ng is set to a pointer to this string. The next string in
the .debug_str section begins at thevjpesof f set + 1 +*ret urned_str_| en. A zero-length string

is NOT the end of the section. If there is no .debug_str sedihDLY_NO ENTRY is returned. If there

is an errorDW DLV_ERRCR is returned. If we are at the end of the section (thaifiset is one past
the end of the sectio®W DLV_NO_ENTRY is returned. If thef f set is some other too-large value then
DW DLV_ERRCRIs returned.

5.18 Address Range Operations

These functions provide information about address ranges. Address ranges map rangehie$ pa the
corresponding compilation-unit die thatvecs the address range.

5.18.1 dwarf_get_aranges()

i nt dwarf_get aranges(
Dwar f _Debug dbg,
Dwar f _Arange **aranges,
Dwarf _Signed * returned_arange_count,
Dwarf Error *error)

The functiondwar f _get aranges() returnsDW DLV_OK and setsr et ur ned_ar ange_count

to the count of the number of address ranges in theigdabanges section (for all compilation unitt).
sets* ar anges to point to a block obwar f _Ar ange descriptors, one for each address range. It returns
DW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if there is no .debug_aranges section.

rev 1.72, 30 Dec 2008 -64 -

-65 -

Dwar f _Si gned cnt;
Dwar f _Arange *arang;
int res;

res = dwarf_get_aranges(dbg, &arang, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use arang[i] */
dwar f _deal | oc(dbg, arang[i], DWDLA ARANGE);

}
dwar f _deal | oc(dbg, arang, DWDLA LI ST);

5.18.2 dwarf_get_arange()

int dwarf_get arange(
Dwar f _Arange *aranges,
Dwar f _Unsi gned ar ange_count,
Dwar f _Addr address,
Dwar f _Arange *returned_arange,
Dwarf _Error *error);

The functiondwar f _get _ar ange() takes as input a pointer to a block fiar f _Ar ange pointers,
and a count of the number of descriptors in the bldtkhen searches for the descriptor thatecs the
given addr ess. Ifitfinds one, it returnBW DLV_OK and setgr et ur ned_ar ange to the descriptor
It returnsDW DLV_ERROR on error It returnsDW DLV_NO _ENTRY if there is no .delng_aranges entry
covering that address.

5.18.3 dwarf_get_cu_die offset()

int dwarf_get _cu_die_offset(
Dwar f _Arange ar ange,
Dwarf_ O f *returned _cu_die_offset,
Dwarf _Error *error);

The functiondwar f _get _cu_di e_of fset () takes aDwarf _Ar ange descriptor as input, and if
successful returnrBW DLV_CK and set$r et urned_cu_di e_of f set to the ofset in the .delg_info
section of the compilation-unit DIE for the compilation-unit represented by tlea gildress rangelt
returnsDW DLV_ERRCR on error.

5.18.4 dwarf_get_arange cu_header offset()

int dwarf_get arange cu_header offset(
Dwar f _Arange ar ange,
Dwarf O f *returned_cu_header_of fset,
Dwar f _Error *error)

The functiondwar f _get arange_cu_header _of fset () takes aDwarf _Ar ange descriptor as

rev 1.72, 30 Dec 2008 - 65 -

-66 -

input, and if successful returV DLV_CK and set$r et ur ned_cu_header _of f set to the ofset
in the .delog_info section of the compilation-unit header for the compilation-unit represented byee gi
address range. It returb¥V DLV _ERROR on error.

This function added Rel.45, June, 2001.

This function is declared as 'optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if ¢hgian of libdwarf linked into an application has this
function.

5.18.5 dwarf_get_arange info()

int dwarf_get arange_i nfo(
Dwar f _Arange ar ange,
Dwar f _Addr *start,
Dwar f _Unsi gned *I engt h,
Dwarf O f *cu_die offset,
Dwar f _Error *error)

The functiondwar f _get _arange_i nfo() returnsDW DLV_COK and stores the startingiue of the
address range in the location pointed tcesbwar t , the length of the address range in the location pointed
to byl engt h, and the offset in the .debug_info section of the compilation-unit DIE for the compilation-
unit represented by the address range. It reDWwiDLV_ ERRORon error.

5.19 General Low Level Operations

This function is low-lgel and intended for use only by programs such as dwarf-dumpers.

5.19.1 dwarf_get_address size&()

int dwarf_get address_si ze(Dwarf _Debug dbg,
Dwarf Hal f *addr_si ze,
Dwar f _Error *error)

The function dwarf get address_si ze() returns DWDLV_OK on success and sets the
*addr _si ze to the size in bytes of an addres$s.case of errgiit returnsDW DLV_ERROR and does not
set*addr _si ze.

5.20 Ranges Operations (.debug_ranges)

These functions provide information about the address ranges indicatedWyAd r anges attribute
(the ranges are recorded in thelebug ranges section). Eachcall of dwarf _get ranges()
returns a an array of Dawf_Ranges structs, each of which represents a single ranges &h&struct is
defined inl i bdwar f . h.

5.20.1 dwarf_get_ranges()

rev 1.72, 30 Dec 2008 - 66 -

-67 -

i nt dwarf_get_ranges(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwar f _Ranges **ranges,
Dwarf _Si gned * returned_ranges_count,
Dwar f _Unsigned * returned_byte_count,
Dwarf _Error *error)

The functiondwar f _get _ranges() returnsDW DLV_CK and set$r et ur ned_r anges_count to
the count of the number of address ranges in the group of ranges in thg rdeges section atfeét
of f set (which ends with a pair of zeros of pointer-size).

The of f set amgument should be the value o8V AT_r anges attribute of a Debgging Information
Entry.

The call setsranges to point to a block oDwar f _Ranges structs, one for each address rangie.
returns DW DLV_ERROR on error It returnsDW DLV_NO _ENTRY if there is no . debug_r anges
section or ifof f set is past the end of thedebug_r anges section.

If the *r et ur ned_byt e_count pointer is passed as non-NULL the number of bytes that the returned
ranges were taken from is returned through the pointer Xfmmgple if the returned_ranges_count is 2 and
the pointer-size is 4, then returned_byte count will be 8). Ifthet ur ned_byt e_count pointer is
passed as NULL the parameter is ignorddhe *r et ur ned_byt e_count is only of use to certain
dumper applications, most applications will not use it.

Dwar f _Si gned cnt;
Dwar f _Ranges *ranges;
Dwar f _Unsi gned byt es;
int res;
res = dwarf_get_ranges(dbg, of f, & anges, &cnt, &ytes, &error);
if (res == DWDLV_OK) {
Dwar f _Si gned i ;
for(i =0; i <cnt; ++) {
Dwar f _Ranges *cur = ranges+i;
/* Use cur. */
}

dwar f _ranges_deal | oc(dbg, ranges, cnt);

5.20.2 dwarf_ranges dealloc()

i nt dwarf_ranges_deal | oc(

Dwar f _Debug dbg,

Dwar f _Ranges *ranges,

Dwarf _Signed range_count,

);
The functiondwar f _ranges_deal | oc() takes as input a pointer to a blockdfar f _Ranges array
and the number of structures in the block. It frees all the data in the array of structures.

rev 1.72, 30 Dec 2008 - 67 -

-68 -

5.21 Utility Operations

These functions aid in the management of errors encountered when using functiorgdwtré library
and releasing memory allocated as a resultldfdsvarf operation.

5.21.1 dwarf_errno()
Dwar f _Unsi gned dwarf _errno(
Dwarf _Error error)

The functiondwar f _errno() returns the error number corresponding to the error specified bgr .

5.21.2 dwarf_errmsg()

const char* dwarf_errnsg(
Dwarf Error error)

The functiondwar f _errnmsg() returns a pointer to a null-terminated error message string corresponding
to the error specified bgrror. The string returned bgwar f _errnsg() should not be deallocated
usingdwar f _deal | oc().

The set of errors enumerated in Figure 3 Wwel@re defined in Dwarf 1. These errors are not used by the
current implementation of Dwarf 2.

SYMBOLIC NAME DESCRIPTION

DW_DLE_NE Noerror (0)

DW_DLE_VMM Version of DNARF information newer than libdwanf
DW_DLE_MAP Memorymap failure

DW_DLE_LEE Propagtion of libelf error

DW_DLE_NDS Nodebug section

DW_DLE_NLS Noline section

DW_DLE_ID Requestethformation not associated with descriptor
DW_DLE_IOF I/Ofailure

DW_DLE_MAF Memoryallocation failure

DW_DLE_IA Invalid argument

DW_DLE_MDE Mangleddebugging entry

DW_DLE_MLE Mangledine number entry

DW_DLE_FNO Filedescriptor does not refer to an open file
DW_DLE_FNR Fileis not a regular file

DW_DLE_FWA File is opened with wrong access
DW_DLE_NOB Fileis not an object file

DW_DLE_MOF Mangledbiject file header

DW_DLE_EOLL Endof location list entries

DW_DLE_NOLL Nolocation list section

DW_DLE_BADOFF Invdlid offset

DW_DLE_EOS Endf section

DW_DLE_ATRUNC Abbreviations section appears truncated
DW_DLE_BADBITC Addresssize passed to dwarf bad

Figure6. List of Dwarf Error Codes

The set of errors returned by SGi bdwar f functions is listed bels. Some of the errors are SGI
specific.

rev 1.72, 30 Dec 2008 - 68 -

-69 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_DBG_ALLOC
DW_DLE_FS®T_ERFOR
DW_DLE_FS®T_MODE_ERFOR
DW_DLE_INIT_ACCESS_WRNG
DW_DLE_ELF BEGIN_ERRPR
DW_DLE_ELF_GETEHDR_ERRR
DW_DLE_ELF_GETSHDR_ERBR
DW_DLE_ELF_STRPTR_ERGR
DW_DLE_DEBUG_INFO_DUPLICAE
DW_DLE_DEBUG_INFO_NULL
DW_DLE_DEBUG_ABBREV_DUPLICAE
DW_DLE_DEBUG_ABBREV_NULL
DW_DLE_DEBUG_ARANGES_DUPLICAE
DW_DLE_DEBUG_ARANGES_NULL
DW_DLE_DEBUG_LINE_DUPLICAE
DW_DLE_DEBUG_LINE_NULL
DW_DLE_DEBUG_LOC_DUPLICAE
DW_DLE_DEBUG_LOC_NULL
DW_DLE_DEBUG_MACINFO_DUPLICAE
DW_DLE_DEBUG_MACINFO_NULL
DW_DLE_DEBUG_PUBNAMES_DUPLICAE
DW_DLE_DEBUG_PUBMMES_NULL
DW_DLE_DEBUG_STR_DUPLICAE
DW_DLE_DEBUG_STR_NULL
DW_DLE_CU_LENGTH_ERRR
DW_DLE_VERSION_STAMP_ERRR
DW_DLE_ABBREV_OFFSET_ERBR
DW_DLE_ADDRESS_SIZE_ERBR
DW_DLE_DEBUG_INFO_PTR_NULL
DW_DLE_DIE_NULL
DW_DLE_STRING_OFFSET_BD
DW_DLE_DEBUG_LINE_LENGTH_B\D
DW_DLE_LINE_PROLOG_LENGTH_BD
DW_DLE_LINE_NUM_OPERANDS_BD
DW_DLE_LINE_SET_ADDR_ERRR
DW_DLE_LINE_EXT_OPCODE_BD
DW_DLE_DWARF_LINE_NULL
DW_DLE_INCL_DIR_NUM_BAD
DW_DLE_LINE_FILE_NUM_BAD
DW_DLE_ALLOC_FAIL
DW_DLE_DBG_NULL
DW_DLE_DEBUG_FRAME_LENGTH_BD
DW_DLE_FRAME_VERSION_BD
DW_DLE_CIE_RET_ADDR_REG_ERBR
DW_DLE_FDE_NULL
DW_DLE_FDE_DBG_NULL
DW_DLE_CIE_NULL
DW_DLE_CIE_DBG_NULL
DW_DLE_FRAME_TABLE_COL_B\D

Couldnot allocate Dwarf_Debug struct
Errorin fstat()-ing object
Errorin mode of object file
Incorrectaccess to dwarf_init()
Errorin elf_begin() on object
Errorin elf_getehdr() on object
Errorin elf_getshdr() on object
Errorin elf_strptr() on object
Multiple .debug_info sections
Nodata in .debug_info section
Multiple .debug_abbresections
Nodata in .debug_abbreection
Multiple .debug_arange sections
Nodata in .debug_arange section
Multiple .debug_line sections
Nodata in .debug_line section
Multiple .debug_loc sections
Nodata in .debug_loc section
Multiple .debug_macinfo sections
Nodata in .debug_macinfo section
Multiple .debug_pubnames sections
Nodata in .debug_pubnames section
Multiple .debug_str sections
Nodata in .debug_str section
Lengthof compilation-unit bad
IncorrectVersion Stamp
Offset in .debug_abbvebad
Sizeof addresses in target bad
Pointeinto .debug_info in DIE null
Null Dwarf_Die
Offset in .debug_str bad
Lengthof .debug_line segment bad
Lengthof .debug_line prolog bad
Numberof operands to line instr bad
Errorin DW_LNE_set_address instruction
Errorin DW_EXTENDED_OPCODE instructio
Null Dwarf_line argument
Errorin included directory for gen line
File number in .debug_line bad
Failed to allocate required structs
Null Dwarf_Debug argument
Errorin length of frame
Bad version stamp for frame
Badregister specified for return address
NullDwarf_Fde argument
NoDwarf_Debug associated with FDE
Null Dwarf_Cie argument
NoDwarf_Debug associated with CIE
Badcolumn in frame table specified

rev 1.72, 30 Dec 2008

Figure 7. List of Dwarf 2 Error Codes (continued)

-69 -

-70 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_PC_NO_IN_FDE_RANGE
DW_DLE_CIE_INSTR_EXEC_ERBR
DW_DLE_FRAME_INSTR_EXEC_ERRR
DW_DLE_FDE_PTR_NULL
DW_DLE_RET_OP_LIST_NULL
DW_DLE_LINE_CONTEXT_NULL
DW_DLE_DBG_NO_CU_CONTEXT
DW_DLE_DIE_NO_CU_CONTEXT
DW_DLE_FIRST_DIE_NT_CU
DW_DLE_NEXT_DIE_PTR_NULL
DW_DLE_DEBUG_FRAME_DUPLICAE
DW_DLE_DEBUG_FRAME_NULL
DW_DLE_ABBREV_DECODE_ERRR
DW_DLE_DWARF_ABBREV_NULL
DW_DLE_ATTR_NULL
DW_DLE_DIE_BAD
DW_DLE_DIE_ABBREV_BAD
DW_DLE_ATTR_FORM_B\D
DW_DLE_ATTR_NO_CU_CONTEXT
DW_DLE_ATTR_FORM_SIZE_BD
DW_DLE_ATTR_DBG_NULL
DW_DLE_BAD_REF_FORM
DW_DLE_ATTR_FORM_OFFSET_ABD
DW_DLE_LINE_OFFSET_BD
DW_DLE_DEBUG_STR_OFFSET 4D
DW_DLE_STRING_PTR_NULL
DW_DLE_PUBNAMES_VERSION_ERBR
DW_DLE_PUBNAMES_LENGTH_RBD
DW_DLE_GLOBAL_NULL
DW_DLE_GLOBAL_CONTEXT_NULL
DW_DLE_DIR_INDEX_BAD
DW_DLE_LOC_EXPR_BD
DW_DLE_DIE_LOC_EXPR_BD
DW_DLE_OFFSET_BD
DW_DLE_MAKE_CU_CONTEXT_RIL
DW_DLE_ARANGE_OFFSET_BD
DW_DLE_SEGMENT_SIZE_BD
DW_DLE_ARANGE_LENGTH_B\D
DW_DLE_ARANGE_DECODE_ERRR
DW_DLE_ARANGES_NULL
DW_DLE_ARANGE_NULL
DW_DLE_NO_FILE_NAME
DW_DLE_NO_COMP_DIR
DW_DLE_CU_ADDRESS_SIZE_BD
DW_DLE_ELF_GETIDENT_ERRR
DW_DLE_NO_AT_MIPS_FDE
DW_DLE_NO_CIE_FOR_FDE
DW_DLE_DIE_ABBREV_LIST_NULL
DW_DLE_DEBUG_FUNCNAMES_DUPLICAE
DW_DLE_DEBUG_FUNCMMES_NULL

PQequested not in address range of FDE
Errorin executing instructions in CIE
Errorin executing instructions in FDE
NullPointer to Dwarf_Fde specified
Ndocation to store pointer to Dwarf_Frame_Oq
Dwarf_Line has no context
dbfas no CU context for dwarf_siblingof()
Dwrf _Die has no CU context
FirstDIE in CU not DW_TRG_compilation_unit
Erroin moving to next DIE in .debug_info
Multiple .debug_frame sections
Nodata in .debug_frame section
Errorin decoding abbreviation
Null Dwarf_Abbres specified
Null Dwarf_Attribute specified
DIE bad
No abbreviation found for code in DIE
Inappropriateattribute form for attribute
NdaCU context for Dwarf_Attribute struct
Sizeof block in attribute value bad
NoDwarf_Debug for Dwarf_Attribute struct
Inappropriatorm for reference attribute
Offset reference attribute outside current CU
Offset of lines for current CU outside .debug_lin
Offset into .debug_str past its end
Pointeto pointer into .debug_str NULL
\ersion stamp of pubnames incorrect
Readpubnames past end of .debug_pubnames
Null Dwarf_Global specified
No context for Dwarf_Global gen
Errorin directory inde read
Badoperator read for location expression
Expectedblock value for attribute not found
Offset for next compilation-unit in .debug_info b
Could not male CU mntext
Offset into .debug_info in .debug_aranges bad
Segment size should be 0 for MIPS processors
Lengthof arange section in .debug_arange bad
Arangeglo not end at end of .debug_aranges
NULL pointer to Dwarf_Arange specified
NULL Dwarf_Arange specified
No file name for Dwarf_Line struct
NdCompilation directory for compilation-unit
CU header address size not match Elf class
Errorin elf_getident() on object
DIEdoes not hee DW_AT_MIPS_fde attribute
NEIE specified for FDE
Noabbreviation for the code in DIE found
Multiple .debug_funcnames sections
Nodata in .debug_funcnames section

Figure 8. List of Dwarf 2 Error Codes (continued)

rev 1.72, 30 Dec 2008

-70 -

[¢)

-71-

SYMBOLIC NAME

DESCRIPTION

DW_DLE_DEBUG_FUNCNAMES_VERSION_ERBR
DW_DLE_DEBUG_FUNCNAMES_LENGTH_BD
DW_DLE_FUNC_NULL
DW_DLE_FUNC_CONTEXT_NULL
DW_DLE_DEBUG_TYPENAMES_DUPLICAE
DW_DLE_DEBUG_TYPEMMES_NULL
DW_DLE_DEBUG_TYPENAMES_VERSION_ERBR
DW_DLE_DEBUG_TYPENAMES_LENGTH_BD
DW_DLE_TYPE_NULL
DW_DLE_TYPE_CONTEXT_NULL
DW_DLE_DEBUG_VARNAMES_DUPLICAE
DW_DLE_DEBUG_VARNAMES_NULL
DW_DLE_DEBUG_VARNAMES_VERSION_ERBR
DW_DLE_DEBUG_VARNAMES_LENGTH_RD
DW_DLE_VAR_NULL
DW_DLE_VAR_CONTEXT_NULL
DW_DLE_DEBUG_WEAKNAMES_DUPLICAE
DW_DLE_DEBUG_WEAKNAMES_NULL

DW_DLE_DEBUG_WEAKNAMES_VERSION_ERBR

DW_DLE_DEBUG_WEAKNAMES_LENGTH_RBD
DW_DLE_WEAK_NULL
DW_DLE_WEAK_CONTEXT_NULL

\ersion stamp in .debug_funcnames bag

Lengtherror in reading .debug_funcnames

NULL Dwarf_Func specified

Nocontext for Dwarf_Func struct
Multiple .debug_typenames sections
Nodata in .debug_typenames section
\ersion stamp in .debug_typenames bad

Lengtherror in reading .debug_typenames

NULL Dwarf_Type specified

Nocontext for Dwarf_Type gien

Multiple .debug_varnames sections
Nodata in .debug_varnames section
\ersion stamp in .debug_varnames bad

Lengtherror in reading .debug_varnames

NULL Dwarf_Var specified

Nocontext for Dwarf_Var gien

Multiple .debug_weaknames section
Nodata in .debug_varnames section
\ersion stamp in .debug_varnames bad
Lengtherror in reading .debug_weaknan
NULL Dwarf_Weak specified
Nocontext for Dwarf_Weak gén

Figure9. List of Dwarf 2 Error Codes

es

This list of errors is not necessarily complete; additional errors might be added when functionality to create
delugging information entries are added ltbdwarf and by the implementors dfbdwarf to describe
internal errors not addressed by thewablist. Someof the aboe arors may be unused. Errors may not

have the same meaning in different implementations.

5.21.3 dwarf_seterrhand()

Dwar f _Handl er dwarf _set errhand(
Dwar f _Debug dbg,
Dwar f _Handl er errhand)

The functiondwar f _set er r hand() replaces the error handler (sbsar f _i ni t ()) with er r hand.
The old error handler is returned. This function is currently unimplemented.

5.21.4 dwarf_seterrarg()

Dwarf Ptr dwarf_seterrarg(
Dwar f _Debug dbg,
Dwarf _Ptr errarg)

The functiondwar f _set errar g() replaces the pointer to the error handler communication area (see
dwarf _init()) with errarg. A pointer to the old area is returnedhis function is currently

unimplemented.

5.21.5 dwarf_dealloc()

rev 1.72, 30 Dec 2008 -71-

-72 -

voi d dwarf_deal | oc(
Dwar f _Debug dbg,
voi d* space,
Dwar f _Unsi gned type)

The functiondwar f _deal | oc frees the dynamic storage pointed tosipace, and allocated to the gén
Dwar f _Debug. The agumentt ype is an intger code that specifies the allocation type of tiggore
pointed to by thspace. Refer to section 4 for details dibdwarf memory management.

rev 1.72, 30 Dec 2008 -72-

-73-

rev 1.72, 30 Dec 2008 -73 -

CONTENTS

L. INTRODUCTION coiiiiiiiiie ettt e e e e e e e e s e e e e e e e e e aaaeenes 1
0 I 0])Y/ 1 o | o | SRR 1
1.2 PUrpPOSE and SCOPE......coeviiiiiiiiiiiiee ettt e e 1
1.3 DOCUMENT HISTOMY .oieiiiiee et 2
1.4 DEfiNItIONS oovuieiiiiei e e e 2
1.5 OVEIVIBW ottt e et e e e e et e e e e e eaaa e e e e eennans 2
1.6 IteMS ChanQedcoooieeiiiii e 3
1.7 HeMS REMMEA ..o eaanenes 3
1.8 ReVISION HISIOIY ...coiieiiiii e 3

2.Types DEefiNItIONS ...ocoveeii i 4
2.1 General DesCriPLiONuuuiiiieiiece e 4
2.2 SCAlAr TYPES s 4
2.3 AQQrEIAE TYPES .ottt et aaas 5

2.3.1L0CatioN RECOIuuiiiiiiieeiiiieeeeeiii e 5
2.3.2L0ocation DEeSCIPLIONciiiiiieieiieiieeiiii e 6
2.3.3Data BIOCK ...covveiiiiiiee 6
2.3.4Frame Operation CoOdeSMBRF 2coooeiiiiiiiiiieeereiee e, 6
2.3.5Frame RegtableMARF 2 ..o, 7
2.3.6 Frame Operation CodesMARF 3 (and WARF2) 8
2.3.7Frame RegtableMARF 3 ..., 8
2.3.8Macro Details ReCOrd.........cccouvviiiiiiiiiiiiie e 10
2.4 OPAGUE TYPES .oeneiiiieeeei ettt ettt e e e eaaans 10

S.Error HandliNgoooiii it 12
3.1 Returned values in the functional interface............ccccccceeveeeeene. 13

4. Memory ManagemMeNtiiiuiiiieei e 14
4.1 Read-only Properti€s.........ciiiieiiiiiiiii et 14
4.2 Storage DealloCationcviieiiiiiiiii e 14

5. Functional INterface ... 16
5.1 Initialization OPEerationsuceiieeiiiiiiiie e 16

5.2.2dwarf init() coveeeeeieieeee e 16
5.1.2dwarf_elf init() ..oooovveeriiiieeee 17
5.1.3dwarf_get_elf() ..oooovvrriiiiieiee 17

5.1.4dwarf _finish() ooovveeiiieie 18

5.2 Debugging Information Entry Deéry Operations 18

5.2.1 Debugging Information Entry Debugger bety
OPEIALIONS ..o 18

5.2.2dwarf_next_cu_header()......cccccceeiiiriiiiiiiiieeeeeiin e 18
5.2.3dwarf_siblingof()cvooiiiiiiiiiie 19
5.2.4dwarf_Child() ..o.ooiveeieeie e 19
5.2.5dwarf_offdie() ...coooiiiiii 19

5.3 Debugging Information Entry Query Operations...................... 19
RS T 0 V17 Ty = Vo [20
5.3.2dwarf_dieoffSet()uvviiiiiiiiiiii i 20
5.3.3dwarf_die_ CU_offSet()oeveeerieiiiiiiieieiiie e 20
5.3.4dwarf_die_CU_offset_range().......ccccceveereeerirririiieeneeeiinnnn, 21
5.3.5dwarf_diename()oeee i 21
5.3.6dwarf_die_abbrev_code()...........ccovvrriiiiiiiiiiiii 21
5.3.7dwarf_attrlist()coovvvieiiiiiii s 21
5.3.8dwarf_hasattr()eoeeeiiieiiii e 22
5.3.9dwarf_attr() ..ooeovveiiieiiee e 22
5.3.2@wWarf _IOWPC() ovvverieieiieiiiie e 22
5.3.28Hwarf _highpe() «oooeeeeeiiee e 22
5.3.12lwarf _DYIESIZE() vevvvviieeieiiiiee e 23
5.3.13lwarf_DItSIZE() ..ovvvvvriieeieee s 23
5.3.14warf_DItoffSEt()euvvviiiieiiiiii 23
5.3.18lwarf _srclang() ...ooooveeeriiiieieie e 23
5.3.1@lwarf_arrayorder()ccceereeeeeeiiiii e 24

5.4 Attribute FOrm QUENESccoeviiieeie e 24
5.4.1dwarf_hasform()cccooveiiiiiiieie e 24
5.4.2dwarf_whatform()cceeeiiiiiiiii e 24
5.4.3dwarf_whatform_direct()cccuvmiiriiiiiiiiiieeeeeiiee e 25
5.4.4dwarf_whatattr()cooeeiiiiiiieiiii e 25
5.4.5dwarf_formref() ..o 25
5.4.6dwarf_global _formref()ccccooeiiiiiiii 25
5.4.7dwarf_formaddr()coeeeeiiiiiiii 26
5.4.8dwarf_formflag()cccoooveiiimiiiii 26
5.4.9dwarf_formudatal)ccoeeeriiiiiiiiii s 26
5.4.1@warf_formsdatal)cccooeereieiiiiiiiie e 26
5.4.1Hwarf_formblock()ccoovvviiiiiiii 26

5.4.12warf_formstring() «....ooveevrireieiieiiie e 27

5.4.12. 1dwarf_[1oClisSt_N() .eeovveeiieeiiiiii e 27
5.4.12.Awarf _10ClSt() ..ovovvieiriiiiiiieeeee 28
5.4.12.3warf_loclist_from_expr().......ccccceeeiireerieriiineenennnns 29
5.5 Line Number OperationsS..........ccccuuuiiiiiiiiiiiiieeeeeeien e 30
5.5.1Get A SEt Of LINES ...cooiiiieiiiiieeeee e 30
5.5.1.1 dwarf_Srclines() «.oceeveeeveevieeiiiiie e 30
5.5.2 Get the set of Source File Names........cccccooevvvviiiiiinieeeennnns 31
5.5.3 Get information about a Single Table Line....................... 32
5.5.3.1 dwarf_linebeginstatement()...........cccccceevviereennnnnnnn. 32
5.5.3.2 dwarf_lineendsequence()........cooovveevveiniieieeiinnnneenn. 32
5.5.3.3 dwarf_lineno() ...ccooeevvreiiiiiieiieie e 32
5.5.3.4 dwarf_line_srcfileno()ccccoeoevieiiiiiiiiiiiieeeeee, 33
5.5.3.5 dwarf_lineaddr()ccoooiviiiiiiiiii e 33
5.5.3.6 dwarf _lineoff()coovrmiiiiiiiiiii 33
5.5.3.7 dwarf_liN€SIC() .uuvuvvieereeiiiieeeeeeeiee e 33
5.5.3.8 dwarf_lineblock()ccooveiiiiiiiiiii 34
5.6 Global Name Space Operations............cccvvuvriieeeeeeiiiinieeeeeeninnns 34
5.6.1 Debugger Interface Operations.........cccccoveevveeviiieeeeeeennnnnn. 34
5.6.1.1 dwarf_get_globals().......ccccoeeiiiiiiiiiii s 34
5.6.1.2 dwarf_globname()cccooeevviiiiiiiiiiiei e 35
5.6.1.3 dwarf_global_die_offset()ccccceevveieiieiiniiieeennnns 35
5.6.1.4 dwarf_global_cu_offset()cccceeiiveiiiiiiiiiieeeieennns 36
5.6.1.5 dwarf_get_cu_die_offsetvgn_cu_header_offset() 36
5.6.1.6 dwarf_global_name_offsetsS().........cccccceeevrerrennnnnnn. 36
5.7 DWARF3 Type Names Operations..........ccccovvvvvviiiieeieiiiiineeeneennns 37
5.7.1 Debugger Interface Operations..........cccceeeeeveeviiieeeeeennnnnnn. 37
5.7.1.1 dwarf_get_pubtypes().....ccceevveerreerriiiieieieiiiiie e 37
5.7.1.2 dwarf_pubtypename()........ccoeeevveerriiiiiiiiiiiiieeeeeeennn 38
5.7.1.3 dwarf_pubtype_die_offset()......cccccceveerrieriiiiiiennnnns 38
5.7.1.4 dwarf_pubtype_cu_offset(}........cccccuviiiiiiierininnennn. 38
5.7.1.5 dwarf_pubtype_name_offsets()........cccccevveerrerrnnnnn. 38
5.8 User Defined Static Variable Names Operations..................... 39
5.9 Weak Name Space OperationS.........oooeeeevvivieieiiiiiiiininee e, 39
5.9.1 Debugger Interface Operations.........cccccevvevveeiviinneeeeennnnnnn. 39
5.9.1.1 dwarf_get Weaks()cccoveeeiieiiiiiiieeeeeiee e 39
5.9.1.2 dwarf_weakname()cccooeeerveiiiiiieeeeei e 40

5.9.1.3 dwarf_weak _cu_offset()..........ccccervriiiiiriiiiiiniieenenns 41

5.9.1.4 dwarf_weak _name_offsets()........ccccevverrriiirirrnnnns 41
5.10Static Function Names Operations.........ccccovvvvviiieeeeeeiiieneeeeeennns 41
5.10.Debugger Interface Operations..........cccceeeeevvevviieeeeeeenennnn. 41
5.10.1.1dwarf_get funcs().......coeveerrmiiiiiiieiiiiieeeeeeiee e 41
5.10.1.Awarf_funcname()ccooeeeveeiiiiiieiieie e 43
5.10.1.3warf_func_die_offset()cccvverrriiiiiriiiiiiieeeeenns 43
5.10.1.4dwarf_func_cu_offSet()ceveerrriiiiiiiiiiiiiieeeeeeenns 43
5.10.1.5dwarf_func_name_offsets()..........cccccccevieereernnnnnnn. 43
5.11User Defined Type Names OperationsS..........ccoovveeeeeeeeeeeeevnnnnnnns 44
5.11.Debugger Interface Operations...........cceeveevveeiiiiineeeeeenennnn. 44
5.11.1.1dwarf_get types()...ceeeeeeeeeriiiieeieiiii e 44
5.11.1.Awarf_typename().......ccceeerriiieeeeeiiiiie e e 45
5.11.1.3warf_type_die_offset()ccoeevreerriiiiiiiiiiiiiieeeeees 45
5.11.1.4dwarf_type_cu_offSet().......cccccvvveireerreriiiiieeeeeeiiinnn. 45
5.11.1.5dwarf_type _name_offsetsS()..........ccccvvvvivreereernnnnnnn. 46
5.12User Defined Static Variable Names Operations..................... 46
5.12.Debugger Interface Operations..........ccccceeeevvveiiiieeeeeeeinnnnn. 46
5.12.1.1dwarf_get vars().....cccoeeeveeerieiiiiiieeeeecin e 46
5.12.1.Awarf_varname().......ccoeeveeiieiiiiinieeeee e 47
5.12.1.3warf_var_die_offset()cccccveeiieeriiiiiiiieeeeeeiiinn. 47
5.12.1.4dwarf_var_cu_offset()cccceeevievriiiiiiiiiieeeiiiie e, 48
5.12.1.5dwarf_var_name_offsetS()........cccceeevrriiiiriiiinnennnnns 48
5.13Macro Information OperationsS.........ccceuveiieeiieeiiiie e ee e 48
5.13.15eneral Macro Operations............ccoovvveeeiviiiiiiiinneeeeeeeeeeee 48
5.13.1.1dwarf_find_macro_value_start(}..........cccccceeereeneee. 48
5.13.Debugger Interface Macro Operations............cccccceeeeeeennnnn 48
5.13.2 av Levd Macro Information Operations..............ccc........ 49
5.13.3.1dwarf_get_macro_details()..........cccceeerrriiiirrnnnnnne. 49
5.14Lov Levd Frame Operationsccevvevvveiiiiieieeeeiiiseeeeeeiin e 49
5.14.0.1dwarf_get_fde liSt()ooevvevreiiiieiieiiie e, 52
5.14.0.dwarf_get_fde_list_en().....cooeeeveeriiiiiiiiiiiiiiiies 53
5.14.0.3warf_get_cie_of fde().........ccvvrriiiieiiiiiiiiieeeeeennn, 54
5.14.0.4dwarf_get_fde_for_die().....ccceeevvverriiiiiiiiiiiiieeeeenns 54
5.14.0.5dwarf_get_fde_range().......cccccovvirrriiierriiiniieieeiinnnnn. 55
5.14.0.&dwarf_get_cie_info()ccooeeeerreiiiiiieieeiiii e, 55
5.14.0. dwarf_get_fde_instr_bytes()........cccoeeevrrrrrineeerrnnns 55

5.14.0.&8warf_get _fde_info_for_reg()...........ccccevvveneenrennnns 56

5.14.0.9dwarf_get_fde_info_for_all_regs()........ccccceeveerenen 56
5.14.0.1@warf_set_frame_rule_table_size()...................... 57
5.14.0.1dwarf_set_frame_rule_inital_value().................... 57
5.14.0.1@warf_get_fde_info_for_reg3()......cccccvviinrerrrrnnnnnn. 57
5.14.0.1@warf_get fde_info_for _cfa reg3().........ccccuvvunn... 58
5.14.0.1dwarf _get fde_info_for_all regs3(}........ccccccvunn... 59
5.14.0.1warf_get fde_N()ccoeereeiieiiiiiii e 59
5.14.0.1dwarf_get fde_at pC().....cccvvevvieriieiiiiiiieieeiicee e, 60
5.14.0.1dwarf_expand_frame_instructions()..........cccc....... 60
5.14.0.1@wvarf_get_fde_exception_info()..........cccevvvureennee. 61
5.19 ocation Expression Evaluation..............cccccceeveeeviiiiiiii e, 61
5.15.1 ocation List Internaldel Interfaceccccceeeiiiieiennnnnnn. 61
5.15.1.1dwarf_get_loclist_entry()ccccevviiiriiiiiiiiiieeiieennns 61
5.16ADDIreVvIatioNS @CCESS.....coovii it 62
5.16.Hwarf_get_abbrev()........ccoeiiiiiii 62
5.16.2lwarf_get_abbrev_tag().....ccccoooviiriiiiiii 63
5.16.8lwarf_get _abbrev_code().........ccovvvmiiiiiiiiii 63
5.16.4lwarf_get_abbrev_children_flag()..........ccvvvvvviiiiirirnnnnnnnn. 63
5.16.%lwarf_get_abbrev_entry()........cooovveiiiiiii 63
5.17String Section OPerationS...........cccvevuiiieeieiiiiiie e e 64
5.17.0warf_get Str() .oooeeeeeieie e 64
5.18Address Range OperationsS............ovveeiiiiiiiineeeeeeiiie e 64
5.18.Hwarf_get_aranges().......cceeeeeeeeerriiiieeeeiiiie e 64
5.18.2warf_get_arange()........cceveerruiiiierieiiiie e 65
5.18.8lwarf_get_cu_die_offset().......cccoovrerrieiiiiiiiiii e, 65
5.18.4lwarf_get _arange cu_header_offset().............cceevvrrnnnn... 65
5.18.8lwarf_get_arange info()........cccccuviviieiiiiiiiiiieeeeicee e, 66
5.19General Lay Levd OperationSocoeevveiiiieiieiiiiineeeceeiiene e eeeeenns 66
5.19.Hwarf_get_address _Siz€().....ccoeeeevreirriiiieiiiiiiiee e, 66
5.20Ranges Operations (.debug_ranges)......ccccccoeevvvviriiiiieiiiiinnnnnn. 66
5.20.Hwarf_get rangesS().....oeeeeeeerrminieeieeiiiiee e 66
5.20.28lwarf_ranges_dealloc()..........cevvieviiiiiiiiiiiiieiei e 67
5.21UtIlIty OPEratiONScooeeeieiiiieeeiieiie e 68
5.21.0warf_ermrno() cooeeoeeeeieeiiiiee e 68
5.21.2warf errmsSg() «oooeeeeeriiiiieieee e 68
5.21.8lwarf_seterrhand()..........coeeveeeiieiiiiiieee e 71

5.21.4warf_seterrarg()c.ceeeeeeeeeeiiiieeeeeeiiee e

5.21.%lwarf_dealloc()

Vi

LIST OF FIGURES

FIQUre Balar TYPES .. oo eeeees 4
Figure ZError INdICAtiONScoieiiiiiiiiii e 13
Figure Rllocation/Deallocation Identifiers..........cccooeevvviiiiiiiiiiviiiieneee, 15
Figure £rame Information Rule Assignments............cvvvvviiiieveeiinnnnnn. 50
Figure B-rame Information Special Values..............cccccceeiiiiiiiiiiien e, 51
Figure @ist of Dwarf Error Codes..........oiviiiiiiiiiiie e, 68
Figure List of Dwarf 2 Error Codes (continued).............ccoevvviiierennnnns 69
Figure &.ist of Dwarf 2 Error Codes (continued).............cccevvvieeeernnnns 69
Figure Qist of Dwarf 2 Error Codes.......coooovvvviiiiiiiiiiiiiie e 71

Vii

A Consumer Library Interfaceto DWARF

David Anderson

ABSTRACT

This document describes an intex¢ to a library of functions to access
DWARF debugging information entries and WBRF line number
information (and other WARF2/3 information). It does not mad
recommendations as towdhe functions described in this document should
be implemented nor does it suggest possible optimizations.

The document is oriented to reading/BRRF version 2 and version Jhere
are certain sections which are SGl-specthose are clearly identified in the
document).

rev 1.72, 30 Dec 2008

0. UNIX is a registered trademark of UNIX System Laboratories, incthe United
States and other countries.

