A Consumer Library Interfaceto DWARF

David Anderson

1. INTRODUCTION

This document describes an interfacelitwiwarf, a library of functions to prade access to WARF
delugging information records, \MARF line number information, WARF address range and global
names information, weak names informationVERF frame description information, VBARF static
function names, WARF static variables, andARF type information.

The document has long mentioned the "Unix International Programming Languages Special Interest
Group" (PLSIG), under whose auspices th&/ARF committtee w&s formed around 1991'Unix
International” was disbanded in the 1998id no longer exists.

The DNARF committee publishedWARF2 July 27, 1993.

In the mid 199 this document and the library it describes (which the committeer eedorsed, hang
decided not to endorse or appeoany particular library interface) was madeatlable on the internet by
Silcon Graphics, Inc.

In 2005 the WWARF committee bgen an dfiliation with FreeStandardsgr In 2007 FreeStandardsgpr
merged with The Linux Bundation. Th&WARF committee dropped itsfdfation with FreeStandardsgr
in 2007 and established the aifistd.og website. Seéhttp://www.dwarfstd.og" for current information
on standardization activities and a ga the standard.

1.1 Copyright
Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007 David Anderson.

Permission is hereby granted to gamr republish or use anor dl of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that dud be useful, but WITHOUT ANY WRRANTY;
without esen the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to acG&8RP delugging
information. There is no effort made in this document to address the creation of these records as those
issues are addressed separately (see "A Producer Library Interfad@\RHMD).

Additionally, the focus of this document is the functional irded, and as such, implementation as well as
optimization issues are intentionally ignored.

rev 1.66, 04 July 2007 -1-



1.3 Document History

A document vas written about 1991 which had similar layout and iateé. Writterby people from Hal
Corporation, That document described a library for readiMjARF1. Theauthors distributed paper
copies to the committee with the clearly expressed intent to propose the document as a suppated interf
definition. Thecommittee decided not to pursue a library definition.

SGI wrote the document you areweeading in 1993 with a similar layout and content arghration,

but it was complete documentwadte with the intent to read WARF2 (the DVARF version then in
existence). Theantent was (and is) to also future revisions of WARF All the function interces

were changed in 1994 to uniformly return a simple integer success-code/fs€# 1) OK etc), generally
following the recomendations in the chapter titled "Candy Machine Interfaces" of "Writing Solid Code", a
book by Stee Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIES) are thgnsents of information placed in thelebug_*

sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic sourcesk debugging. Referto the latest DWARF Debugging Information

Format" from www.dwarfstd.og for a more complete description of these entries.

This document adopts all the terms and definitionDWARF Debugging Information Format" versions 2
and 3. It originally focused on the implementation at Silicon Graphics, lacndy attempts to be more
generally useful.

1.5 Overview

The remaining sections of this document describe the proposed interfacedwar f , first by describing

the purpose of additional types uhefd by the interface, followed by descriptions of theilable
operations. Thiglocument assumes you are thoroughly familiar with the information contained in the
DWARF Debugging Information Format document.

We sparate the functions into\&eal categories to emphasize that not all consumers v use all the
functions. V¢ all the catgories Delgger Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the ratlgr &t of function calls easier to
understand.

Unless otherwise specified, all functions and structures should be takbeing designed for Dejger
consumers.

The Debugger Interface of this library is intended to be used bygdebs. Theanterface is lov-level
(close to dwarf) but suppresses irkglet detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sectianep at need. Andven then will probably
want to absorb only the information in a single compilation unit at a titndebugger does not care about
implementation details of the library.

The Internal-lgel Interface is for a WARF prettyprinter and cheek A thorough prettyprinter will ant

to knaw al kinds of internal things (lik ectual FORM numbers and actual offsets) so it can check for
appropriate structure in theVARF data and print (on request) all that internal information for human
users and libdwarf authors and compilaiters. Callsin this interface provide data a debugger does not
care about.

The High-level I nterface is for higher leel access (it not really a high leel interface!). Programsuch as
disassemblers will want to be able to displayvardéinformation about functions and line numbers without
having to iwest too much effort in looking at\MARF.

The miscellaneous interface is just what is lg#rothe error handler functions.

rev 1.66, 04 July 2007 -2-



The following is a brief mention of the changes in this libdwarf from the lgsfidraft for DNARF \ersion
1 and recent changes.

1.6 Items Changed

Added support for various\MARF3 features, Ut primarily a ngv frame-information interface tailorable at
run-time to more than a single ABIl. See dwarf set frame_rule_initalalue() and
dwarf_set frame_rule_table_size(). See also dvarf_get fde info_for_mg3() and
dwarf_get_fde info_for_cfa_g3(). (April 2006)

Added support for BJARF3 .debug_pubtypes section. Corrected various leaks (revising dealloc() calls,
adding n& functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the yioeis deallocation method documented for data returned by
dwarf_srclines() was incapable of freeing all the allocated storage (14 July 2005).

dwarf_netglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pounteneants.
This makes writing safe and correct library-using-code far eabtar justification for this approach, see
the book by Stee Maguire titled "Writing Solid Code" at your bookstore.

1.7 Items Removed

Dwarf_Type was remaed snce types are no longer special.

dwarf_typeof() was remad snce types are no longer special.

Dwarf_Ellist was remeed snce element lists no longer are a special format.
Dwarf_Bounds was renved snce bounds hae been generalized.

dwarf_netdie() was replaced by dwf net _cu_header() to reflect the real wayMBRF is oganized.
The dvarf_netdie() was only useful for getting to compilation unigb®ings, so it does not seem harmful
to remave it in favar of a more direct function.

dwarf_childcnt() is remeed on gounds that no good use was apparent.

dwarf_pre/line() and dvarf_nextline() were remeed on grounds this is better left to a debugger to do.
Similarly, dwarf_dieline() was remeed.

dwarf_islstline() was renved as it was not meaningful for the revisedANBRF line operations.

Any libdwarf implementation might well decide to support all the reeddunctionality and to retain the
DWARF Version 1 meanings of that functionalityhis would be diicult because the original libdwf
draft specification used traditional C library interfaces which confuse dhees returned by successful
calls with exceptional conditions Blfailures and 'no more data’ indications.

1.8 Revision History

March 93 Work on DWNARF2 SGI draft begins
June 94 The function returns are changed to return an error/success code only.
April 2006: Support for BVARF3 consumer operations is close to completion.

rev 1.66, 04 July 2007 -3-



2. Types Definitions

2.1 General Description

Thelibdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects dibdwarf. The types defined by typedefs containedlildwarf.h all use the
convention of addingDwar f _ as a prefix and can be placed in three categories:

« Scalar types : The scalar typesidefl inlibdwarf.h are defined primarily for notational ceenience
and identiication. Dependingn the individual defition, they are interpreted as a value, a pointer
or as a flag.

+ Aggregate types : Some alues can not be represented by a single scalar type;ntbst be
represented by a collection of, or as a union of, scalar and/omaggtgpes.

« Opaque types : The complete idéfon of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opaque type to be used in another
guery or an nstance of a scalar or aggaee type, which is the actual result.

2.2 Scalar Types
The following are the defined Bibdwarf.h:

typedef int Dwar f _Bool ;

typedef unsigned long | ong Dwarf_ OFf;

typedef unsigned | ong | ong Dwarf_Unsi gned;

typedef unsigned short Dwar f _Hal f;

typedef unsi gned char Dwar f _Smal | ;

typedef signed long | ong Dwar f _Si gned;

typedef unsigned | ong | ong Dwarf_Addr;

typedef void *Dwarf_Ptr;

typedef void (*Dwarf_Handl er) (Dwarf_Error *error, Dwarf_Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the libnatyfor representing pc-
values/addresses within the target objelet. f Dwarf_Addr is for pc-values within the target objeite.f
The sample scalar type assignmentsvab@e for alibdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machine. The types mustdbined appropriately for each
implementation of libdarf. A description of these scalar types in the SGI/MIPS environmentes gi
Figure 1.

rev 1.66, 04 July 2007 -4 -



NAME SIZE ALIGNMENT PURPOSE
Dwarf_Bool 4 4 Boolean states
Dwarf_ Off 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Sgned large integer
Dwarf_Addr 8 8 Program address
(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer
(host program)
Dwarf_Handler 4|8 4|8 Pointetto
error handler function

Figurel. Scalar Types

2.3 Aggregate Types

The following aggrgae types are defed by libdwarf.n: Dwarf_Loc, Dwarf_Locdesc,
Dwar f _Bl ock, Dwarf _Frame_Op. Dwarf_Regtabl e. Dwarf_Regtabl e3. While most of

I i bdwar f acts on or returns simple values or opaque pointer types, this small set of structures seems
useful.

2.3.1 Location Record

TheDwar f _Loc type identifies a single atom of a location description or a location expression.

typedef struct {

Dwar f _Smal | I r_atom

Dwar f _Unsi gned I r_nunber;

Dwar f _Unsi gned I r_nunber2;

Dwar f _Unsi gned Ir_offset;
} Dwarf_Loc;

Thel r _at omidentifies the atom corresponding to tB&/ OP_* definition in dwarf.h and it represents
the operation to be performed in order to locate the item in question.

Thel r _nunber field is the operand to be used in the calculation spddify thel r _at omfield; not all
atoms use thisidld. Someatom operations imply signed numbers so it is necessary to cast this to a
Dwar f _Si gned type for those operations.

Thel r _nunber 2 field is the second operand specified byltheat omfield; onlyDW OP_BREGX has
this field. Someatom operations imply signed numbers so it may be necessary to cast this to a
Dwar f _Si gned type for those operations.

Thelr _of fset field is the byte déet (within the block the location record came from) of the atom
specifed by thel r _at omfield. Thisis set on all atoms. This is useful for operatidhg OP_SKI P and
DW OP_BRA.

rev 1.66, 04 July 2007 -5-



2.3.2 Location Description

TheDwar f _Locdesc type represents an ordered listdfar f _Loc records used in the calculation to
locate an item. Note that in marases, the location can only be calculated at runtime of the associated
program.

typedef struct {

Dwar f _Addr I d_I opc;
Dwar f _Addr I d_hi pc;
Dwar f _Unsi gned | d_cents;
Dwarf _Loc* I d_s;

} Dwarf _Locdesc;

Thel d_I opc andl d_hi pc fields provide an address range for which this location descript@lits v
Both of these fields are set zero if the location descriptor is valid throughout the scope of the item it is
associated with. These addresses are virtual memory addressedsetstfadm-something. Theirtual
memory addresses do not account for dseement (none of the pcalues from libdwarf do that, it is up to
the consumer to do that).

Thel d_cent s field contains a count of the numberfar f _Loc entries pointed to by tHed_s field.

Thel d_s field points to an array @war f _Loc records.

2.3.3 Data Block

The Dwarf_Bl ock type is used to contain the value of an attribute whose form is either
DW FORM bl ock1, DW FORM bl ock2, DW FORM bl ock4, DW FORM bl ocks8, or
DW FORM bl ock. lIts intended use is to dedr the value for an attribute of awof these forms.

typedef struct {
Dwar f _Unsi gned bl | en;
Dwarf_ Ptr bl data;
} Dwarf _Bl ock;

Thebl _I en field contains the length in bytes of the data pointed to bylthdat a field.

The bl _dat a field contains a pointer to the uninterpreted data. Since weal>ear f _Ptr here one
must cop the pointer to some other type (typicallyamsi gned char *)so ane can add increments to
index through the data. The data pointed tddlby dat a is not necessarily at guseful alignment.

2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable foMARF3
and for DNVARF2 is described belo

The DNARF2Dwar f _Frame_Qp type is used to contain the data of a single instruction of an instruction-
sequence of le-level information from the section containing frame informatidrhis is ordinarily used
by Internal-le#el Consumers trying to printverything in detail.

rev 1.66, 04 July 2007 -6-



typedef struct {
Dwarf_Small fp_base_ op;
Dwarf_Smal |l fp_extended_op;
Dwar f _Hal f fp_register;
Dwar f _Si gned fp_offset;
Dwarf_Offset fp_instr_offset;
} Dwarf_Frane_Op;

f p_base_op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in t8all Frame Instruction
Encodi ngs figure in thedwar f document. Ifhot used with the Op itis 0.

fp_offset is the address, delta, offset, or second register as defined iCahé Frane
I nstruction Encodi ngs figure in thedwar f document. Ifthis is anaddr ess then the walue
should be cast tbDwar f _Addr ) before being used. In gmmplementation thisiéld *must* be as lage
as the larger of Dwarf_Signed and Dwarf_Addr for this to work propéflgot used with the op it is O.

fp_instr_of fset is the byte offset (within the instruction stream of the frame instructions) of this
operation. lItstarts at O for a gen frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable foMBARF3
and for DNVARF2 is described belo

TheDwar f _Regt abl e type is used to contain thegisterrestore information for all registers at a/egi
PC alue. Normallyused by debuggers.

/* DW_REG_TABLE_SIZE must reflect the number of registers
*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h

*

#define DW_REG_ABLE_SIZE <fill in size here, 66 for MIPS/IRIX>
typedef struct {

struct {
Dwar f _Smal | dw of fset _rel evant;
Dwar f _Hal f dw_r egnhum
Dwar f _Addr dw of f set;

} rul es[ DW REG TABLE Sl ZE] ;
} Dwarf Regtabl e;

The array is indeed by regster number The field values for each indere described né. For clarity we
describe the field values for indeules[M] (M being ag legd array element index).

dw of fset _rel evant is non-zero to indicate thew of f set field is meaningful. If zero then the
dw_of f set is zero and should be ignored.

dw_regnum is the register numberappl i cabl e. If dw offset relevant is zero,
then this is the register nunber of the register containing the value
for register M If dw offset _relevant is non-zero, then this is the

register nunber of the register to use as a base (M my be
DW FRAME CFA COL, for exanple) and the dw offset value applies. The
value of register M is therefore the value of register dw regnumP
dw of fset should be ignored if dwoffset relevant is zero. | f
dw of fset _relevant is non-zero, then the consuner code should add the
value to the value of the register dw regnumto produce the val ue.

rev 1.66, 04 July 2007 -7-



2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2)
This interface is adequate fofMARF3 and for DVARF2. Itis new in libdwarf in April 2006.

The DNARF2 Dwarf_Frame_(p3 type is used to contain the data of a single instruction of an
instruction-sequence of welevel information from the section containing frame information. This is
ordinarily used by Internaldel Consumers trying to printverything in detail.

typedef struct {

Dwar f _Smal | fp_base_op;
Dwar f _Smal | f p_ext ended_op;
Dwar f _Hal f fp_register;

/* Val ue may be signed, depends on op.

Any applicable data_alignnment_factor has

not been applied, this is the raw offset. */
Dwarf _Unsigned fp_offset _or_block |en;
Dwar f _Smal | *f p_expr_bl ock;

Dwarf O f fp_instr_offset;
} Dwarf_ Frane_Op3;

fp_base _op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in t8all Franme Instruction
Encodi ngs figure in thedwar f document. Ifhot used with the Op itis 0.

fp_offset or_ bl ock | en is the address, delta, offset, or second register as defined athHe
Frame Instruction Encodi ngs figure in thedwar f document. Or (depending on the op, it may
be the length of the davf-expression block pointed to Hyp_expr bl ock. If this is anaddr ess then
the value should be cast f®war f _Addr) before being usedln ary implementation this field *must*
be as large as the tpar of Dwarf_Signed and Dwarf_Addr for this to work propetiynot used with the
opitis 0.

fp_expr_bl ock (if applicable to the op) points to a dvfrexpression block whch is
fp_offset or bl ock | en bytes long.

fp_instr_of fset is the byte dbet (within the instruction stream of the frame instructions) of this
operation. lIstarts at O for a gen frame descriptor.

2.3.7 Frame Regtable: DWARF 3
This interface is adequate foMARF3 and for WWARF2. Itis new in libdwarf as of April 2006.

TheDwar f _Regt abl e3 type is used to contain thegisterrestore information for all registers at aqi
PC \alue. Normallyused by debuggers.

rev 1.66, 04 July 2007 -8-



typedef struct Dwarf_Regtable Entry3 s {

Dwar f _Smal | dw of fset _rel evant;
Dwar f _Smal | dw val ue_type;
Dwar f _Hal f dw_r egnum

Dwar f _Unsi gned dw of fset _or_ bl ock | en;
Dwarf Ptr dw_bl ock_ptr;

} Dwar f _Regt abl e_Entry3;

typedef struct Dwarf_Regtabl e3_s {
struct Dwarf_Regtable Entry3_s rt3 _cfa rule;

Dwar f _Hal f rt3_reg_table_size;
struct Dwarf_Regtable Entry3_ s * rt3_rules;
} Dwarf_Regtabl e3;

The array is indeed by regster number The field values for each indere described né. For clarity we
describe the field alues for inde rulesfM] (M being ag legd array element indeg.
(DW_FRAME_CH_COL3 DW_FRAME_SAME_\AL, DW_FRAME_UNDEFINED_MAL are not lgd
array indees, nor is agy index < 0 or > it3_reg_table_size); The caller of routines using this struct must
create data space for rt3_reg_table size entries of struerfCRetable Entry3 s and arrange that
rt3_rules points to that space and that rt§_table_size is set correctlyfhe caller need not (but may)
initialize the contents of the rt3_cfa_rule or the rt3_rules arféne folloving applies to each rt3_rules rule
M:

dw_regnum is the register number applicable. If dw_regnum is
DW_FRAME_UNDEFINED_ ML, then the register | has undefinedlwe. Ifdw_r egnumis
DW_FRAME_SAME_VAL, then the register | has the same value as in the previous frame.

If dw_r egnhumis neither of these two, then the following apply:

dw_val ue_t ype determines the meaning of the othetds. Itis one of W _EXPR_OFFSET
(0), DW_EXPR_\AL_OFFSET(1), W_EXPR_EXPRESSION(2) or
DW_EXPR_VAL_EXPRESSION(3).

If dw_val ue_type is DW_EXPR_OFFSET (0) then this is as ilWARF2 and the det(N)
rule orthe register(R) rule of the\WARF3 and DVARF2 document applies. The value is either:
If dw_of f set _r el evant is non-zero, thedw_r egnumis effectively ignored ut
must be identical to W _FRAME_CFA_COL3 and thedw of f set value applies.
The value of rgister M is therefore the value of Eplus the value oflw_of f set .
The result of the calculation is the address in memory where the value of register M
resides. Thiss the offset(N) rule of the WARF2 and WARF3 documents.

dw_of f set _r el evant is zero it indicates thdw_of f set field is not meaningful.
The value of rgister M is the value currently in gister dw_r egnum (the \alue
DW_FRAME_CRA_COL3 must not appeaonly real rgisters). Thids the rgister(R)
rule of the DVARF3 spec.

If dw_val ue_type is DW_EXPR_OFFSET (1) then this is the thed \offset(N) rule of the
DWARF3 spec applies. The calculation is identical to that\&f BXPR_OFFSET (0) but the
value is interpreted as the value ofjiger M (rather than the address where registervsliue is
stored).

If dw_val ue_t ype is DW_EXPR_EXPRESSION (2) then this is the the expression(E) rule of
the DWVARF3 document.

rev 1.66, 04 July 2007 -9-



-10 -

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopbinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Ea&luate that
expression and the result is the address where the previous value of register M is found.

If dw _value_type is DW_EXPR_\AL_EXPRESSION (3) then this is the the
val_expression(E) rule of the\WARF3 spec.

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopbinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Ea&luate that
expression and the result is the previous value of register M.

The rulert3_cfa_rul e is the current value of the CFA. It is interpreted exactlg l&y

register M rule (as described just akp except that dw_regnum cannot be
CW_FRAME_CR_REG3 or DV_FRAME_UNDEFINED_M\AL or DW_FRAME_SAME_VAL

but must be a real register number.

2.3.8 Macro Details Record
TheDwar f _Macro_Det ai | s type gies information about a single entry in the .debug.macinfo section.

struct Dwarf_Macro Details_s {
Dwarf O f dnd_of f set;
Dwarf _Smal|l dnd_type;
Dwarf _Si gned dnd_I i neno;
Dwar f _Si gned dnd_fil ei ndex;
char * dnd_nacr o;
b
typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;

dnd_of f set is the byte offset, within the .debug_macinfo section, of this macro information.

dnd_t ype is the type code of this macro info entry (or 0, the type code indicating that this is the end of
macro information entries for a compilation uni&ee DW MACI NFO def i ne, etc in the DNVARF
document.

dnd_| i neno is the line number where this entry was found, or 0 if there is no applicable line number.

dnd_fil ei ndex is the file ind& of the file involved. Thisis only guaranteed meaningful on a
DW MACI NFO start _file dnd type. Setto -1 if unknown (see the functional interface for more
details).

dnd_nacr o is the applicable stringFor a DW MACI NFO_def i ne this is the macro name andlue.
For a DW MACI NFO_undef , or this is the macro name-or a DW MACI NFO vendor _ext this is the
vendor-defined stringalue. For otherdnd_t ypes this is 0.

2.4 Opaque Types

The opaque types declaredlibdwarf.h are used as descriptors for querieaiagt DVARF information

stored in various debugging sectioriSach time an instance of an opaque type is returned as a result of a
libdwarf operation Dwar f _Debug excepted), it should be free'd, usidgvar f _deal | oc() when it is

no longer of use (read the following documentation for details, as in at least one case there is a special
routine provided for deallocation anddwarf _deall oc() is not directly called: see

dwarf _srclines()). Somefunctions return a number of instances of an opaque type in a block, by
means of a pointer to the block and a count of the number of opaque descriptors in the block: see the
function description for deallocation rules for such functions. The list of opaque types defined in
libdwarf.h that are pertinent to the Consumer Libranyd their intended use is described helo

rev 1.66, 04 July 2007 -10-



-11 -

typedef struct Dwarf_Debug_s* Dwarf_Debug;

An instance of thé&war f _Debug type is created as a result of a successful calwex f _i nit (), or

dwarf _elf_init(),andis used as a descriptor for subsequent access td modwvar f functions on

that object. The storage pointed to by this descriptor should be not be free'd, using the
dwar f _deal | oc() function. Insteadree it withdwar f _fi ni sh().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of ebwar f _Di e type is returned from a successful call to thear f _si bl i ngof (),
dwarf _chil d, ordwarf _of fdi e() function, and is used as a descriptor for queries about information
related to that DIE. The storage pointed to by this descriptor should be free’ddusing_deal | oc()

with the allocation typ®W DLA_ DI E when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances ofDwar f _Li ne type are returned from a successful call to thearf_srclines()

function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individually free'd, usingwarf deal | oc() with the allocation type

DW DLA LI NEwhen no longer needed.

typedef struct Dwarf_d obal _s* Dwarf_d obal;

Instances obDwar f _G obal type are returned from a successful call todlar f _get _gl obal s()
function, and are used as descriptors for queries about global names (pubnames).

typedef struct Dwarf_Weak s* Dwarf_Weak;

Instances of Dwarf _Weak type are returned from a successful call to the SGlI-dpecif
dwar f _get weaks() function, and are used as descriptors for queries about weak names. The storage
pointed to by these descriptors should be individually free'd, udingrf _deal | oc() with the
allocation type DW DLA WEAK CONTEXT (or DW DLA WEAK, an dder name, supported for
compatibility) when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf _Func type are returned from a successful call to the SGlI-dpecif
dwar f _get funcs() function, and are used as descriptors for queries about static function names.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf _Type type are returned from a successful call to the SGlI-dpecif
dwarf _get _types() function, and are used as descriptors for queries about user defined types.

t ypedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf _Var type are returned from a successful call to the SGlI-dpecif
dwar f _get var s() function, and are used as descriptors for queries about static variables.

typedef struct Dwarf_Error_s* Dwarf_Error;

This descriptor points to a structure that provides detailed information about errors detdatdxaitvgr f .
Users typically provide a location fdri bdwar f to store this descriptor for the user to obtain more
information about the error The storage pointed to by this descriptor should be free'd, using

rev 1.66, 04 July 2007 -11-



-12 -

dwar f _deal | oc() with the allocation typ®wW DLA ERRCRwhen no longer needed.

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances obwar f _At t ri but e type are returned from a successful call todwarf _attrlist(),
ordwarf_attr () functions, and are used as descriptors for queries about attrddutsy Thestorage
pointed to by this descriptor should be individually free'd, usingr f _deal | oc() with the allocation
typeDW DLA_ATTRwhen no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of @war f _Abbr ev type is returned from a successful calldwar f _get _abbrev(),
and is used as a descriptor for queries about aialtiens in the .delg_abbre section. Thestorage
pointed to by this descriptor should be free'd, usthgarf deal | oc() with the allocation type
DW DLA ABBREV when no longer needed.

typedef struct Dwarf_Fde_s* Dwarf_Fde;

Instances oDwar f _Fde type are returned from a successful call to dw&ar f _get fde list(),
dwarf _get _fde for_die(),ordwarf_get_ fde_at_ pc() functions, and are used as descriptors
for queries about frames descriptors.

typedef struct Dwarf_Cie_s* Dwarf_GCie;

Instances oDwar f _Ci e type are returned from a successful call to dearf get fde_list()
function, and are used as descriptors for queries about information that is commanatiofisames.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances oDwar f _Ar ange type are returned from successful calls todar f _get _ar anges(),
ordwar f _get _arange() functions, and are used as descriptors for queries about address rEnges.
storage pointed to by this descriptor should beviddally free’'d, usingdwar f _deal | oc() with the
allocation typeDW DLA ARANGE when no longer needed.

3. Error Handling

The method for detection and disposition of error conditions that arise during accessuggingb
information vialibdwarf is consistent across dlbdwarf functions that are capable of producing an error
This section describes the method usetittwarf in notifying client programs of error conditions.

Most functions withinlibdwarf accept as an argument a pointer tbvar f _Err or descriptor where a
Dwar f _Error descriptor is stored if an error is detected by the funct®outines in the client program
that provide this argument can query Bvaar f _Er r or descriptor to determine the nature of the error and
perform appropriate processing.

A client program can also specify a function to beoked upon detection of an error at the time the library

is initialized (seedwar f _i ni t () ). Whenallibdwarf routine detects an errahis function is called with

two arguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(agpin seedwar f _i nit()). Thispointer argument can be used to relay information between the error
handler and other routines of the client progratnclient program can specify or change both the error
handling function and the pointer argument after initialization usim@rf_set errhand() and

dwarf _seterrarg().

rev 1.66, 04 July 2007 -12-



-13 -

In the case wherBbdwarf functions are not provided a pointer tdaar f _Er r or descriptoy and no
error handling function was provided at initializatidihdwarf functions terminate >ecution by calling
abort (3C).

The following lists the processing steps taken upon detection of an error:

1. Checkthe error argument; if not aNULL pointer dlocate and initialize abwarf _Err or
descriptor with information describing the err@iace this descriptor in the area pointed to by
error, and return a value indicating an error condition.

2. If anerrhand argument was provided tdwar f _i ni t () at initialization, caller r hand()
passing it the error descriptor and the value of #erarg argument provided to
dwarf _init(). If the error handling function returns, return a value indicating an error
condition.

3. Terminate programxecution by callingabort ( 3C) .

In all cases, it is clear from thelue returned from a function that an error occurredxiecting the
function, since DW_DLV_ERROR is returned.

As can be seen from the aleogeps, the client program can pige an error handler at initialization, and
still provide aner r or agument tolibdwarf functions when it is not desired tovsathe error handler
invoked.

If alibdwarf function is called with malid arguments, the behaviour is unide. In particular,
supplying aNULL pointer to al i bdwar f function (except where explicitly permitted), or pointers to
invalid addresses or uninitialized data causes undefined behaviour; the return value in such cases is
undefned, and the function may fail tovioke the caller supplied error handler or to return a meaningful
error number Implementations also may aboxeeution for such cases.

3.1 Returned valuesin the functional interface

Values returned by i bdwar f functions to indicate success and errors are enumerated in Figiiee2.
DW DLV_NO _ENTRY case is useful for functions need to indicate that while thee o data to return
there was no error eithefFor example,dwar f _si bl i ngof () may returnDW DLV_NO _ENTRY to
indicate that that there was no sibling to return.

SYMBOLIC NAME VALUE MEANING
DW_DLV_ERROR 1 Error

DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable value

Figure 2. Error Indications

Each function in the interface that returns a value returns one of the integers inhécle.

If DW DLV_ERRORis returned and a pointer taDavar f _Er r or pointer is passed to the function, then a
Dwarf_Error handle is returned thru the pointo other pointer value in the interface returns aue.
After the Dwar f _Error is no longer of interest, a
dwar f _deal | oc(dbg, dw _err, DW DLA ERROR) on the error pointer is appropriate to freeyan
space used by the error information.

If DW DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW DLV_(Kis returnedthe Dwar f _Er r or pointer if supplied, is not touched, butyaother values to
be returned through pointers are returned. In this case calls (depending gadhfiection returning the

rev 1.66, 04 July 2007 -13-



-14 -

error) todwar f _deal | oc() may be appropriate once the particular pointer returned is no longer of
interest.

Pointers passed to allovalues to be returned thru them are uniformly the last pointers in egigmemt
list.

All the interface functions are defined from the point ofwief the writer-of-the-library (as is traditional
for UN*X library documentation), not from the point of wieof the user of the libraryThe caller might
code:

Dwarf_Line line;

Dwarf_Signed ret_|off;

Dwarf_Error err;

int retval = dwarf_lineoff(line,&ret_loff,&err);

for the function defined as

int dwarf_lineoff(Dwarf_Line line,Dwarf_Signed *return_lineoff,
Dwarf_Error* err);

and this document refers to the function as returning the value thru *err or *returnf lmagfes the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

4. Memory M anagement

Several of the functions that comprisddwarf return pointers (opaque descriptors) to structures that ha
been dynamically allocated by the libraryo ad in the management of dynamic memahe function
dwar f _deal | oc() is provided to free storage allocated as a result of a callibohsarf function. This
section describes the strategy that should be taken by a client program in managing dynamic storage.

4.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a resullibtiaarf Consumer Library call should be
assumed to point to read-only memoiihe results are undagd forlibdwarf clients that attempt to write
to a region pointed to by a value returned biybdwarf Consumer Library call.

4.2 Storage Deallocation

See the section "Returned values in the functional aelf abwe, for the general rules where calls to
dwar f _deal | oc() is appropriate.

In some cases the pointers returned Hybewarf call are pointers to data which is not free-ablée
library knows from the allocation type prided to it whether the space is freeable or not and will not free
inappropriately wherdwar f _deal | oc() is called. So it is vital thadwar f _deal | oc() be called
with the proper allocation type.

For most storage allocated byibdwarf, the client can free the storage for reuse by calling
dwar f _deal | oc(), providing it with theDwar f _Debug descriptor specifying the object for which the
storage was allocated, a pointer to the area to be free-ed, and aneid#rdif specifies what the pointer
points to (the allocation type)For example, to free ébwarf_Di e di e belonging the the object
represented byDwarf _Debug dbg, dlocated by a call todwarf _si bl i ngof (), the call to
dwar f _deal | oc() would be:

dwarf _deal | oc(dbg, die, DWDLA DIE);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list

rev 1.66, 04 July 2007 -14 -



-15-

should be deallocated, folled by deallocation of the actual list itself. The following code fragment uses
an invocation ofdwarf _attrlist() as an example to illustrate a technique that can be used to free
storage from aniibdwarf routine that returns a list:

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(somedie, &atlist,&tcnt, &error);
if (errv == DWDLV_OK) {

for (i =0; i < atcnt; ++i) {
[* use atlist[i] */
dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);

}
dwarf _deal | oc(dbg, atlist, DWDLA LIST);

The Dwar f _Debug returned fromdwar f _i ni t () or dwarf_el f_i nit() cannot be fre@ using
dwar f _deal | oc(). The functiondwar f _fi ni sh() will deallocate all dynamic storage associated
with an instance of Bwar f _Debug type. Inparticular it will deallocate all dynamically allocated space
associated with thBwar f _Debug descriptoyand finally male the descriptor ivalid.

An Dwar f _Error returned fromdwarf _init () ordwarf _elf_init () in case of a failure cannot
be freed usingdwar f _deal | oc() . The only way to free thBwar f _Er r or from either of those calls

is to usefreg(3) directly. Every Dwar f _Error must be freel by dwarf _deal | oc() except those
returned bydwar f _init () ordwarf_elf _init().

The codes that identify the storage pointed to in calisver f _deal | oc() are described in figure 3.

rev 1.66, 04 July 2007 -15-



-16 -

IDENTIFIER USED TO FREE
DW_DLA_STRING char*

DW_DLA _LOC Dwarf_Loc
DW_DLA_LOCDESC Dvarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA_DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute
DW_DLA_TYPE Dwarf_Type (notused)
DW_DLA_SUBSCR Dvarf_Subscr (not used)
DW_DLA_GLOBAL_CONTEXT Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST alist of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dvarf_Frame_Op
DW_DLA_CIE Dwarf_Cie

DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_Loc Block
DW_DLA_FRAME_BLOCK Dwarf_Frame Block (not used
DW_DLA_FUNC_CONTEXT Dvarf_Func
DW_DLA_TYPENAME_CONTEXT Dwarf_Type
DW_DLA_VAR_CONTEXT Dwarf_Var
DW_DLA_WEAK_CONTEXT Dwarf_Weak
DW_DLA_PUBTYPES_CONTEXT Dwarf_Pubtype

Figure 3. Allocation/Deallocation Identifiers

5. Functional Interface
This section describes the functionsikable in thelibdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the funstign®ration.

The following sections describe these functions.

5.1 Initialization Operations

These functions are concerned with preparing an obilecfdr subsequent access by the functions in
libdwarf and with releasing allocated resources when access is complete.

5.1.1 dwarf_init()

rev 1.66, 04 July 2007 -16 -



-17 -

int dwarf _init(
int fd,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,
Dwar f _Debug * dbg,
Dwarf _Error *error)

When it returnsDW DLV_CK, the functiondwarf _init () returns thrudbg a Dwarf_Debug
descriptor that represents a handle for accessing debugging records associated with tleedgsengtor

fd. DWDLV_NO ENTRY is returned if the object does not contailV®RF debugging information.
DW DLV_ERRORs returned if an error occurred:heaccess argument indicates what access is\abad

for the section.The DW DLC READ parameter is valid for read access (only read access is defined or
discussed in this documentlhe err hand argument is a pointer to a function that will bevdked
wheneer an eror is detected as a result ofibdwarf operation. Theer r ar g agument is passed as an
argument to theer r hand function. Thefile descriptor associated with thel agument must refer to an
ordinary file (i.e. not a pipe, socket, device, /proc en#y.), be opened with the at least as much
permission as specified by tleecess argument, and cannot be closed or used as an argumeny to an
system calls by the client until aftdwar f _fi ni sh() is called. The seek position of thk&fassociated
with f d is undefined upon return dfvar f _i nit ().

With SGI IRIX, by default it is allowed that the app ose() fd immediately after calling
dwarf _init(), butthat is nota portable approach (that it works is an accidental side effect oftte f
that SGI IRIX use€ELF_C READ MVAP in its hidden internal call t@l f _begi n()). The portable
approach is to consider thad must be left open till after the correspondingadfnfinish() call has
returned.

Sincedwar f _i ni t () uses the same error handling processing as tithewarf functions (seeError
Handling above), client programs will generally supply @nr or parameter to bypass the dek actions
during initialization unless the default actions are appropriate.

5.1.2 dwarf_df_init()

int dwarf_elf _init(
EIf * elf file_pointer,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf_Ptr errarg,
Dwar f _Debug * dbg,
Dwar f _Error *error)

The functiondwar f _el f _i ni t () is identical todwarf i nit () except that an opeBl f * pointer

is passed instead of aefdescriptor In systems supportingeLF object files this may be more space or
time-eficient than usinglwar f _i nit (). The client is allowed to use thg f * pointer for its evn
purposes without restriction during the time thear f _Debug is open, gcept that the client should not
el f _end() the pointer till afterdwar f _fi ni shis called.

5.1.3 dwarf_get_elf()

int dwarf_get_el f(
Dwar f _Debug dbg,
Elf ** el f,
Dwarf _Error *error)

rev 1.66, 04 July 2007 -17 -



-18 -

When it returndW DLV _CK, the functiondwar f _get _el f () returns thru the pointexl f theEl f *
handle used to access the object represented byDilae f Debug descriptor dbg. It returns
DW DLV_ERROR 0N error.

Becausa nt dwarf _init () opens an Elf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran g@p should uselwar f _get el f and should calél f _end with the pointer returned
thru theEl f ** handle created bynt dwarf _init().

This function is not meaningful for a system that does not use the Elf format for objects.

5.1.4 dwarf_finish()

int dwarf _finish(
Dwar f _Debug dbg,
Dwarf Error *error)

The functiondwar f _fi ni sh() releases alLibdwarf internal resources associated with the descriptor
dbg, and invalidatesdbg. It returnsDW DLV_ERRORIf there is an error during the finishing operatidh.
returnsDW DLV_X for a successful operation.

Becausa nt dwarf i nit () opens an EIf descriptor on its fd addar f _fi ni sh() does not close

that descriptgran gp should uselwar f _get el f and should calel f _end with the pointer returned
thru theEl f ** handle created biynt dwarf _init().

5.2 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries.

5.2.1 Debugging Information Entry Debugger Delivery Oper ations

5.2.2 dwarf_next_cu_header()

i nt dwarf_next _cu_header (
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header _I engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_of f set,
Dwar f _Hal f *address_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

The functiondwar f _next _cu_header () returnsDW DLV_ERROR if it fails, and DW DLV_XK if it
succeeds.

If it succeeds* next _cu_header is set to the offset in the .debug_info section of the next compilation-
unit header if it succeeds. On reading the last compilation-unit header in thg .oléb section it contains
the size of the .debug_info section. The next call dearf_next cu_header () returns

DW DLV_NO _ENTRY without reading a compilation-unit or settifignext _cu_header. Subsequent
calls todwar f _next _cu_header () repeat the cycle by reading the first compilation-unit and so on.

The other values returned through pointers are the values in the compilation-unit. héaatey of
cu_header _| engt h, versi on_stanp, abbrev_offset, or address_si ze is NULL, the
argument is ignored (meaning it is not an error to proviNela_ pointer).

rev 1.66, 04 July 2007 -18-



-19 -

5.2.3 dwarf_siblingof()

i nt dwarf_siblingof(
Dwar f _Debug dbg,
Dwarf _Die die,
Dwarf _Die *return_sib,
Dwar f _Error *error)

The functiondwar f _si bl i ngof () returnsDW DLV_ERROR and sets ther r or pointer on errar If
there is no sibling it returnBW DLV_NO_ENTRY. When it succeedgjwar f _si bl i ngof () returns
DW DLV _K and setsreturn_si b to theDwar f _Di e descriptor of the sibling ofi e. If di e is
NULL, the Dwar f _Di e descriptor of the first die in the compilation-unit is returnddhis die has the
DW TAG conpi | e_uni t tag.

5.2.4 dwarf_child()

int dwarf_chil d(
Dwarf_Di e die,
Dwarf_Die *return_kid,
Dwarf _Error *error)

The functiondwar f _chi | d() returnsDW DLV_ERROR and sets ther r or die on error If there is no
child it returnsDW DLV_NO _ENTRY. When it succeedsjwarf _chil d() returnsDW DLV_OK and
sets *return_kid to the Dwarf_Di e descriptor of the first child ofdi e. The function
dwar f _si bl i ngof () can be used with the returralue ofdwarf _chil d() to access the other
children ofdi e.

5.2.5 dwarf_offdie()

int dwarf_offdie(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwarf Die *return_die,
Dwar f _Error *error)

The functiondwar f _of f di e() returnsDW DLV_ERROR and sets ther r or die on error When it
succeedsdwar f _of fdi e() returnsDW DLV_OK and sets*ret urn_di e to the theDwarf _Di e
descriptor of the debugging information entryo&ff set in the section containing deyging information
entries i.e the .dely_info section.A return of DW DLV_NO ENTRY means that theffset in the
section is of a byte containing all 0 bits, indicating that there is no\aatioe code. Meaning thislie
offset’ is not the offset of a real dieythis instead an offset of a null die, a padding die, or of some random
zero byte: this should not be returned in normal usds the uses responsibility to ma& sure that

of f set is the start of a valid debugging information entijne result of passing it anviaid offset could

be chaos.

5.3 Debugging Information Entry Query Operations

These queries return specific information aboutudging information entries or a descriptor that can be
used on subsequent queries wheregia Dwar f _Di e descriptor Note that some operations are sgecif
to debugging information entries that are representedbyaaf _Di e descriptor of a specific type-or
example, not all debugging information entries contain an attribute having a name, so consezjaahtly
to dwar f _di ename() using aDwar f _Di e descriptor that does not Ve a rame attribute will return
DW DLV_NO_ENTRY. This is not an errgri.e. calling a function that needs a specific attebis not an

rev 1.66, 04 July 2007 -19-



-20 -

error for a die that does not contain that specific attribute.
There are seeral methods that can be used to obtain the value of an attributevienadigi:

1. Calldwarf _hasattr() to determine if the debugging information entry has the attribute of
interest prior to issuing the query for information about the attribute.

2. Supplyaner ror amgument, and check itsalue after the call to a query indicates an unsuccessful
return, to determine the nature of the probléfheer r or agument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to hare a eror handling function imoked upon detection of an error (see
dwarf _init()).

4. Calldwarf _attrlist() and iterate through the returned list of attributes, dealing with each one
as appropriate.

5.3.1 dwarf_tag()

int dwarf_tag(
Dwarf _Die die,
Dwarf Hal f *tagval,
Dwarf Error *error)

The functiondwar f _t ag() returns thetag of di e thru the pointert agval if it succeeds. It returns
DW DLV_Xif it succeeds. It returnBW DLV _ERRORonN error.

5.3.2 dwarf_dieoffset()

i nt dwarf_di eof fset (
Dwarf_Di e die,
Dwarf O f * return_offset,
Dwarf _Error *error)

When it succeeds, the functiondwarf _di eoffset() returns DWDLV_OK and sets
*return_of f set to the position odi e in the section containing defyging information entries (the
return_of f set is a section-relate dfset). Inother words, it setset ur n_of f set to the offset of
the start of the delgging information entry described hyi e in the section containing de’ie
.delug_info. ItreturnsDW DLV_ERROR on error.

5.3.3 dwarf_die CU_offset()

int dwarf_di e CU of fset(
Dwarf _Die die,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _di e_CU of f set () is similar todwar f _di eof f set (), except that it puts the
offset of the DIE represented by tisarf Di e di e, from the start of the compilation-unit that it
belongs to rather than the start of .debug_info(ieur n_of f set is a CU-relatre df set).

rev 1.66, 04 July 2007 -20-



-21-

5.3.4 dwarf_dienameg()

i nt dwarf _di enanme(
Dwarf _Die die,
char ** return_nane,
Dwar f _Error *error)

When it succeeds, the functidwmar f _di ename() returnsDW DLV_OK and set$return_nane to a
pointer to a null-terminated string of characters that represents the name attritaite.oft returns
DW DLV_NO ENTRY if di e does not hae a rame attrilite. It returns DW DLV_ERROR if an error
occurred. Thestorage pointed to by a successful returdwdr f _di enane() should be freel using the
allocation typeDW DLA STRI NGwhen no longer of interest (sdaar f _deal | oc()).

5.3.5 dwarf_attrlist()

int dwarf_attrlist(
Dwarf_Di e die,
Dwarf Attribute** attrbuf,
Dwar f _Si gned *attrcount,
Dwarf _Error *error)

When it returndW DLV _CK, the functiondwar f _attrli st () setsattrbuf to point to an array of
Dwar f _Attri but e descriptors corresponding to each of the aitgb in die, and returns the number of
elements in the array thrattrcount. DW DLV_NO ENTRY is returned if the count is zero (no
att r buf is allocated in this casePW DLV_ERRCR is returned on errorOn a siccessful return from
dwarf _attrlist(), each of theDwarf _Attri but e descriptors should be individually frelelsing
dwar f _deal | oc() with the allocation typ®W DLA ATTR, followed by free-ing the list pointed to by
*at tr buf using dwar f _deal | oc() with the allocation typeDW DLA LI ST, when no longer of
interest (seelwar f _deal | oc()).

Freeing the attrlist:

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(sonmedie, &atlist,&tcnt, &error);
if (errv == DWDLV_X) {

for (i =0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);
}
dwarf _deal | oc(dbg, atlist, DWDLA LIST);
}

5.3.6 dwarf_hasattr()

int dwarf _hasattr(
Dwarf _Die die,
Dwarf Half attr,
Dwar f _Bool *return_bool,
Dwarf Error *error)

When it succeeds, the functiolwar f _hasattr () returnsDW DLV_OK and setsr et ur n_bool to

rev 1.66, 04 July 2007 -21-



-22 -

non-zero if di e has the attributat t r andzero otherwise. Ifit fails, it returnsDW DLV _ERROR.

5.3.7 dwarf_attr()

int dwarf_attr(
Dwarf _Die die,
Dwarf Hal f attr,
Dwarf Attribute *return_attr,
Dwar f _Error *error)

When it returns DW DLV_CK, the function dwarf _attr() sets *return_attr to the
Dwar f _Attri but e descriptor ofdi e having the attrilute at t r. It returnsDW DLV_NO_ENTRY if
attr is not contained idi e. It returnsDW DLV_ERRORIf an error occurred.

5.3.8 dwarf_lowpc()

int dwarf _| owpc(
Dwarf_Die di e,
Dwar f _Addr * return_I| owpc,
Dwarf _Error * error)

The functiondwar f _| owpc() returnsDW DLV_OK and sets‘r et ur n_| owpc to the lav program
counter value associated with tiiee descriptor ifdi e represents a delgging information entry with this
attribute. ItreturnsDW DLV_NO_ENTRY if di e does not hee this attritute. ItreturnsDW DLV _ERRCR
if an error occurred.

5.3.9 dwarf_highpc()

i nt dwarf _hi ghpc(
Dwarf _Die die,
Dwarf _Addr * return_highpc,
Dwar f _Error *error)

The functiondwar f _hi ghpc() returnsDW DLV_OK and sets r et ur n_hi ghpc the high program
counter value associated with tthiee descriptor ifdi e represents a debugging information entry with this
attribute. ItreturnsDW DLV_NO ENTRY if di e does not hee tis attritute. ItreturnsDW DLV _ERROR

if an error occurred.

5.3.10 dwarf_bytesize()

Dwar f _Si gned dwarf _byt esi ze(

Dwarf_Die di e,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _byt esi ze() returnsDW DLV_OK and set$r et ur n_si ze to the number
of bytes needed to contain an instance of the gggrelebugging information entry representedibg. It
returnsDW DLV_NO _ENTRY if di e does not contain the byte size atitdDW AT _byte_size. It
returnsDW DLV_ERRORIf an error occurred.

rev 1.66, 04 July 2007 -22-



-23-

5.3.11 dwarf_bitsize()

int dwarf_bitsize(
Dwarf _Die die,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _bi t si ze() returnsDW DLV_OK and setgr et ur n_si ze to the number of
bits occupied by the bit field value that is an attribute of thengiie. It returnsDW DLV_NO_ENTRY if
di e does not contain the bit size attrib DW AT _bit _si ze. It returnsDW DLV_ERRCR if an error
occurred.

5.3.12 dwarf_bitoffset()

int dwarf_bitoffset(
Dwarf_Di e die,
Dwarf _Unsigned *return_size,
Dwarf _Error *error)

When it succeedsiwar f _bi t of f set () returnsDW DLV_OK and setg r et ur n_si ze to the number
of bits to the left of the most significant bit of the bit fiellwe. Thishit offset is not necessarily the net bit
offset within the structure or class , siri@&/ AT_dat a_nenber _| ocati on may gve a lyte offset to
this DI E and the bit offset returned through the pointer does not include the bits in the fogte df
returnsDW DLV_NO_ENTRY if di e does not contain the bit offset attite DW AT_bit _of fset. It
returnsDW DLV_ERRORIf an error occurred.

5.3.13 dwarf_srclang()

int dwarf _srcl ang(
Dwarf _Die die,
Dwarf _Unsigned *return_|ang,
Dwar f _Error *error)

When it succeedsgwar f _srcl ang() returns DW DLV_OK and sets*return_| ang to a code
indicating the source language of the compilation unit represented by the desdriptorit returns
DW DLV_NO ENTRY if di e does not represent a sourde flebugging information entry (i.e. contain the
attributeDW AT | anguage). It returnsDW DLV_ERRCRIf an error occurred.

5.3.14 dwarf_arrayorder()

int dwarf_arrayorder(
Dwarf_Di e die,
Dwar f _Unsigned *return_order,
Dwarf _Error *error)

When it succeedgiwar f _arrayorder () returnsDW DLV_OK and sets*r et urn_order a mde
indicating the ordering of the array represented by the descdp®®r It returnsDW DLV_NO_ENTRY if
di e does not contain the array order atitbbDW AT_or der i ng. It returnsDW DLV_ERRORIf an error
occurred.

5.4 Attribute Form Queries

Based on the attrilte’s form, these operations are concerned with returning uninterpretedit@ttdbta.
Since it is not abays obvious from the returnalue of these functions if an error occurred, one should

rev 1.66, 04 July 2007 -23-



-24 -

always supply arerror parameter or he aranged to hee a eror handling function imoked (see
dwar f _i nit())to determine the validity of the returned value and the natureyoéraors that may hae
occurred.

A Dwarf_ Attribute descriptor describes an attribute of a specific die. Thus,
Dwar f _Att ri but e descriptor is implicitly associated with a specific die.

5.4.1 dwarf_hasform()

nt dwarf hasf orn(
Dwarf Attribute attr,
Dwarf Half form
Dwarf _Bool *return_hasform
Dwar f _Error *error)

The functiondwar f _hasf or n() returnsDW DLV_OK and andouts anon-zero

value in the*ret urn_hasf or m boolean if the attribute represented by thearf Attribute
descriptorat t r has the attribute fornior m If the attribute does not Y& that form zero is put into
*return_hasform DW DLV_ERRORIs returned on error.

5.4.2 dwarf_whatfor m()

i nt dwarf_what f orm
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwarf _Error *error)

When it succeedsiwar f _what f or m() returnsDW DLV_OK and setg r et ur n_f or mto the attrilute
form code of the attribute represented by thearf Attri bute descriptorattr. It returns
DW DLV_ERROR on error An dtribute using DW_FORM _indirect fefctively has two forms. This
function returns the ‘final’ form folDW FORM i ndi r ect, not the DW FORM i ndi r ect itself. This
function is what most applications will want to call.

5.4.3 dwarf_whatform_direct()

int dwarf_whatformdirect(
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwar f _Error *error)

When it succeedsjwar f _what form di rect () returnsDW DLV_OK and setsr et urn_f or mto
the attritute form code of the attribute represented by Bmarf Attri but e descriptorattr. It
returns DW DLV_ERROR on error An atribute usingDW FORM i ndi r ect effectively has two forms.
This returns the form 'directly’ in the initial formefid. Sowhen the formitld is DW FORM i ndi r ect

this call returns th®W FORM i ndi r ect form, which is sometimes useful for dump utilities.

5.4.4 dwarf_whatattr ()

int dwarf_whatattr(
Dwarf Attribute attr,
Dwar f _Hal f *return_attr,
Dwarf _Error *error)

rev 1.66, 04 July 2007 -24 -

each



-25-

When it succeedsiwar f _what attr () returnsDW DLV_OK and set$ret urn_at tr to the attrilute
code represented by tbear f _At t ri but e descriptorat t r . It returns DW DLV_ERROR on error.

5.4.5 dwarf_formref()

int dwarf _fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwar f _Error *error)

When it succeedgjwar f _fornref () returnsDW DLV_OK and sets'r et urn_of f set to the CU-
relative dfset represented by the descripadrt r if the form of the attribute belongs to tREFERENCE
class.att r must be a CU-local reference, not fobw FORM r ef _addr . Itis an eror for the form to
not belong to this class or to be fokV FORM r ef _addr . It returnsDW DLV_ERROR on error See
alsodwar f _gl obal _fornref below.

5.4.6 dwarf_global_formref()

i nt dwarf _gl obal _fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwarf _Error *error)

When it succeedsiwar f _gl obal _fornref () returnsDW DLV_OK and setsr et urn_of f set to

the .delg_info-section-relate dfset represented by the descriptdrt r if the form of the attribte
belongs to theREFERENCE class. attr can be ay legd REFERENCE class form including
DW FORM r ef _addr . Itis an eror for the form to not belong to this class. It retubw DLV_ERRCOR

on error See alsadwar f _f or nr ef above.

5.4.7 dwarf_formaddr()

i nt dwarf _fornmaddr(
Dwarf Attribute attr,
Dwar f _Addr * return_addr,
Dwar f _Error *error)

When it succeedsiwar f _f or maddr () returnsDW DLV_(K and set$r et urn_addr to the address
represented by the descriptrt r if the form of the attribte belongs to thADDRESS class. ltis an error
for the form to not belong to this class. It retubw DLV_ERROR on error.

5.4.8 dwarf_formflag()

int dwarf_fornflag(
Dwarf Attribute attr,
Dwarf Bool * return_bool,
Dwarf _Error *error)

When it succeedsiwar f _f ornfl ag() returnsDW DLV_OK and set$r et urn_bool 1 (i.e. true) (if
the attribute has a non-zero value) @r(i.e. false) (if the attribute has a zeralue). It returns
DW DLV_ERRORonN error or if theat t r does not hee form flag.

rev 1.66, 04 July 2007 -25-



-26 -

5.4.9 dwarf_formudata()

i nt dwarf _fornudata(
Dwarf Attribute attr,
Dwarf _Unsigned * return_uval ue,
Dwar f _Error * error)

The function dwarf _fornudata() returns DWDLV_OK and sets*return_uval ue to the
Dwar f _Unsi gned vaue of the attribte represented by the descrip&drt r if the form of the attribte
belongs to theCONSTANT class. Itis an error for the form to not belong to this class. It returns
DwW DLV_ERROR 0N error.

5.4.10 dwarf_formsdata()

i nt dwarf_fornsdat a(
Dwarf Attribute attr,
Dwarf _Signed * return_sval ue,
Dwarf _Error *error)

The function dwarf _formsdata() returns DWDLV_OK and sets*return_sval ue to the
Dwar f _Si gned value of the attribute represented by the descriptior r if the form of the attribte
belongs to th&CONSTANT class. Itis an error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size dlee f _Si gned type, its value is signxéended. It
returnsDW DLV_ERROR on error.

5.4.11 dwarf_formblock()

int dwarf _fornbl ock(
Dwarf Attribute attr,
Dwarf Bl ock ** return_bl ock,
Dwar f _Error * error)

The functiondwar f _f or nbl ock() returnsDW DLV_OK and setsr et ur n_bl ock to a pointer to a
Dwar f _Bl ock structure containing the value of the attribute represented by the desatiptorif the

form of the attribute belongs to Bt OCK class. Itis an error for the form to not belong to this cla$be

storage pointed to by a successful returidwér f _f or nbl ock() should be fred using the allocation
type DW DLA BLOCK, when no longer of interest (seelwarf _dealloc()). It returns

DwW DLV_ERROR 0N error.

5.4.12 dwarf_formstring()

int dwarf_fornmstring(
Dwarf Attribute attr,
char ** return_string,
Dwarf _Error *error)

The functiondwar f _f or mst ri ng() returnsDW DLV_OK and set$r et urn_stri ng to a pointer to
a null-terminated string containing the value of the attribute represented by the desatriptoif the form
of the attribute belongs to tt&TRI NG class. Itis an error for the form to not belong to this cla3fe
storage pointed to by a successful returdwér f _f or nst ri ng() should not be fred. Thepointer
points into existing BVARF memory and the pointer becomes stalelith after a call to
dwarf _finish. dwarf_fornstring() returnsDW DLV_ERROR 0N error.

rev 1.66, 04 July 2007 - 26 -



-27-

5.4.12.1 dwarf_loclist_n()

int dwarf_loclist_n(
Dwarf Attribute attr,
Dwarf _Locdesc ***| | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The functiondwar f _| ocl i st_n() sets*| | buf to point to an array obwar f _Locdesc pointers
corresponding to each of the locatiotpeessions in a location list, and s&ts st | en to the number of
elements in the array and retuid/ DLV_OK if the attribute is appropriate.

This is the preferred function for asf_Locdesc as it is the interface allowing access to an entire loclist.
(use ofdwar f _I ocl i st_n() is suggested as the better inded, thougtdwar f _| ocl i st () is still
supported.)

If the attribute is a reference to a location list (DW_FORM_data4 or DW_FORM_data8) the location list
entries are used to fill in all the fields of thear f _Locdesc(s) returned.

If the attribute is a location description (DW_FORM_block2 or DW_FORM_block4) then some of the
Dwar f _Locdesc values of the singl®war f _Locdesc record are set to 'sensible’ but arbitraglues.
Specifically Id_lopc is set to 0 and Id_hipc is set to all-bits-on. Ahdst | en is set to 1.

It returns DW DLV_ERROR on error dwarf_loclist_n() works on DWAT | ocati on,
DW AT dat a_nenber | ocati on, DW AT vtabl e_el em | ocati on,
DW AT _string_I| engt h, DW AT use_| ocati on,andDW AT_r et ur n_addr attributes.

Storage allocated by a successful caltiear f _| ocl i st _n() should be deallocated when no longer of
interest (seelwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thed_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HpeDLA LOC BLOCK.
and thel | buf [] space pointed to should be deallocated with allocation@VgéLA LOCDESC. This
should be followed by deallocation of thebuf using the allocation typeW DLA LI ST.

Dwar f _Si gned | cnt;
Dwar f _Locdesc **I | buf;
int lres;

Ires = dwarf_loclist_n(soneattr, & |buf, & cnt &error);
if (lres == DWDLV_K) {
for (i =0; i <lecnt; ++i) {
/* use |lbuf[i] */

dwarf _deal | oc(dbg, Ilbuf[i]->d_s, DWDLA LOC BLOCK);
dwar f _deal | oc(dbg, |1 buf[i], DWDLA LOCDESC);

}
dwar f _deal | oc(dbg, |l buf, DWDLA LIST);

5.4.12.2 dwarf_loclist()

int dwarf | oclist(
Dwarf Attribute attr,
Dwar f _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf Error *error)

The functiondwar f _| ocl i st () sets*| | buf to point to aDwar f _Locdesc pointer for the single

rev 1.66, 04 July 2007 - 27 -



-28 -

location expression it can return. It sétsi stl en to 1. and returnsDW DLV_XK if the attribute is
appropriate.

It is less flexible thardwar f _| ocl i st _n() in thatdwarf _| ocli st () can handle a maximum of
one location gpression, not a full location list. If a location-list is present it returns only the first location-
list entry location description. Usbnvar f _| ocl i st _n() instead.

It returns DWDLV_ERRCOR on error dwarf_loclist() works on DWAT | ocation,
DW AT dat a_nenber | ocati on, DW AT vtabl e el em | ocati on,
DW AT _string_I| engt h, DW AT use_| ocati on,andDW AT_r et ur n_addr attributes.

Storage allocated by a successful caldegarf | ocli st () should be deallocated when no longer of
interest (seelwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thed_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HpeDLA LOC BLOCK.
This should be followed by deallocation of thebuf using the allocation typeW DLA L OCDESC.

Dwar f _Si gned | cnt;
Dwar f _Locdesc *I | buf;
int lres;

Ires = dwarf_loclist(soneattr, & |buf, & cnt, &error);
if (lres == DWDLV_X) {
/* lcnt is always 1, (and has al ways been 1) */ */

/* Use || buf here. */

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

uf->ld_s, DWDLA LOC BLOCK);

I1b
Il buf, DWDLA LOCDESC);

/* Earlier version.

* for (i =0; i <lcnt; ++i) {

* [* use |lbuf[i] */

*

* /* Deallocate Dwarf_Loc block of Ilbuf[i] */

* dwarf _deal | oc(dbg, Ilbuf[i].ld_s, DWDLA LOC BLOCK);
* }

* dwar f _deal | oc(dbg, |Ibuf, DWDLA LOCDESC);

*/

}

5.4.12.3 dwarf_loclist_from_expr()

int dwarf_loclist_fromexpr(
Dwarf _Ptr bytes_in,
Dwar f _Unsi gned bytes_I en,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

The functiondwar f _| ocl i st _from expr () sets*| | buf to point to abwar f _Locdesc pointer

for the single location expression which is pointed td byt es_i n (whose length isbyt es_| en). It
sets*listlen to 1. and return®W DLV_XK if decoding is successful. Some sources of bytes of
expressions are davf expressions in frame operations eliDW CFA def cfa_expression,

DW CFA expressi on, and DW CFA _val _expressi on.

rev 1.66, 04 July 2007 -28-



-29-

It returnsDW DLV_ERROR on error.

Storage allocated by a successful caltlefir f _| ocl i st _from expr () should be deallocated when
no longer of interest (sedwar f _deal | oc()). Theblock of Dwarf _Loc structs pointed to by the

| d_s field of eachDwarf _Locdesc structure should be deallocated with the allocation type
DW DLA LOC BLOCK. This should be follwed by deallocation of thiel buf using the allocation type
DW DLA LOCDESC.

Dwar f _Si gned | cnt;

Dwar f _Locdesc *I | buf;

int lres;

/* Exanmple with an enpty buffer here. */
Dwarf Ptr data = "";

Dwar f _Unsi gned len = 0;

Ires = dwarf_loclist_fromexpr(data,len, & Ibuf,& cnt, &error);
if (lres == DWDLV_K) {
/* lecnt is always 1 */

/* Use || buf here.*/

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

uf->ld_s, DWDLA LOC BLOCK);

I1b
I buf, DWDLA LOCDESC);

5.5 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging information entry
objects to their corresponding source lines, and providing a mechanism for obtaining information about line
number entries. Although, the intade talks of "lines" what is really meant is "statements”. In case there

is more than one statement on the same line, there will be at least one descriptor per statement, all with the
same line numberlf column number is also being represented thél have the column numbers of the

start of the statements also represented.

There can also be more than oneddwLine per statementFor example, if a file is preprocessed by a
language translatpthis could result in translator output s¥ing 2 or more sets of line numbers per
translated line of output.

55.1 Get A Set of Lines

The function returns information abouwesy source line for a particular compilation-unitThe
compilation-unit is specified by the corresponding die.

55.1.1 dwarf_srclines()

int dwarf_srclines(
Dwarf_Die die,
Dwarf _Line **|i nebuf,
Dwar f _Si gned *1i necount,
Dwarf _Error *error)

The functiondwar f _srcl i nes() places all line number descriptors for a single compilation unit into a
single block, set§l i nebuf to point to that block, setd i necount to the number of descriptors in this

rev 1.66, 04 July 2007 -29-



-30-

block and return©wW DLV_OK. The compilation-unit is indicated by thevegn di e which must be a
compilation-unit die. It returnBW DLV_ERRCOR on error On successful return, line number information
should be free usingdwar f _srcl i nes_deal | oc() when no longer of interest.

Dwar f _Si gned cnt;
Dwarf _Line *Iinebuf;
int sres;

sres = dwarf_srclines(sonedie, & inebuf,&nt, &error);
if (sres == DWDLV_X) {
for (i =0; i <cnt; ++i) {
/* use linebuf[i] */
}

dwar f _srclines_deal | oc(dbg, |inebuf, cnt);

The following dealloc code (the only documented method before July 2005) etk wbut does not
completely free all data allocatedhe dwar f _srcl i nes_deal | oc() routine was created taxfthe
problem of incomplete deallocation.

Dwar f _Si gned cnt;
Dwarf _Line *Iinebuf;
int sres;

sres = dwarf_srclines(sonedie, & inebuf,&nt, &error);
if (sres == DWDLV_X) {
for (i =0; i <cnt; ++i) {
/* use linebuf[i] */
dwar f _deal | oc(dbg, linebuf[i], DWDLA LINE);

}
dwar f _deal | oc(dbg, |inebuf, DWDLA LIST);

5.5.2 Get the set of Source File Names

The function returns the names of the source files that tantributed to the compilation-unit represented
by the gven DIE. Onlythe source files named in the statement program prologue are returned.

int dwarf _srcfiles(
Dwarf _Die die,
char ***srcfil es,
Dwar f _Si gned *srccount,
Dwarf Error *error)

When it succeeddwar f _srcfil es() returnsDW DLV_OK and puts the number of sourdies named

in the statement program prologue indicated by thiengii e into *sr ccount . Source files defined in

the statement program are ignored. Theagidi e should hae the tagDW TAG conpi l e_unit. The
location pointed to bgr cfi | es is set to point to a list of pointers to null-terminated strings that name the
source fles. Ona auccessful return from this function, each of the strings returned should kiliradly
free'd usingdwar f _deal | oc() with the allocation typ®wW DLA STRI NGwhen no longer of interest.
This should be followed by free-ing the list usinigvar f _deal | oc() with the allocation type

rev 1.66, 04 July 2007 -30-



-31-

DW DLA LI ST. It returnsDW DLV_ERROR on error It returnsDW DLV_NO _ENTRY if there is no
corresponding statement program (i.e., if there is no line information).

Dwar f _Si gned cnt;
char **srcfil es;
int res;

res = dwarf_srcfil es(sonedie, &srcfiles, &nt &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {

/* use srcfiles[i] */

dwarf _deal | oc(dbg, srcfiles[i], DWDLA STRING;
}
dwar f _deal | oc(dbg, srcfiles, DWDLA LIST);

}

5.5.3 Get information about a Single Table Line

The following functions can be used on thear f _Li ne descriptors returned bywar f _srcl i nes()
to obtain information about the source lines.

5.5.3.1 dwarf_linebeginstatement()

int dwarf _|inebegi nstatenent(
Dwar f _Li ne |ine,
Dwar f _Bool *return_bool,
Dwarf Error *error)

The functiondwar f _| i nebegi nst at enent () returnsDW DLV_OK and sets‘r et urn_bool to
non-zero (if | i ne represents a line number entry that is marked ginbmg a statement)or zero ((if

i ne represents a line number entry that is not marked as beginning a statement). It returns
DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

5.5.3.2 dwarf_lineendsequence()

int dwarf_|ineendsequence(
Dwar f _Li ne |ine,
Dwar f _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i neendsequence() returnsDW DLV_OK and sets r et ur n_bool non-zero

(in which casd i ne represents a line number entry that is nedrlas ending a text sequenceyao (in

which casd i ne represents a line number entry that is not marked as ending setpience).A line

number entry that is marked as endingxd sequence is an entry with an address one beyond the highest
address used by the current sequence of line table entries (that is, the table entry is a
DW_LNE_end_sequence entry (see thARF specification)).

The function dwar f _| i neendsequence() returns DW DLV_ERRCOR on error It neve returns
DW DLV_NO_ENTRY.

5.5.3.3 dwarf_lineno()

rev 1.66, 04 July 2007 -31-



-32-

int dwarf _lineno(
Dwar f _Line line,
Dwar f _Unsigned * returned_Iineno,
Dwar f _Error * error)

The functiondwarf _| i neno() returns DW DLV_OK and sets*return_l i neno to the source
statement line number corresponding to the descripitare. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO_ENTRY.

5.5.3.4 dwarf_line_srcfileno()

int dwarf_line_srcfileno(
Dwar f _Li ne line,
Dwar f _Unsigned * returned_fil eno,
Dwar f _Error * error)

The functiondwar f _| i ne_srcfil eno() returnsDW DLV_OK and set$r et ur ned_fi | eno to the
source statement line number corresponding to the desdripte number . When the number returned
thru *returned_fil eno is zero it means the file name is untm (see the WARF2/3 line table
specifcation). Whenthe number returned thrtir et ur ned_fi |l eno is non-zero it is a file number:
subtract 1 from thisile number to get an indento the array of strings returned dwar f _srcfil es()
(verify the resulting indeis in range for the array of strings before inthg into the array of strings)The
file number may exceed the size of the array of strings returnedwhyf srcfil es() because
dwarf _srcfil es() does not return files names defined with th&/ DLE_defi ne_fi | e operator.
The function dwarf _|ine_srcfil eno() returns DWDLV_ERROR on error It neva returns
DW DLV_NO_ENTRY.

5.5.3.5 dwarf_lineaddr ()

int dwarf _|ineaddr(
Dwar f _Li ne l'ine,
Dwarf _Addr *return_lineaddr,
Dwarf Error *error)

The functiondwar f _| i neaddr () returnsDW DLV_OK and set$r et urn_| i neaddr to the address
associated with the descriptdri ne. It returns DW DLV_ERROR on error It neva returns
DW DLV_NO_ENTRY.

5.5.3.6 dwarf_lineoff()

int dwarf _|ineoff(
Dwarf _Line |ine,
Dwar f _Si gned * return_Ilineoff,
Dwarf Error *error)

The functiondwar f _| i neof f () returnsDW DLV_OK and sets*return_| i neof f to the column
number at which the statement represented bge begins. Itsetsreturn_|ineoff to -1 if the
column number of the statement is not represented (meaning the producer library calewasrgias the
column number).

On error it return®W DLV_ERRCR. It neve returnsDW DLV_NO _ENTRY.

5.5.3.7 dwarf_linesrc()

rev 1.66, 04 July 2007 -32-



-33-

int dwarf _linesrc(
Dwarf_Line |ine,
char ** return_linesrc,
Dwarf _Error *error)

The functiondwar f _| i nesrc() returnsDW DLV_CK and set$ret urn_I i nesrc to a pointer to a
null-terminated string of characters that represents the name of the dtunvbdrel i ne occurs. It
returnsDW DLV_ERROR on error.

If the applicableife name in the line table Statement Program Prolog does not start with a '/’ character the
string in DW AT_conp_di r (if applicable and present) or the applicable directory name from the line
Statement Program Prolog is prepended to the file name in the line table Statement Program Prokg to mak
a full path.

The storage pointed to by a successful returndefrf | inesrc() should be free using
dwar f _deal | oc() with the allocation typeDW DLA STRI NG when no longer of interest. It wer
returnsDW DLV_NO_ENTRY.

5.5.3.8 dwarf_lineblock()

int dwarf_I|inebl ock(
Dwarf_Line |ine,
Dwar f _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i nebl ock() returnsDW DLV_OK and sets‘r et urn_I| i nesrc to non-zero
(i.e. true)(if the line is makd as beginning a basic block) or zero (i.e. false) (if the line is marked as not
beginning a basic block). It returisV DLV_ERRCOR on error It neve returnsDW DLV_NO_ENTRY.

5.6 Global Name Space Oper ations

These operations operate on the .debug_pubnames section of the debugging information.

5.6.1 Debugger Interface Operations

5.6.1.1 dwarf_get_globals()

i nt dwarf_get gl obal s(
Dwar f _Debug dbg,
Dwar f _d obal **gl obal s,
Dwar f _Si gned * return_count,
Dwarf _Error *error)

The functiondwar f _get gl obal s() returnsDW DLV_OK and set$ r et ur n_count to the count of
pubnames represented in the section containing pubnames i.ag_debnames. lalso stores at
*gl obal s, a pointer to a list ofDwar f _Qd obal descriptors, one for each of the pubnames in the
.delug_pubnames section. It returB8V DLV_ERRCR on error It returnsDW DLV_NO_ENTRY if the
.debug_pubnames section does not exist.

On a successful return fromwar f _get gl obal s(), the Dwar f _Qd obal descriptors should be
free'd using dwar f _gl obal s_deal | oc(). dwarf_gl obal s_deal | oc() is nev as of dly 15,
2005 and is the preferred approach to freeing this memory..

rev 1.66, 04 July 2007 -33-



-34 -

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf_get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use globs[i] */
}
dwar f _gl obal s_deal | oc(dbg, globs, cnt);

The following code is deprecated as of July 15, 2005 as it does not free adhteteemory This approach
still works as well as it ver did. On a wccessful return fromdwarf _get gl obal s(), the
Dwar f _Qd obal descriptors should be individually frekeisingdwar f _deal | oc() with the allocation
type DW DLA GLOBAL_CONTEXT, (or DW DLA GLOBAL, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation tgéDLA LI ST when the descriptors
are no longer of interest.

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf_get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use globs[i] */
dwar f _deal | oc(dbg, globs[i], DWDLA G.-OBAL_CONTEXT);

}
dwar f _deal | oc(dbg, gl obs, DWDLA LIST);

5.6.1.2 dwarf_globname()

i nt dwarf_gl obnanme(
Dwar f _d obal gl obal,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _gl obname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the pubname represented Dnénd G obal descriptor,gl obal .

It returnsDW DLV_ERROR on error On a successful return from this function, the string should be dree’
usingdwar f _deal | oc(), with the allocation typddW DLA STRI NG when no longer of interestit
never returnsDW DLV_NO_ENTRY.

5.6.1.3 dwarf_global_die offset()

rev 1.66, 04 July 2007 -34 -



-35-

i nt dwarf_gl obal die_offset(
Dwar f _d obal gl obal,
Dwarf O f *return_of fset,
Dwarf _Error *error)

The functiondwar f _gl obal _di e_of f set () returnsDW DLV_CK and setsr et urn_of f set to

the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing the pubname that is
described by th®war f _G obal descriptorgl ob. It returnsDW DLV_ERRORon error It neve returns

DW DLV_NO_ENTRY.

5.6.1.4 dwarf_global_cu_offset()

i nt dwarf_gl obal cu_offset(
Dwar f _d obal gl obal,
Dwarf_ O f *return_of fset,
Dwarf _Error *error)

The functiondwar f _gl obal _cu_of f set () returnsDW DLV_COK and set$r et ur n_of f set to the
offset in the section containing DIE’s, i.e. .dgbinfo, of the compilation-unit header of the compilation-
unit that contains the pubname described by Earf _G obal descriptor, gl obal . It returns
DW DLV_ERRORoON error It neve returnsDW DLV _NO_ENTRY.

5.6.1.5 dwarf_get_cu_die offset_given_cu_header_offset()

int dwarf_get cu _die offset given _cu_header_ offset(
Dwar f _Debug dbg,
Dwar f O f i n_cu_header _of fset,
Dwarf O f * out_cu_die offset,
Dwar f _Error *error)

The functiondwar f _get cu_di e_of fset _gi ven_cu_header _of fset () returnsDW DLV_OK
and sets*out cu_die offset to the ofset of the compilation-unit DIE gén the ofset
i n_cu_header _of f set of a compilation-unit headeit returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO_ENTRY.

This efectively turns a compilation-unit-header offset into a compilation-unit DIE offset (by adding the
size of the applicable CU header)This function is also sometimes useful with the
dwarf _weak cu offset(), dwarf _func_cu offset(), dwarf_type cu offset(), and

int dwarf_var_cu_of fset () functions.

dwarf _get cu_di e offset given cu_header offset() added Re 1.45, June, 2001.
This function is declared as 'optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT

predicate may be used at run time to determine if ¢énsian of libdwarf linked into an application has this
function.

5.6.1.6 dwarf_global_name offsets()

rev 1.66, 04 July 2007 -35-



-36 -

i nt dwarf_gl obal _name_of f set s(
Dwar f _d obal gl obal,
char **return_narme,
Dwarf O f *die_offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The functiondwar f _gl obal _nane_of f set s() returnsDW DLV_CK and set$r et ur n_narne to a
pointer to a null-terminated string thaveg the name of the pubname described byDivar f _ QA obal
descriptorgl obal . It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. It aso
returns in the locations pointed to iye_of f set, and cu_of f set , the offsets of the DIE representing
the pubname, and the DIE representing the compilation-unit containing the pubname,vabsp&ii a
successful return frordwar f _gl obal _name_of f set s() the storage pointed to byet ur n_nane
should be fre@ usingdwar f _deal | oc() , with the allocation typ&®W DLA STRI NGwhen no longer
of interest.

5.7 DWARF3 Type Names Operations
Section ".debg_pubtypes" imew in DWARF3.

These functions operate on the .debug pubtypes section of the debugging infornitien.
.delug_pubtypes section contains the names of file-scopede$eed types, the offsets of tha Es that
represent the definitions of those types, and tfeets of the compilation-units that contain theirgbns
of those types.

5.7.1 Debugger Interface Operations

5.7.1.1 dwarf_get_pubtypes()

i nt dwarf_get pubtypes(
Dwar f _Debug dbg,
Dwar f _Type **types,
Dwar f _Si gned *typecount,
Dwarf _Error *error)

The functiondwar f _get _pubt ypes() returnsDW DLV_OK and sets't ypecount to the count of
user-dehed type names represented in the section containing-deteed type names, i.e.
.delug_pubtypes. lalso stores att ypes, a pointer to a list ofbwar f _Pubt ype descriptors, one for
each of the useatefined type names in the .deb pubtypes section. It retur®V DLV _NOCOUNT on
error. It returnsDW DLV_NO_ENTRY if the .debug_pubtypes section does not exist.

On a successful return frodwar f _get _pubt ypes(), theDwar f _Type descriptors should be frek’
using dwarf_types_deal |l oc(). dwar f _types_deal | oc() is used for both
dwar f _get pubt ypes() anddwarf_get types() asthe data types are the same.

rev 1.66, 04 July 2007 - 36 -



-37-

Dwar f _Si gned cnt;
Dwar f _Pubt ype *types;
int res;

res = dwarf_get_ pubtypes(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use types[i] */
}
dwarf _types_deal | oc(dbg, types, cnt);

5.7.1.2 dwarf_pubtypename()

i nt dwarf_pubt ypename(
Dwar f _Pubt ype type,
char **return_narme,
Dwarf _Error *error)

The functiondwar f _pubt ypename() returnsDW DLV_OK and set$ r et ur n_nane to a pointer to a
null-terminated string that names the wdefined type represented by timar f _Pubt ype descriptor,
type. It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO ENTRY. On a siccessful
return from this function, the string should be feeasingdwar f _deal | oc( ), with the allocation type
DW DLA STRI NGwhen no longer of interest.

5.7.1.3 dwarf_pubtype die offset()

int dwarf_pubtype die offset(
Dwar f _Pubt ype type,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _pubt ype_di e_of f set () returnsDW DLV_OK and set$r et urn_of f set to
the offset in the section containing DIE’s, i.e. .debug_info, of the DIE representing thaefised type
that is described by thBwar f _Pubt ype descriptor,t ype. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO_ENTRY.

5.7.1.4 dwarf_pubtype cu_offset()

int dwarf_pubtype cu_of fset(
Dwar f _Pubt ype type,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _pubt ype_cu_of f set () returnsDW DLV_COK and setsr et urn_of f set to

the offset in the section containing DIE's, i.e. .debug_info, of the compilation-unit header of the
compilation-unit that contains the ustafined type described by thawar f _Pubt ype descriptort ype.

It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY.

5.7.1.5 dwarf_pubtype_name_offsets()

rev 1.66, 04 July 2007 -37 -



-38 -

i nt dwarf_pubtype_name_of f set s(
Dwar f _Pubt ype type,
char ** returned_nane,
Dwarf O f * die_offset,
Dwarf O f * cu_offset,
Dwarf _Error *error)

The functiondwar f _pubt ype_nane_of f set s() returnsDW DLV_COK and set$ r et ur ned_nane

to a pointer to a null-terminated string thavegi the name of the uselefined type described by the
Dwar f _Pubt ype descriptort ype. It aso returns in the locations pointed to dye_of f set, and
cu_of f set, the offsets of the DIE representing the udefned type, and the DIE representing the
compilation-unit containing the usdefined type, respecstély. It returnsDW DLV_ERROR on error It
never returns DW DLV_NO ENTRY. On a siccessful return from
dwar f _pubt ype_nane_of f set s() the storage pointed to hyet ur ned_name should be freel
usingdwar f _deal | oc() , with the allocation typ®W DLA_ STRI NGwhen no longer of interest.

5.8 User Defined Static Variable Names Oper ations
This section is SGI specific and is not part of standakRF version 2.

These functions operate on the .ugbarnames section of the dawging information. The
.debug_warnames section contains the names of file-scope static variables, the offsetdDoEshipat
represent the digfitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

5.9 Weak Name Space Oper ations
These operations operate on the .debug_weaknames section of the debugging information.

These operations are SGI specific, not part of standdréRF.

5.9.1 Debugger Interface Operations

5.9.1.1 dwarf_get_weaks()

int dwarf_get weaks(
Dwar f _Debug dbg,
Dwar f _Weak **weaks,
Dwar f _Si gned *weak_count,
Dwarf Error *error)

The functiondwar f _get weaks() returnsDW DLV_OK and set$ weak count to the count of weak
names represented in the section containing weak names i.eug.de&laknames. Itreturns
DW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if the section does nokist. It also stores in
*weaks, a pointer to a list ofDwar f _Weak descriptors, one for each of the weak names in the
.debug_weaknames section.

On a successful return from this function, tBearf Wak descriptors should be frek’using
dwar f _weaks_deal | oc() when the data is no longer of interestwar f _weaks deal | oc()is
new as of dily 15, 2005.

rev 1.66, 04 July 2007 -38-



-39 -

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;
int res;

res = dwarf_get weaks(dbg, &weaks, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use weaks[i] */
}

dwar f _weaks_deal | oc(dbg, weaks, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevahtrelemory This approach
still works as well as itver did. Ona auccessful return fromwar f _get _weaks() theDwar f _Weak
descriptors should be individually freke’using dwarf _deal | oc() with the allocation type
DW DLA WEAK CONTEXT, (or DW DLA WEAK, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

Dwar f _Si gned cnt;
Dwar f _Weak *weaks;
int res;

res = dwarf_get weaks(dbg, &weaks, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use weaks[i] */
dwar f _deal | oc(dbg, weaks[i], DWDLA WEAK CONTEXT);

}
dwar f _deal | oc(dbg, weaks, DWDLA LI ST);

5.9.1.2 dwarf_weakname()

i nt dwarf_weaknane(
Dwar f _Weak weak,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _weakname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the weak name represented bwdiné \Weak descriptorweak. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a siccessful return from
this function, the string should be frde'using dwarf _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

rev 1.66, 04 July 2007 -39-



-40 -

int dwarf_weak _die_of fset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _weak_di e_of f set () returnsDW DLV_OK and setsr et ur n_of f set to the
offset in the section containing DIE’s, i.e. .dgbinfo, of the DIE representing the weak name that is
described by th®war f _Weak descriptorweak. It returnsDW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.9.1.3 dwarf_weak_cu_offset()

int dwarf_weak_cu_of fset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _weak_cu_of f set () returnsDW DLV_CK and sets'r et ur n_of f set to the
offset in the section containing DK ’i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the weak name described by Emerf Weak descriptor, weak. It returns
DW DLV_ERRORoOnN error It neve returnsDW DLV _NO_ENTRY.

5.9.1.4 dwarf_weak_name offsets()

int dwarf_weak nane_of f set s(
Dwar f _Weak weak,
char ** weak_nane,
Dwnarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwarf weak nanme_of fset s() returns DW DLV_OK and sets*weak nane to a

pointer to a null-terminated string thatves the name of the weak name described byDivar f _Weak
descriptorweak. It aso returns in the locations pointed to dye of f set, and cu_of f set, the

offsets of the DIE representing the weakname, and the DIE representing the compilation-unit containing the
weakname, respeedly. It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On

a aiccessful return frondwar f _weak nanme_of f set s() the storage pointed to byweak nane

should be fre@ usingdwar f _deal | oc(), with the allocation typ&®W DLA STRI NGwhen no longer

of interest.

5.10 Static Function Names Operations
This section is SGI specific and is not part of standaMARF version 2.

These function operate on the .debug_funcnames section of theggideb information. The
.delug_funcnames section contains the names of static functioimedldéf the object, the offsets of the
Dl Es that represent the definitions of the corresponding functions, and fsetsobf the start of the
compilation-units that contain the definitions of those functions.

5.10.1 Debugger Interface Operations

5.10.1.1 dwarf_get_funcs()

rev 1.66, 04 July 2007 -40 -



-41 -

int dwarf_get funcs(
Dwar f _Debug dbg,
Dwarf _Func **funcs,
Dwar f _Si gned *func_count,
Dwarf _Error *error)

The functiondwar f _get funcs() returnsDW DLV_OK and set$ f unc_count to the count of static
function names represented in the section containing static function names, ug. fdetnames. klso
stores, at f uncs, a inter to a list oDwar f _Func descriptors, one for each of the static functions in
the .debug_funcnames section. It retubig DLV _NOCOUNT on error It returnsDW DLV_NO_ENTRY if

the .debug_funcnames section does not exist.

On a successful return fromwar f _get _funcs(), the Dwar f _Func descriptors should be frek’
usingdwar f _funcs_deal | oc(). dwarf_funcs_deal | oc() is nev as of dily 15, 2005.

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

fres = dwarf_get funcs(dbg, &funcs, &error);
if (fres == DWDLV_X) {

for (i =0; i <cnt; ++i) {
/* use funcs[i] */
}

dwarf _funcs_deal | oc(dbg, funcs, cnt);

The following code is deprecated as of July 15, 2005 as it does not freevahtreiemory This approach
still works as well as itver did. Ona auccessful return frordwar f _get _funcs(), theDwar f _Func
descriptors should be individually freke’'using dwarf _deal | oc() with the allocation type
DW DLA FUNC_CONTEXT, (or DW DLA FUNC, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

Dwar f _Si gned cnt;
Dwar f _Func *funcs;
int fres;

fres = dwarf_get _funcs(dbg, &funcs, &error);
if (fres == DWDLV_X) {

for (i =0; i <ecnt; ++i) {
/* use funcs[i] */
dwar f _deal | oc(dbg, funcs[i], DWDLA FUNC CONTEXT);

}
dwar f _deal | oc(dbg, funcs, DWDLA LIST);

rev 1.66, 04 July 2007 -41 -



=42 -

5.10.1.2 dwarf_funcname()

i nt dwarf_funcnanme(
Dwar f _Func func,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _f uncname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the static function represented bw#ird _Func descriptorf unc. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a siccessful return from
this function, the string should be frde'using dwarf _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

5.10.1.3 dwarf_func_die offset()

int dwarf_func_di e offset(
Dwar f _Func func,
Dwarf O f “*return_offset,
Dwarf _Error *error)

The functiondwar f _func_di e_of f set (), returnsDW DLV_OK and set$r et ur n_of f set to the
offset in the section containing DIE’s, i.e. .dgbinfo, of the DIE representing the static function that is
described by thé&war f _Func descriptor,f unc. It returnsDW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.10.1.4 dwarf_func_cu_offset()

int dwarf_func_cu_offset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _func_cu_of fset () returnsDW DLV_COK and sets'ret ur n_of f set to the
offset in the section containing DK;'i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the static function described by Bwarf Func descriptor,f unc. It returns
DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

5.10.1.5 dwarf_func_name_offsets()

int dwarf_func_nanme_of f set s(
Dwar f _Func func,
char **func_nane,
Dwarf O f *di e offset,
Dwarf O f *cu_of fset,
Dwarf Error *error)

The functiondwar f _func_name_of fsets() returns DW DLV_OK and sets*func_nane to a
pointer to a null-terminated string thateg the name of the static function described byDhar f _Func
descriptorf unc. It aso returns in the locations pointed to bye of f set, and cu_of f set, the

offsets of the DIE representing the static function, and the DIE representing the compilation-unit containing
the static function, respeedy. It returns DW DLV _ERROR on error It neve returns

DW DLV_NO ENTRY. On a successful return frondwarf func_nanme_of f set s() the storage
pointed to by func_name should be freel using dwarf deal | oc(), with the allocation type

DW DLA_STRI NGwhen no longer of interest.

rev 1.66, 04 July 2007 -42 -



-43-

5.11 User Defined Type Names Oper ations

Section "dehg_typenames" iSGI specific and is not part of standartV®BRF version 2.(However, an
identical section is part of\BIARF version 3 named ".debug_pubtypes", de@r f _get pubt ypes()
above)

These functions operate on the udghtypenames section of the debugging informatiorhe
.delug_typenames section contains the names of file-scopeleferd types, the &dets of theDl Es that
represent the definitions of those types, and tfeetsf of the compilation-units that contain theirgbns
of those types.

5.11.1 Debugger Interface Operations

5.11.1.1 dwarf_get_types()

int dwarf_get _types(
Dwar f _Debug dbg,
Dwar f _Type **types,
Dwar f _Si gned *typecount,
Dwarf _Error *error)

The functiondwar f _get _types() returnsDW DLV_CK and set$'t ypecount to the count of user
defined type names represented in the section containingdakeed type names, i.e. .dadp typenames.
It also stores att ypes, a pointer to a list oDwar f _Type descriptors, one for each of the usefined

type names in the .debug_typenames sectitinreturns DW DLV_NOCOUNT on error It returns

DW DLV_NO_ENTRY if the .debug_typenames section does not exist.

On a successful return fromwar f _get _types(), the Dwarf_Type descriptors should be frek’
usingdwar f _types_deal | oc() . dwarf _types_deal | oc() is nev as of dilly 15, 2005 and frees
all memory allocated bgwar f _get _t ypes().

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get _types(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use types[i] */
}
dwarf _types_deal | oc(dbg, types, cnt);

The following code is deprecated as of July 15, 2005 as it does not free ahteteemory This approach
still works as well as itver did. Ona auccessful return frordwar f _get _types(), theDwarf_Type
descriptors should be individually freke’using dwarf _deal | oc() with the allocation type
DW DLA TYPENAME_CONTEXT, (or DW DLA TYPENANME, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation t@éDLA LI ST when the descriptors

rev 1.66, 04 July 2007 -43 -



-44 -

are no longer of interest.

Dwar f _Si gned cnt;
Dwar f _Type *types;
int res;

res = dwarf_get _types(dbg, &t ypes, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use types[i] */
dwar f _deal | oc(dbg, types[i], DWDLA TYPENAME CONTEXT);

}
dwar f _deal | oc(dbg, types, DWDLA LIST);

5.11.1.2 dwarf_typename()

i nt dwarf_typenanme(
Dwar f _Type type,
char **return_narme,
Dwarf _Error *error)

The functiondwar f _t ypename() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the udefined type represented by tBear f _Type descriptort ype.
It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a successful return from
this function, the string should be frde'using dwarf _deal | oc(), with the allocation type
DW DLA_STRI NGwhen no longer of interest.

5.11.1.3 dwarf_type die offset()

int dwarf _type die offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _type_di e_of fset () returnsDW DLV_OK and setsr et urn_of f set to the
offset in the section containing DIE's, i.e. .debug_info, of the DIE representing thdafiised type that is
described by thé®war f _Type descriptort ype. It returnsDW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.11.1.4 dwarf_type cu_offset()

int dwarf_type cu_offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _type _cu_of fset () returnsDW DLV_COK and sets‘ret ur n_of f set to the
offset in the section containing DIE’s, i.e. .dgbinfo, of the compilation-unit header of the compilation-
unit that contains the usdefined type described by thewar f _Type descriptor,t ype. It returns
DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

rev 1.66, 04 July 2007 -44 -



-45 -

5.11.1.5 dwarf_type name offsets()

int dwarf_type_name_of f set s(
Dwar f _Type type,
char ** returned_nane,
Dwarf_ _Of * die_offset,
Dwarf O f * cu_offset,
Dwarf _Error *error)

The functiondwar f _t ype_nanme_of f set s() returnsDW DLV_OK and set$ r et ur ned_nane to a
pointer to a null-terminated string thatves the name of the useleined type described by the
Dwar f _Type descriptort ype. It also returns in the locations pointed to by e _of f set, and
cu_of f set, the offsets of the DIE representing the wudefned type, and the DIE representing the
compilation-unit containing the usdefined type, respectély. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO_ENTRY. On a successful return frordwar f _t ype_nane_of f set s() the
storage pointed to biyet ur ned_namne should be fred usingdwar f _deal | oc( ), with the allocation
typeDW DLA_STRI NGwhen no longer of interest.

5.12 User Defined Static Variable Names Oper ations
This section is SGI specific and is not part of standaMRF version 2.

These functions operate on the .ugbarnames section of the dawging information. The
.debug_warnames section contains the names of file-scope static variables, the offsetdoEshipat
represent the digfitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

5.12.1 Debugger Interface Operations

5.12.1.1 dwarf_get_vars()

i nt dwarf_get_vars(
Dwar f _Debug dbg,
Dwarf_Var **vars,
Dwar f _Si gned *var _count,
Dwarf _Error *error)

The functiondwar f _get vars() returnsDW DLV_CK and setsfvar _count to the count ofife-

scope static ariable names represented in the section containing file-scope static variable names, i.e.
.debug_wrnames. lalso stores, d@tvar s, a inter to a list oDwar f _Var descriptors, one for each of

the file-scope static variable names in the udekarnames sectionlt returnsDW DLV_ERROR on error

It returnsDW DLV_NO_ENTRY if the .debug_varnames section does not exist.

The following is nev as d July 15, 2005. On a successful return framar f _get vars(), the
Dwar f _Var descriptors should be frekusingdwar f _vars_deal | oc() .

rev 1.66, 04 July 2007 -45 -



- 46 -

Dwar f _Si gned cnt;
Dwar f _Var *vars;
int res;

res = dwarf_get_vars(dbg, &vars, &nt &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use vars[i] */
}

dwarf _vars_deal | oc(dbg, vars, cnt);

The following code is deprecated as of July 15, 2005 as it does not freeadhteteemory This approach
still works as well as itver did. Ona auccessful return frondwar f _get _vars(), theDwarf _Var
descriptors should be individually freke’using dwarf _deal | oc() with the allocation type
DW DLA VAR_CONTEXT, (or DW DLA VAR, an dder name, supported for compatibility) foled by the
deallocation of the list itself with the allocation tyP&/ DLA LI ST when the descriptors are no longer of
interest.

Dwar f _Si gned cnt;
Dwar f _Var *vars;
int res;

res = dwarf_get_vars(dbg, &vars, &nt &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++i) {
/* use vars[i] */
dwar f _deal | oc(dbg, vars[i], DWDLA VAR CONTEXT);

}
dwar f _deal | oc(dbg, vars, DWDLA LIST);

5.12.1.2 dwarf_varname()

i nt dwarf_var name(
Dwarf_Var var,
char ** returned_nane,
Dwarf _Error *error)

The functiondwar f _var nane() returnsDW DLV_CK and setsr et ur ned_nane to a pointer to a
null-terminated string that names the file-scope static variable representedwathie Var descriptor,
var. It returnsDW DLV_ERRCR on error It neve returnsDW DLV_NO _ENTRY. On a successful return
from this function, the string should be fréeising dwarf _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

5.12.1.3 dwarf_var_die offset()

rev 1.66, 04 July 2007 -46 -



-47 -

int dwarf_var_die_offset(
Dwar f _Var var,
Dwarf O f *returned of fset,
Dwarf _Error *error)

The functiondwar f _var _di e_of f set () returnsDW DLV_OK and set$ r et ur ned_of f set to the
offset in the section containing DIE’s, i.e. .debug_info, of the DIE representindetisedpe staticariable
that is described by thBwar f _Var descriptor,var. It returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO_ENTRY.

5.12.1.4 dwarf_var_cu_offset()

int dwarf_var_cu_of fset(
Dwarf_Var var,
Dwarf_Of f *returned_of fset,
Dwarf _Error *error)

The functiondwar f _var _cu_of fset () returnsDW DLV_OK and sets r et ur ned_of f set to the
offset in the section containing DIE’s, i.e. .dgbinfo, of the compilation-unit header of the compilation-
unit that contains thealé-scope static variable described by thear f _Var descriptor,var . It returns
DW DLV_ERRORoON error It neve returnsDW DLV _NO_ENTRY.

5.12.1.5 dwarf_var_name offsets()

int dwarf_var_name_of fset s(
Dwar f _Var var,
char **r et urned_nane,
Dwarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwar f _var _nane_of f set s() returnsDW DLV_OK and setgr et urned_nane to a
pointer to a null-terminated string thatveg the name of the file-scope statiariable described by the
Dwar f _Var descriptorvar. It aso returns in the locations pointed to loff e of f set, and
cu_of f set, the offsets of the DIE representing thle-5cope static variable, and the DIE representing the
compilation-unit containing the file-scope static variable, resgabgti It returns DW DLV_ERROR on
error, It neve returns DW DLV_NO ENTRY. On a  siccessful return  from
dwarf _var _nane_of f set s() the storage pointed to hyet ur ned_nane should be fred using
dwar f _deal | oc() , with the allocation typ®W DLA STRI NGwhen no longer of interest.

5.13 Macro Information Oper ations

5.13.1 General Macro Operations
5.13.1.1 dwarf_find_macro_value start()

char *dwarf_find nmacro_value_start(char * macro_string);

Given a macro string in the standard form defined in th&/ARF document ("name <space> value" or
"name(args)<spacealue") this returns a pointer to the first byte of the maaioes Itdoes not alter the
string pointed to by macro_string or gofne string: it returns a pointer into the string whose address w
passed in.

5.13.2 Debugger Interface Macro Operations

Macro information is accessed from the ughinfo section via the W_AT_macro_info attribute (whose

rev 1.66, 04 July 2007 -47 -



-48 -

value is an offset into .debug_macinfo).

No Functions yet defined.

5.13.3 Low Level Macro Information Operations
5.13.3.1 dwarf_get_macro_details()

int dwarf_get macro_detail s(Dwarf_Debug /*dbg*/,

Dwarf O f nmacro_of f set,
Dwar f _Unsi gned maxi mum count,
Dwar f _Si gned * entry_count,
Dwarf _Macro_Details ** details,

Dwarf Error * err);

dwarf _get macro_detail s() returnsDW DLV_OK and setsentry_count to the number of
det ai | s records returned through thiet ai | s pointer The data returned thraet ai | s should be
freed by a call tadwar f _deal | oc() with the allocation typddW DLA STRI NG If DW DLV_K is

returned, theent ry_count will be at least 1, since a compilation unit with macro informatiot o

macros will hae & least one macro data byte of 0.

dwarf _get macro_detail s() begins at tharacr o_of f set offset you supply and ends at the end
of a compilation unit or atmaxi num count detail records (whicher comes frst). |If
maxi mum_count is 0, it is treated as if it were the maximum possible unsigned integer.

dwarf _get macro_detail s() attempts to sednd _fil ei ndex to the correct file in weery
det ai |l s record. If it is unable to do so (or wheee the current ife index is unknown, it sets
dnd_fil ei ndex to -1.

dwarf _get macro_detail s() returnsDW DLV_ERROR on error It returnsDW DLV_NO ENTRY
if there is no more macro information at tmetcr o_of f set . If macro_of f set is passed in as 0, a
DW DLV_NO_ENTRY return means there is no macro information.

Dwar f _Unsi gned max = O;
Dwarf O f cur_off = 0;
Dwar f _Si gned count = O;

Dwarf _Macro_Details *nmaclist;
int errv;

/* loop thru all the conpilation units macro info */
while((errv = dwarf_macro_detail s(dbg, cur_off, nax,
&count, &macl i st, &rror))== DWDLV_OK) ({
for (i =0; i < count; ++i) {
/* use maclist[i] */
}
cur_off = maclist[count-1].dnmd_offset + 1;
dwar f _deal | oc(dbg, naclist, DWDLA STRI NG ;

5.14 Low Level Frame Operations

These functions provide information about stack frames to be used to perform stack Whees.
information is an abstraction of a table with anger instruction and a column per register and a column
for the canonical frame address @GRwvhich corresponds to the notion of a frame pointer), as well as a
column for the return address.

rev 1.66, 04 July 2007 -48 -



- 49 -

From 1993-2006 the interface we’ll here refer to &8ARF2 made the G¥be a ®lumn in the matrix, bt
left DW_FRAME_UNDEFINED_ ML, and DN_FRAME_SAME_M\AL out of the matrix (giving them
high numbers). As of the\MARF3 interfaces introduced in this document in April 2006, there are**tw
interfaces.

The original still exists (seedwarf _get fde_info_for_igy) and dvarf_get_fde_info_for_all_igs() belav)
and works adequately for MIPS/IRIXVMARF2 and ABI/ISA sets that are fafently similar (but the
settings for non-MIPS must be set into libdwarf.h and cannot be changed at runtime).

A new interface set of dwarf_get fde info_for rg3(), dwarf_get fde info_for_cfa_reg3(),
dwarf_get_fde_info_for_all_gs3() dvarf_set frame_rule_inital_value(),
dwarf_set frame_rule_table_size() is more flexible and should work foy mane architectures and the
setting of DW_FRAME_CFA_COL and the size of the table can be set at runtime.

Each cell in the table contains one of the following:

1. Aregister + offset(a)(b)

2. Aregister(c)(d)

3. Amarker (DW_FRAME_UNDEFINED_VAL) meaningegister value undefined

4. Amarker (DW_FRAME_SAME_VAL) meaningegister value same asin caller

(a old DNARF2 interface) When the column isSAD FRAME_CFA_COL: the rgister number is a real
hardware rejister not a reference to W _FRAME_CIA_COL, not DW_FRAME_UNDEFINED_VAL,
and not W_FRAME_SAME_\AL. The CFA rule value should be the stack pointer pldseifO when no
other value makes sensA.value of DNV_FRAME_SAME_\AL would be semi-logical, lt since the C&k

is not a real rgister not really correct. A value of DN_FRAME_UNDEFINED_M\AL would imply the
CFA is indeined --this seems to be a useless notion, as the i€B means to finding real registers, so
those real registers should be marked/ F-RAME_UNDEFINED_ ML, and the CR column content
(whatever regster it specifies) becomes unreferenced by anything.

(a nav April 2006 DNARF2/3 interface): The @¥Fis separately accessible and not part of the tablee
'rule number’ for the Ck is a number outside the table. So theACE a marker not a register number
See DW_FRAME_CFA_COL3 in libdwarf.h and dwarf_get_fde_info_for_cfa_reg3().

(b) When the column is not W FRAME_CFA COL, the register will and must be
DW_FRAME_CFA_COL, implying that to get tharfal location for the column one must add théseif
here plus the DW_FRAME_CFA_COL rule value.

(c) When the column is\W_FRAME_CFA_COL, then the register number is (must be) a real harelw
register . If it were DV_FRAME_UNDEFINED_ ML or DW_FRAME_SAME_\AL it would be a
marker not a register number.

(d) When the column is notW®_FRAME_CF_COL, the register may be a hardwargisger It will not
be DW_FRAME_CFA_COL.

There is no 'column’ for DW_FRAME_UNDEFINED_ VAL or DW_FRAME_SAME_VAL.

Figure 3 is machine dependent and represents MIPS cpu register assignments.

rev 1.66, 04 July 2007 -49 -



-50 -

NAME value PURPOSE
DW_FRAME_CRA_COL 0 column used for CFA
DW_FRAME_REG1 1 integer regster 1
DW_FRAME_REG2 2 integer register 2

olvious names and values he
DW_FRAME_REG30 30 integer register 30
DW_FRAME_REG31 31 integer register 31
DW_FRAME_FREGO 32 floating point register O
DW_FRAME_FREG1 33 floating point register 1
olvious names and values hg
DW_FRAME_FREG30 62 floating point register 30
DW_FRAME_FREG31 63 floating point register 31
DW_FRAME_RA COL 64  column recording ra
DW_FRAME_UNDEFINED VL 1034 raister val undefined
DW_FRAME_SAME \AL 1035 register same as in caller

Figure4. Frame Information Rule Assignments

The following table shows SGI/MIPS specific special calues: these values mean that the cell has the
value undefined or same value respectiely, rather than containing r@gister or register+offset. It assumes
DW_FRAME_CFA_COL is a table rule, which is not readily accomplished or sensible for some

architectures.

NAME value PURPOSE
DW_FRAME_UNDEFINED_ML 1034 meansindefined value.

Not a column or register valy
DW_FRAME_SAME_MAL 1035 means 'same value’ as

caller had. Not a column or
register value

Figure5. Frame Information Special Values

The following table sh@s more general special celalues. Thesevalues mean that the cell gister-

number refers to thefa-register or undefined-value or same-value respectiely, rather than referring to a
register in the table. The generality arises from making\D FRAME_CF_COL3 be outside the set of
registers and making theacfule accessible from outside the rule-table.

not a real registenot a column, but the afithe cfa
does hae a alue, but in the B/ARF3 libdwarf interface

NAME value PURPOSE
DW_FRAME_UNDEFINED ML 1034 meansindefined value.

Not a column or register value
DW_FRAME_SAME_\AL 1035 means 'same value’ as

caller had. Not a column or

register value
DW_FRAME_CHKA _COL3 1036 means 'ch regster’is referred to,

it does not hee a teal register number’).

rev 1.66, 04 July 2007

-850 -



-51 -

5.14.0.1 dwarf_get_fde list()

int dwarf_get _fde_ |ist(
Dwar f _Debug dbg,
Dwarf_Cie **cie_data,
Dwar f _Si gned *ci e_el ement _count,
Dwarf _Fde **fde_dat a,
Dwar f _Si gned *fde_el ement _count,
Dwarf_Error *error);

dwarf _get _fde_list() stores a pointer to a list @nar f _Ci e descriptors irf ci e_dat a, and the
count of the number of descriptors*ici e_el ement _count . There is a descriptor for each CIE in the
.delug_frame sectionSimilarly, it stores a pointer to a list dwar f _Fde descriptors ir*f de_dat a,
and the count of the number of descriptorgfrde_el enent _count. There is one descriptor per FDE
in the .debug_frame sectiordwar f _get _fde_list() returnsDW DLV_EROR on error It returns
DW DLV_NO _ENTRY if it cannot find frame entries. It returf®V DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should bed freshg
dwarf_fde_cie_list_deall oc(). This dealloc approach iswes of dly 15, 2005.

Dwar f _Si gned cnt;
Dwarf_Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get_fde_list(dbg, &i e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_OXK) {
dwarf_fde_cie_list_deall oc(dbg, cie_data, cie_count,
fde_dat a, fde_count);

The following code is deprecated as of July 15, 2005 as it does not freevahtreiemory This approach
still works as well as itver did.

rev 1.66, 04 July 2007 -51-



-52 -

Dwar f _Si gned cnt;

Dwarf _Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get _fde_list(dbg, &ci e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_XK) {

for (i =0; i < cie_count; ++i) {
/* use cie[i] */
dwarf _deal | oc(dbg, cie_data[i], DWDLA CIE);

}
for (i =0; i < fde_count; ++i) {

/* use fde[i] */

dwar f _deal | oc(dbg, fde_data[i], DWDLA FDE);
}

dwar f _deal | oc(dbg, cie_data, DWDLA LIST);
dwar f _deal | oc(dbg, fde_data, DWDLA LIST);

5.14.0.2 dwarf_get_fde list_eh()

int dwarf_get _fde |ist_eh(
Dwar f _Debug dbg,
Dwarf_Cie **cie_data,
Dwar f _Si gned *ci e_el ement _count,
Dwarf _Fde **fde_dat a,
Dwar f _Si gned *fde_el ement _count,
Dwarf_Error *error);

dwarf_get _fde_list_eh() is identical to dwarf_get fde list() except that
dwarf _get _fde_list_eh() reads the GNU ecgs section named .eh_frame (C++ exception handling
information).

dwarf _get _fde_list_eh() stores a pointer to a list @war f _Ci e descriptors in*ci e_dat a,
and the count of the number of descriptors @i e_el enent _count . There is a descriptor for each
CIE in the .debug_frame sectioigimilarly, it stores a pointer to a list ddwar f _Fde descriptors in
*f de_dat a, and the count of the number of descriptors*ihde_el enent _count. There is one
descriptor per FDE in the .debug_frame sectidwnar f _get _fde_li st () returnsDW DLV_ERORon
error. It returnsDW DLV_NO_ENTRY if it cannot find &ception handling entries. It retur®V DLV_OK
on a successful return.

On successful return, structures pointed to by a descriptor should bed freshg
dwarf_fde_cie_list_deall oc(). This dealloc approach iswes of dly 15, 2005.

rev 1.66, 04 July 2007 -52-



-53-

Dwar f _Si gned cnt;

Dwarf _Cie *cie_data;
Dwar f _Si gned ci e_count;
Dwar f _Fde *fde_dat a;
Dwar f _Si gned fde_count;
int fres;

fres = dwarf_get _fde_list(dbg, &ci e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_XK) {
dwarf_fde_ cie_list_deall oc(dbg, cie_data, cie_count,
fde_dat a, fde_count);

5.14.0.3 dwarf_get_cie of_fde()

int dwarf_get _cie_of_fde(Dwarf_Fde fde,
Dwarf_Cie *cie_returned,
Dwarf_Error *error);

dwarf _get _cie_of fde() stores @&warf _Ci e into the Dwar f _Ci e thatci e_r et ur ned points
at.

If one has called darf get fde_list and does not wish to dwarf dealloc() all the individual FDEs
immediately one must alsowid dwarf_dealloc-ing the CIEs for those FDEs not immediately dedlloc’
Faling to obsere this restriction will cause th&DE(s) not dealloced to becomeahd: an FDE contains

(hidden in it) a CIE pointer which will be bevalid (stale, pointing to freed memory) if the CIE is
deallocd. Theinvalid CIE pointer internal to the FDE cannot be detected aidnby libdwarf. If one

later passes an FDE with a stale internal CIE pointer to one of the routines taking an FDE as input the result
will be failure of the call (returning @W_DLV_ERROR) at best and it is possible a coredump or worse will
happpen (eentually).

dwarf _get _cie_of fde() returnsDW DLV_CK if it is successful (it will be unless fde is the NULL
pointer). ItreturnsDW DLV_ERRORIf the fde is iwvalid (NULL).

EachDwar f _Fde descriptor describes information about the frame for a particular subroutine or function.

int dwarf_get fde_for_dieis SGI/MIPS specific.

5.14.0.4 dwarf_get_fde for_dig()

int dwarf_get fde for die(
Dwar f _Debug dbg,
Dwarf _Die die,
Dwarf Fde * return_fde,
Dwar f _Error *error)

When it succeedgjwarf _get fde for _die() returnsDW DLV_OK and setsreturn_fde to a
Dwar f _Fde descriptor representing frame information for thevegi di e. It looks for the
DW AT_M PS_f de attribute in the gien di e. Ifit finds it, is uses the value of the attribute as tlfieebf
in the .debug_frame section where the FDHite If there is noDW AT _M PS fde it returns
DW DLV_NO _ENTRY. Ifthere is an error it returr@WV DLV_ERRCR.

rev 1.66, 04 July 2007 -53-



-54 -

5.14.0.5 dwarf_get_fde range()

int dwarf_get fde_range(
Dwar f _Fde fde,
Dwar f _Addr *I| ow_pc,
Dwar f _Unsi gned *func_I engt h,
Dwarf_Ptr *fde_bytes,
Dwar f _Unsi gned *fde_byte_| ength,
Dwarf_ O f *cie_offset,
Dwar f _Si gned *ci e_i ndex,
Dwarf_ O f *fde_offset,
Dwarf_Error *error);

On succesgiwar f _get _fde_range() returnsDW DLV_COK. The location pointed to blyow pc is
set to the lar pc value for this function.The location pointed to biyunc_| engt h is set to the length of
the function in bytes. This is essentially the length of thx $ection for the function. The location
pointed to byf de_byt es is set to the address where the FDBib& in the .debug_frame sectiohe
location pointed to by de_byt e | engt h is set to the length in bytes of the portion of .debug_frame for
this FDE. This is the same as thaue returned bylwar f _get f de_r ange. The location pointed to
by ci e_of f set is set to the d$et in the .debug_frame section of the CIE used by this Fie
location pointed to bgi e_i ndex is set to the indeof the CIE used by this FDE. The indis the inde

of the CIE in the list pointed to bgi e_dat a as set by the functiodwarf _get fde_list().
However, if the functiondwar f _get _fde_for _di e() was used to obtain the gén f de, this inde
may not be correct. The location pointed toflie _of f set is set to the d$et of the start of this FDE in
the .debug_frame sectiodwar f _get fde_range() returnsDW DLV_ERROR on error.

5.14.0.6 dwarf_get_cie info()

int dwarf_get cie_info(

Dwarf _Ci e ci e,
Dwar f _Unsi gned *bytes in_cie,
Dwar f _Smal | *version,

char **augnent er,

Dwar f _Unsi gned *code_al i gnnent _factor,

Dwarf _Si gned *data_al i gnment _factor,
Dwar f _Hal f *return_address _register_rule,
Dwarf _Ptr *initial _instructions,

Dwarf _Unsigned *initial _instructions_|ength,
Dwar f _Error *error);

dwarf _get cie_info() is primarily for Internal-lgel Interface consumers. If successful, it returns
DW DLV_OK and setg byt es_i n_ci e to the number of bytes in the portion of the frames section for
the CIE represented by thevgh Dwar f _Ci e descriptorci e. The other fields are directly tak from the

cie and returned, via the pointers to the callereturnsDW DLV_ERROR on error.

5.14.0.7 dwarf_get_fde instr_bytes()

int dwarf_get fde_ instr_bytes(
Dwar f _Fde fde,
Dwarf Ptr *outinstrs,
Dwar f _Unsi gned *outl en,
Dwarf _Error *error);

dwarf _get fde_instr_bytes() returnsDW DLV_OK and setgout i nstrs to a pointer to a set
of bytes which are the actual frame instructions for this fde. It alsd setsl en to the length, in bytes,

rev 1.66, 04 July 2007 -54 -



-55-

of the frame instructions. It returr@V DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY.
The intent is to allw low-level consumers lik a dvarf-dumper to print the bytes in somashion. The
memory pointed to bgut i nst r s must not be changed and there is nothing to free.

5.14.0.8 dwarf_get_fde info_for_reg()

This interface is suitable for \WARF2 kit is not sufcient for DNARF3. See int
dwarf _get fde_info_for_reg3.

int dwarf_get fde_info_for_reg(
Dwar f _Fde fde,
Dwarf_Hal f tabl e_col um,
Dwar f _Addr pc_requested,
Dwar f _Si gned *of fset _rel evant,
Dwar f _Si gned *regi ster_num
Dwar f _Si gned *of f set,
Dwar f _Addr *row_pc,
Dwarf_Error *error);

dwarf _get _fde_info_for_reg() returnsDW DLV_OK and setstof f set _rel evant to non-

zero if the offset is relent for the rov specified by pc_requested and column specified by

t abl e_col um, for the FDE spedid byf de. The intent is to return the rule for thevgn pc \alue and
register The location pointed to byegi st er _numis set to the registeralue for the rule. The location
pointed to byof f set is set to the offset value for the rule. If offset is not vaie for this rule,

*of f set _rel evant is set to zero. Since more than one pc value wilklraws with identical entries,

the user may want to kmothe earliest pc value after which the rules for all the columns remained
unchanged. Recdilhat in the virtual table that the frame information represents there may be one or more
table rows with identical data (each such table &b a dfferent pc alue). Gven apc_request ed
which refers to a pc in such a group of identicalspthe location pointed to byow pc is set to the
lowest pc value within the group ofdentical ravs. The 'alue put in*regi st er _numary of the

DW FRAME_* table columns values specifiedlinbdwar f . h ordwar f . h.

dwarf _get _fde_info_for_regreturnsDW DLV_ERRORIf there is an error.

It is usable with eithedwar f _get _fde_n() ordwarf_get fde_at_pc().

5.14.0.9 dwarf_get_fde info for_all_regs()

int dwarf_get fde info for_all_regs(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwarf Regtable *reg table,
Dwar f _Addr *row pc,
Dwarf _Error *error);

dwarf _get fde info for_all _regs() returnsDW DLV_OK and set$reg_t abl e for the rav
specified bypc_r equest ed for the FDE specified bf/de.

The intent is to return the rules for decoding all the registeren @i pc \alue. r eg_t abl e is an array of
rules, one for each gester specified indwar f. h. The rule for each register contains three items -
dw_r egnumwhich denotes the registealue for that rulegw_of f set which denotes the offset value for
that rule anddw_of f set _r el evant which is set to zero if offset is not redmt for that rule. See
dwarf _get fde info _fo _reg() for adescription of ow pc.

dwarf _get fde info for_all _regs returnsDW DLV_ERRORIf there is an error.
int dwarf_get fde info for_all _regsis SGI/MIPS specific.

rev 1.66, 04 July 2007 -55-



-56 -

5.14.0.10 dwarf_set_frame rule table size()

This allovs consumers to set the size of the (internal to libdwarf) rule table. It should be at least as large as
the number of real ggsters in the ABI which is to be read in for theatfvget fde info_for_mg3() or
dwarf_get_fde_info_for_all_gs3() functions to work propetlylt must be less than the markealwes
DW_FRAME_UNDEFINED_VAL, DW_FRAME_SAME_VAL, DW_FRAME_CFA_COLS3.

Dwar f _Hal f
dwarf_set_frame_rul e_tabl e_size(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

ddwarf_set _frame_rul e_tabl e_size() sets the &lueval ue as the size of libdarf-internal
rules tablesof dbg. The function returns the preus value of the rules table size setting (taken from the
dbg structure).

5.14.0.11 dwarf_set_frame rule inital_value()

This allows consumers to set the initial value fowsan the frame tables. By default it is taken from
libdwarf.h and is V_FRAME_REG_INITIAL_ \ALUE (which itself is either
DW_FRAME_SAME_ML or DW_FRAME_UNDEFINED_ \L). The MIPS/IRIX default is
DW_FRAME_SAME_ MAL. Comsumercode should set this appropriately and for ynanchitectures (bt
probably not MIPS) DW_FRAME_UNDEFINED_VAL is an appropriate setting.

Dwar f _Hal f
dwarf _set frame_rul e_inital _val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_inital val ue() sets the &lueval ue as the initial alue for thisdbg
when initializing rules tablesThe function returns the previous value of the initial setting (taken from the
dbg structure).

5.14.0.12 dwarf_get_fde info_for_reg3()

This interface is suitable for WARF3 and DVARF2. Itreturns the values for a particular reagjister
(Not for the CRA regster, see dwarf_get fde_info_for_cfa reg3() below).

int dwarf_get fde_ info for_reg3(
Dwar f _Fde fde,
Dwarf Hal f tabl e _col um,
Dwar f _Addr pc_requested,
Dwarf_Smal|l *val ue_type,
Dwarf _Si gned *of fset rel evant,
Dwar f _Si gned *regi ster_num
Dwar f _Signed *of fset_or_bl ock | en,
Dwarf _Ptr *bl ock_ptr,
Dwar f _Addr *row_pc,
Dwarf Error *error);

dwarf get fde_ info for_re3() returnsDW DLV_OK on success. It setsval ue_t ype to one

of DW_EXPR_OFFSET (0), W_EXPR_\AL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_MAL_EXPRESSION(3). Orcall, t abl e_col utm must be set to the register number of a
real reyister Not the ch register’ or DN_FRAME_SAME_\ALUE or
DW_FRAME_UNDEFINED_VALUE.

rev 1.66, 04 July 2007 - 56 -



-57-

if *val ue_t ype has the value DW_EXPR_OFFSET (0) then:

It sets*of f set _rel evant to non-zero if the offset is relant for the rav specifed by
pc_request ed and column specified blyabl e_col um or, for the FDE specified bfde.

In this casethe *regi ster_num will be set to W_FRAME_CFA_COL3. Thisis an
offset(N) rule as specified in the VIARF3/2 documents. Adding the value of
*of f set _or _bl ock_I| en to the value of the G¥regster gives the address of a location
holding the previous value of registeabl e_col um.

If offset is not relgant for this rule,* of f set _rel evant is set to zero.*r egi st er _num
will be set to the number of the reabigter holding the value of theabl e_col umm register.
This is the register(R) rule as specifified iIMBRRF3/2 documents.

The intent is to return the rule for thevgn pc value and rgister The location pointed to by
regi st er _numis set to the register value for the rule. The location pointed tf b et is

set to the offset value for the rul&ince more than one pc value willMearows with identical
entries, the user may want to kmthe earliest pc value after which the rules for all the columns
remained unchangedRecall that in the virtual table that the frame information represents there
may be one or more table rows with identical data (each such tablat e dfferent pc alue).
Given apc_r equest ed which refers to a pc in such a group of identical rows, the location
pointed to byr ow_pc is set to the lowest pc value within the group of identical rows.

If *val ue_t ype has the value DW_EXPR_VAL_OFFSET (1) then:
This will be a al ofiset(N) rule as specified in the VIARF3/2 documents so
*of fset _relevant wil be non zero. The calculation is identical to the
DW_EXPR_OFFSET (0) calculation withof f set _rel evant non-zero, but the alue
resulting is the actualabl e_col unm value (rather than the address where the value may be
found).

If *val ue_t ype has the value DW_EXPR_EXPRESSION (1) then:
*of f set _or _bl ock_I en is set to the length in bytes of a block of memory withVeAIRF
expression in the block* bl ock_ptr is set to point at the block of memoryhe consumer
code shouldevduate the block as a\MARF-expression. The result is the address where the
previous value of the register may be found. This iSsMARF3/2 expression(E) rule.

If *val ue_t ype has the value DW_EXPR_VAL_EXPRESSION (1) then:
The calculation is exactly as for DW_EXPR_EXPRESSION (1) but the result of\W#eRB-
expression ealuation is the value of thet abl e_col unm (not the address of thele). This
is a DNARF3/2 val_expression(E) rule.

dwarf _get fde_info_for_reg returnsDW DLV_ERRORIf there is an error and if there is an error
only theer r or pointer is set, none of the other output arguments are touched.

It is usable with eithedwar f _get fde_n() ordwarf_get fde_at_pc().

5.14.0.13 dwarf_get_fde info_for_cfa_reg3()

rev 1.66, 04 July 2007 -57 -



-58 -

int dwarf_get fde_ info for_cfa reg3(Dwarf_Fde fde,

Dwar f _Addr pc_requested,

Dwarf _Smal | * val ue_type,

Dwar f _Si gned* of fset _rel evant,
Dwar f _Si gned* regi ster_num
Dwar f _Si gned* of fset _or_bl ock_I| en,
Dwarf Ptr * bl ock_ptr ,
Dwar f _Addr * row_pc_out,

Dwarf _Error * error)

This is identical todwar f _get fde_i nfo_for_reg3() except the returned values are for theACF
rule. Soregister numbef r egi st er _numwill be set to a real gister not DW_FRAME_CFA_COL3,
DW_FRAME_SAME_VALUE, or DW_FRAME_UNDEFINED_VALUE.

5.14.0.14 dwarf_get_fde info_for_all_regs3()

int dwarf_get _fde_info_for_all_regs3(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwar f _Regt abl e3 *reg_t abl e,
Dwar f _Addr *row_pc,
Dwarf _Error *error)

dwarf _get _fde_info_for_all_regs3() returnsDW DLV _OK and sets*reg_t abl e for the

row specified by pc_r equest ed for the FDE specified by de. The intent is to return the rules for
decoding all the gisters, gien a pc \alue. r eg_t abl e is an array of rules, the array size specifed by the
caller plus a rule for the C&. Therule for the ch returned in*r eg_t abl e defines the CR value at
pc_r equest ed The rule for each register contaisgveral values that enable the consumer to determine
the previous value of the register (see the earlier documentation o#rf Regtable3).
dwarf_get _fde_info_for_reg3() and the Dwarf Retable3 documentation am® for a
description of the values for eachwo

dwarf _get_fde_info_for_all _regs returnsDW DLV_ERRORIf there is an error.

It's up to he caller to allocate space foreg_t abl e and initialize it properly.

5.14.0.15 dwarf_get_fde n()

i nt dwarf _get fde_ n(
Dwarf _Fde *fde_dat a,
Dwar f _Unsi gned fde_i ndex,
Dwar f _Fde *returned_fde
Dwar f _Error *error)

dwarf _get fde_n() returnsDW DLV_OK and setg et ur ned_f de to theDwar f _Fde descriptor
whose inde isf de_i ndex in the table oDwar f _Fde descriptors pointed to yde _dat a. The ind&
starts with 0. ReturnsDW DLV_NO _ENTRY if the index does not rist in the table ofDwar f _Fde
descriptors. ReturrBW DLV_ERRORIf there is an error This function cannot be used unless the block of
Dwar f _Fde descriptors has been created by a caliviar f _get _fde list().

rev 1.66, 04 July 2007 -58 -



-59 -

5.14.0.16 dwarf_get_fde at_pc()

i nt dwarf _get fde_at_pc(
Dwarf _Fde *fde_dat a,
Dwar f _Addr pc_of _interest,
Dwarf _Fde *returned_fde,
Dwar f _Addr *1 opc,
Dwar f _Addr *hi pc,
Dwarf _Error *error)

dwarf _get fde_at pc() returns DWDLV_OK and setsreturned_fde to a Dwarf_Fde
descriptor for a function which contains the pc value specifieplchyof _i nt er est . In addition, it sets
the locations pointed to Hyopc andhi pc to the lav address and the high addresseed by this FDE,
respectiely. It returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if pc_of _i nt er est

is not in ay of the FDEs represented by the blockDefar f _Fde descriptors pointed to biyde_dat a.
This function cannot be used unless the blockwdr f _Fde descriptors has been created by a call to
dwarf _get _fde_list().

5.14.0.17 dwarf_expand_frame_instructions()

int dwarf_expand frane_instructions(
Dwar f _Debug dbg,
Dwarf Ptr instruction,
Dwar f _Unsigned i | ength,
Dwarf _Frame_Op **returned_op_list,
Dwar f _Si gned * returned_op_count,
Dwarf Error *error);

dwar f _expand_franme_i nstructions() is a High-leel interface function which expands a frame
instruction byte stream into an array Bhar f _Frane_Qp structures. @ indicate success, it returns
DW DLV_OK. The address where the byte streamimeis specified by nst r uct i on, and the length of

the byte stream is specified by | engt h. The location pointed to byet urned_op_|i st is set to

point to a table ofr et urned_op_count pointers toDwar f _Frane_Op which contain the frame
instructions in the byte stream.lt returns DW DLV _ERROR on error It neva returns

DW DLV_NO ENTRY. After a successful return, the array of structures should be freed using
dwar f _deal | oc() with the allocation typeDW DLA FRAME BLOCK (when thg are no longer of
interest).

Dwar f _Si gned cnt;

Dwarf _Franme_Qp *frameops;
Dwarf _Ptr instruction;
Dwar f _Unsi gned | en;

int res;

res = expand_frame_instructions(dbg,instruction,len, & raneops, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <cnt; ++) {
/* use franeops[i] */
}

dwar f _deal | oc(dbg, franeops, DW DLA FRAME BLOCK);

rev 1.66, 04 July 2007 -59-



-60 -

5.14.0.18 dwarf_get_fde exception_info()

int dwarf_get fde_exception_info(
Dwar f _Fde fde,
Dwarf _Signed * offset_into_exception_tables,
Dwarf _Error * error);

dwarf _get fde_exception_info() is an IRIX specific function which returns an exception table
signed offset thru of fset _into_exception_tables. The function neer returns

DW DLV_NO_ENTRY. If DW DLV_NO ENTRY is NULL the function returndW DLV_ERRCR. For
non-IRIX objects the offset returned willvedys be zero.For non-C++ objects the offset returned will
always be zero. The meaning of the offset and the content of the tables is not defined in this document.
The applicable CIE augmentation string (seevabdetermines whether the value returned has meaning.

5.15 Location Expression Evaluation

An "interpreter" which ealuates a location expression is required iy debugger There is no integce
defined here at this time.

One problem with defining an interface is that operations are machine dependgrdepgteed on the
interpretation of register numbers and the methods of getting values from the environment the expression is
applied to.

It would be desirable to specify an interface.

5.15.1 Location List Internal-level Interface

5.15.1.1 dwarf_get_loclist_entry()

int dwarf_get _loclist_entry(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Addr *hi pc_of f set,
Dwar f _Addr *| opc_of f set,
Dwarf_Ptr *data,
Dwar f _Unsi gned *entry_| en,
Dwar f _Unsi gned *next_entry,
Dwarf _Error *error)

The function reads a location list entry startingft set and returns through pointers (when successful)
the high pachi pc_of f set, low pcl opc_of f set, a pinter to the location description datat a, the

length of the location description dagat ry_| en, and the offset of the next location description entry
next _entry. dwarf_dwarf_get loclist_entry() returns DWDLV_OK if successful.

DW DLV_NO_ENTRY is returned when the offset passed in is beyond the end of the .debug_loc section
(expected if you start at offset zero and proceed thru all the entB¥g)DLV_ERRCR s returned on error

Thehi pc_of fset, low pc| opc_of f set are offsets from the beginning of the current procedure, not
genuine pc values.

rev 1.66, 04 July 2007 - 60 -



-61 -

/* Looping thru the dwarf_| oc section finding |oclists:
an exanple. */

int res;

Dwar f _Unsi gned next _entry;

Dwar f _unsi gned of f set =0;

Dwar f _Addr hi pc_off;

Dwar f _Addr | opc_off;

Dwarf Ptr dat a;

Dwar f _Unsi gned entry_I en;

Dwar f _Unsi gned next _entry;

Dwarf_ Error err;

for(;;) {
res = dwarf_get | oclist_entry(dbg, newof fset, &i pc_of f,
& owpc_off, &data, &entry_len, &ext_entry, &err);
if (res == DWDLV_OK) {
/* Avalid entry. */
newof f set = next_entry;
conti nue;
} else if (res ==DW DLV_NO ENTRY) {
/* Done! */
br eak;
} else {
[* Errorl */
br eak;

5.16 Abbreviations access

These are Internaldel I nterface functions. Debuggers can ignore this.

5.16.1 dwarf_get_abbrev()

i nt dwarf_get abbrev(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Abbr ev *returned_abbrev,
Dwar f _Unsi gned *I engt h,
Dwar f _Unsi gned *attr_count,
Dwarf _Error *error)

The function dwarf _get abbrev() returns DWDLV_OK and sets*returned_abbrev to
Dwar f _Abbr ev descriptor for an abbvétion at ofset * of f set in the abbreviations section (i.e
.debug_abbrd on success. The user is responsible for making sure that a valid abbreviation begins at
of f set in the abbreiations section. The location pointed to lbgngt h is set to the length in bytes of

the abbreviation in the abbreviations section. The location pointed @t by count is set to the
number of attributes in the abbiation. Anabbreiation entry with a length of 1 is the 0 byte of the last
abbreviation entry of a compilation unitdwar f _get _abbr ev() returnsDW DLV_ERRCR on error If

rev 1.66, 04 July 2007 -61-



-62 -

the call succeeds, the storage pointed to *yet ur ned_abbrev should be freed, using
dwar f _deal | oc() with the allocation typ®W DLA ABBREV when no longer needed.

5.16.2 dwarf_get _abbrev_tag()

int dwarf_get abbrev_tag(
Dwar f _abbrev abbrev,
Dwarf Half *return_tag,
Dwarf _Error *error);

If successfuldwar f _get abbrev_tag() returnsDW DLV_OK and set$r et ur n_t ag to thetag of
the given abbreviation. ItreturnsDW DLV_ERRORon error It neve returnsDW DLV_NO_ENTRY.

5.16.3 dwarf_get_abbrev_code()

i nt dwarf_get abbrev_code(

Dwar f _abbr ev abbr ev,
Dwar f _Unsigned *return_code,
Dwar f _Error *error);

If successful,dwarf_get abbrev_code() returnsDW DLV_COK and sets*r et ur n_code to the
abbreviation code of the gen abreviation. It returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

5.16.4 dwarf_get_abbrev_children_flag()

int dwarf_get abbrev_children_fl ag(
Dwar f _Abbrev abbrev,
Dwarf _Signed *returned_flag,
Dwar f _Error *error)

The function dwarf _get abbrev_children flag() returns DWDLV _OK and sets
returned flag to DWchildren_no (if the given abbreviation indicates that a die with that
abbreviation has no children) ddW chi | dr en_yes (if the given abreviation indicates that a die with
that abbreviation has a child). It retuid@/ DLV_ERROR on error.

5.16.5 dwarf_get_abbrev_entry()

i nt dwarf_get _abbrev_entry(
Dwar f _Abbrev abbrev,
Dwar f _Si gned i ndex,
Dwar f _Hal f *attr_num
Dwar f _Si gned *form
Dwarf_ O f *of fset,
Dwarf _Error *error)

If successful,dwarf_get abbrev_entry() returns DWDLV_OK and sets*attr_num to the
attribute code of the attribute whose imdis specified by i ndex in the gven abbreviation. Theindex
starts at 0. The location pointed to bgr mis set to the form of the attube. Thelocation pointed to by

of fset is set to the byte offset of the attribute in the abbreviations section. It returns
DW DLV_NO_ENTRY if the index specified is outside the range of attributes in this ablten. Itreturns

rev 1.66, 04 July 2007 -62 -



-63 -

DW DLV_ERROR 0N error.

5.17 String Section Operations

The .debug_str section contains only strind®huggers need wer use this interdice: it is only for
debugging problems with the string section itself.

5.17.1 dwarf_get_str()

int dwarf_get _str(
Dwar f _Debug dbg,
Dwar f _Of f of f set,
char **string,
Dwar f _Si gned *returned_str_| en,
Dwarf _Error *error)

The functiondwar f _get _str () returnsDW DLV_OK and setsr et urned_str _I| en to the length
of the string, not counting the null termingtdihat begins at the et specified byof f set in the
.delug_str section. The location pointed tostyr i ng is set to a pointer to this strind.he next string in
the .debug_str section begins at thevjgnesof f set + 1 +*r et urned_str_| en. A zero-length string
is NOT the end of the section. If there is no .debug_str sedidhPLV_NO_ENTRY is returned. If there
is an errorDW DLV_ERROR is returned. If we are at the end of the section (thaifi§set is one past
the end of the sectioW DLV_NO_ENTRY is returned. If thef f set is some other too-large value then
DW DLV_ERRCRIs returned.

5.18 Address Range Operations

These functions provide information about address rangddress ranges map ranges of pc values to the
corresponding compilation-unit die thatvers the address range.

5.18.1 dwarf_get_aranges()

i nt dwarf_get aranges(
Dwar f _Debug dbg,
Dwar f _Arange **aranges,
Dwarf _Signed * returned_arange_count,
Dwarf Error *error)

The functiondwar f _get aranges() returnsDW DLV_OK and setsr et ur ned_ar ange_count
to the count of the number of address ranges in the .debug_aranges sectiori.alt@etges to point to a
block of Dwar f _Ar ange descriptors, one for each address rangieeturnsDW DLV_ERRCR on error It
returnsDW DLV_NO_ENTRY if there is no .debug_aranges section.

rev 1.66, 04 July 2007 - 63 -



-64 -

Dwar f _Si gned cnt;
Dwar f _Arange *arang;
int res;

res = dwarf_get_aranges(dbg, &arang, &nt, &error);
if (res == DWDLV_OK) {

for (i =0; i <ecnt; ++i) {
/* use arang[i] */
dwar f _deal | oc(dbg, arang[i], DWDLA ARANGE);

}
dwar f _deal | oc(dbg, arang, DWDLA LI ST);

i nt dwarf_get _arange(
Dwar f _Arange *ar anges,
Dwar f _Unsi gned ar ange_count,
Dwar f _Addr address,
Dwar f _Arange *returned_arange,
Dwarf _Error *error);

The functiondwar f _get _ar ange() takes as input a pointer to a block Bfiar f _Ar ange pointers,
and a count of the number of descriptors in the bldtkhen searches for the descriptor thaters the
given addr ess. Ifit finds one, it return®W DLV_OK and set$ r et ur ned_ar ange to the descriptor

It returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if there is no .debug_aranges entry
covering that address.

5.18.2 dwarf_get_cu_die offset()

int dwarf_get cu_die_ offset(
Dwar f _Arange ar ange,
Dwarf O f *returned_cu_die_offset,
Dwarf _Error *error);

The functiondwarf _get cu_di e_of fset () takes aDwar f _Arange descriptor as input, and if
successful returnBW DLV_OK and set$r et urned_cu_di e_of f set to the offset in the .delg_info
section of the compilation-unit DIE for the compilation-unit represented by tlea gildress rangelt
returnsDW DLV_ERRCRon error.

5.18.3 dwarf_get_arange cu_header_offset()

i nt dwarf_get _arange_cu_header _of f set(
Dwar f _Arange ar ange,
Dwarf O f *returned _cu_header offset,
Dwarf _Error *error)

The functiondwar f _get _arange_cu_header _of f set () takes aDwar f _Ar ange descriptor as
input, and if successful retur®V DLV _OK and setsr et ur ned_cu_header _of f set to the ofset

in the .debug_info section of the compilation-unit header for the compilation-unit represented lwgrthe gi
address range. It returit¥V DLV_ERROR 0N error.

rev 1.66, 04 July 2007 - 64 -



-65 -

This function added Rel.45, June, 2001.

This function is declared as 'optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if ¢éhsian of libdwarf linked into an application has this
function.

5.18.4 dwarf_get_arange info()

int dwarf_get arange_i nfo(
Dwar f _Arange ar ange,
Dwar f _Addr *start,
Dwar f _Unsi gned *I engt h,
Dwarf O f *cu_die offset,
Dwar f _Error *error)

The functiondwar f _get _arange_i nfo() returnsDW DLV_OK and stores the starting value of the
address range in the location pointed tcsibwar t , the length of the address range in the location pointed
to byl engt h, and the offset in the .debug_info section of the compilation-unit DIE for the compilation-
unit represented by the address range. It retdvid<DLV _ERROR on error.

5.19 General Low Level Operations

This function is low-lgel and intended for use only by programs such as dwarf-dumpers.

5.19.1 dwarf_get_address size&()

int dwarf_get address_si ze(Dwarf _Debug dbg,
Dwarf Hal f *addr_si ze,
Dwar f _Error *error)

The function dwarf get address_si ze() returns DWDLV_OK on success and sets the
*addr _si ze to the size in bytes of an addres$s.case of errqiit returnsDW DLV_ERROR and does not
set*addr _si ze.

5.20 Utility Operations

These functions aid in the management of errors encountered when using functiorigbiwdré library
and releasing memory allocated as a resultldddavarf operation.

5.20.1 dwarf_errno()

Dwar f _Unsi gned dwarf _errno(
Dwarf _Error error)

The functiondwar f _errno() returns the error number corresponding to the error specified bgr .

5.20.2 dwarf_errmsg()

rev 1.66, 04 July 2007 - 65 -



-66 -

const char* dwarf_errmsg(
Dwarf _Error error)

The functiondwar f _errmsg() returns a pointer to a null-terminated error message string corresponding
to the error specified bgrr or. The string returned bgwar f _errnsg() should not be deallocated
usingdwar f _deal | oc().

The set of errors enumerated in Figure 3 Wweleere defined in Dwarf 1. These errors are not used by the
current implementation of Dwarf 2.

SYMBOLIC NAME DESCRIPTION

DW_DLE_NE Noerror (0)

DW_DLE_VMM Version of DVARF information newer than libdwanf
DW_DLE_MAP Memorymap failure

DW_DLE_LEE Propagtion of libelf error

DW_DLE_NDS Nodebug section

DW_DLE_NLS Noline section

DW_DLE_ID Requestethformation not associated with descriptor
DW_DLE_IOF I/Ofailure

DW_DLE_MAF Memoryallocation failure

DW_DLE_IA Invalid argument

DW_DLE_MDE Mangleddebugging entry

DW_DLE_MLE Mangledine number entry

DW_DLE_FNO Filedescriptor does not refer to an open file
DW_DLE_FNR Fileis not a regular file

DW_DLE_FWA File is opened with wrong access
DW_DLE_NOB Fileis not an object file

DW_DLE_MOF Mangledbject file header

DW_DLE_EOLL Endof location list entries

DW_DLE_NOLL Nolocation list section

DW_DLE_BADOFF Invalid offset

DW_DLE_EOS Enabf section

DW_DLE_ATRUNC Abbreviations section appears truncated
DW_DLE_BADBITC  Addresssize passed to dwarf bad

Figure 6. List of Dwarf Error Codes

The set of errors returned by SGI bdwar f functions is listed bels. Some of the errors are SGI
specific.

rev 1.66, 04 July 2007 - 66 -



-67 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_DBG_ALLOC
DW_DLE_FS®T_ERFOR
DW_DLE_FS®T_MODE_ERFOR
DW_DLE_INIT_ACCESS_WRNG
DW_DLE_ELF_BEGIN_ERRR
DW_DLE_ELF_GETEHDR_ERRR
DW_DLE_ELF_GETSHDR_ERER
DW_DLE_ELF_STRPTR_ERBR
DW_DLE_DEBUG_INFO_DUPLICAE
DW_DLE_DEBUG_INFO_NULL
DW_DLE_DEBUG_ABBREV_DUPLICAE
DW_DLE_DEBUG_ABBREV_NULL
DW_DLE_DEBUG_ARANGES_DUPLICAE
DW_DLE_DEBUG_ARANGES_NULL
DW_DLE_DEBUG_LINE_DUPLICAE
DW_DLE_DEBUG_LINE_NULL
DW_DLE_DEBUG_LOC_DUPLICAE
DW_DLE_DEBUG_LOC_NULL
DW_DLE_DEBUG_MACINFO_DUPLICAE
DW_DLE_DEBUG_MACINFO_NULL
DW_DLE_DEBUG_PUBNAMES_DUPLICAE
DW_DLE_DEBUG_PUBMMES_NULL
DW_DLE_DEBUG_STR_DUPLICAE
DW_DLE_DEBUG_STR_NULL
DW_DLE_CU_LENGTH_ERRR
DW_DLE_VERSION_STAMP_ERRBR
DW_DLE_ABBREV_OFFSET_ERBR
DW_DLE_ADDRESS_SIZE_ERBR
DW_DLE_DEBUG_INFO_PTR_NULL
DW_DLE_DIE_NULL
DW_DLE_STRING_OFFSET_RD
DW_DLE_DEBUG_LINE_LENGTH_RB\D
DW_DLE_LINE_PROLOG_LENGTH_BD
DW_DLE_LINE_NUM_OPERANDS_BD
DW_DLE_LINE_SET_ADDR_ERRR
DW_DLE_LINE_EXT_OPCODE_BD
DW_DLE_DWARF_LINE_NULL
DW_DLE_INCL_DIR_NUM_BAD
DW_DLE_LINE_FILE_NUM_BAD
DW_DLE_ALLOC_RAIL
DW_DLE_DBG_NULL
DW_DLE_DEBUG_FRAME_LENGTH_BD
DW_DLE_FRAME_VERSION_RBD
DW_DLE_CIE_RET_ADDR_REG_ERBR
DW_DLE_FDE_NULL
DW_DLE_FDE_DBG_NULL
DW_DLE_CIE_NULL
DW_DLE_CIE_DBG_NULL
DW_DLE_FRAME_TABLE_COL_B\D

Couldnot allocate Dwarf_Debug struct
Errorin fstat()-ing object
Errorin mode of object file
Incorrectaccess to dwarf_init()
Errorin elf_begin() on object
Errorin elf_getehdr() on object
Errorin elf_getshdr() on object
Errorin elf_strptr() on object
Multiple .debug_info sections
Nodata in .debug_info section
Multiple .debug_abbresections
Nodata in .debug_abbresection
Multiple .debug_arange sections
Nodata in .debug_arange section
Multiple .debug_line sections
Nodata in .debug_line section
Multiple .debug_loc sections
Nodata in .debug_loc section
Multiple .debug_macinfo sections
Nodata in .debug_macinfo section
Multiple .debug_pubnames sections
Nodata in .debug_pubnames section
Multiple .debug_str sections
Nodata in .debug_str section
Lengthof compilation-unit bad
IncorrectVersion Stamp
Ofset in .debug_abhbvebad
Sizeof addresses in target bad
Pointeinto .debug_info in DIE null
Null Dwarf_Die
Offset in .debug_str bad
Lengthof .debug_line segment bad
Lengthof .debug_line prolog bad
Numberof operands to line instr bad
Errorin DW_LNE_set_address instruction
Errorin DW_EXTENDED_OPCODE instructio
Null Dwarf_line argument
Errorin included directory for gien line
File number in .debug_line bad
Failed to allocate required structs
Null Dwarf_Debug argument
Error in length of frame
Badversion stamp for frame
Badregister specified for return address
NullDwarf_Fde argument
NoDwarf_Debug associated with FDE
Null Dwarf_Cie argument
NoDwarf_Debug associated with CIE
Badcolumn in frame table specified

Figure 7. List of Dwarf 2 Error Codes (continued)

rev 1.66, 04 July 2007

- 67 -




-68 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_PC_NO_IN_FDE_RANGE
DW_DLE_CIE_INSTR_EXEC_ERBR
DW_DLE_FRAME_INSTR_EXEC_ERBR
DW_DLE_FDE_PTR_NULL
DW_DLE_RET_OP_LIST_NULL
DW_DLE_LINE_CONTEXT_NULL
DW_DLE_DBG_NO_CU_CONTEXT
DW_DLE_DIE_NO_CU_CONTEXT
DW_DLE_FIRST_DIE_NG_CU
DW_DLE_NEXT_DIE_PTR_NULL
DW_DLE_DEBUG_FRAME_DUPLICAE
DW_DLE_DEBUG_FRAME_NULL
DW_DLE_ABBREV_DECODE_ERRR
DW_DLE_DWARF_ABBREV_NULL
DW_DLE_ATTR_NULL
DW_DLE_DIE_BAD
DW_DLE_DIE_ABBREV_BAD
DW_DLE_ATTR_FORM_B\D
DW_DLE_ATTR_NO_CU_CONTEXT
DW_DLE_ATTR_FORM_SIZE_BD
DW_DLE_ATTR_DBG_NULL
DW_DLE_BAD_REF_FORM
DW_DLE_ATTR_FORM_OFFSET_AD
DW_DLE_LINE_OFFSET_BD
DW_DLE_DEBUG_STR_OFFSET AD
DW_DLE_STRING_PTR_NULL
DW_DLE_PUBNAMES_VERSION_ERER
DW_DLE_PUBNAMES_LENGTH_BD
DW_DLE_GLOBAL_NULL
DW_DLE_GLOBAL_CONTEXT_NULL
DW_DLE_DIR_INDEX_BAD
DW_DLE_LOC_EXPR_BD
DW_DLE_DIE_LOC_EXPR_BD
DW_DLE_OFFSET_BD
DW_DLE_MAKE_CU_CONTEXT_RIL
DW_DLE_ARANGE_OFFSET_BD
DW_DLE_SEGMENT_SIZE_BD
DW_DLE_ARANGE_LENGTH_R\D
DW_DLE_ARANGE_DECODE_ERRR
DW_DLE_ARANGES_NULL
DW_DLE_ARANGE_NULL
DW_DLE_NO_FILE_NAME
DW_DLE_NO_COMP_DIR
DW_DLE_CU_ADDRESS_SIZE_BD
DW_DLE_ELF_GETIDENT_ERRR
DW_DLE_NO_AT_MIPS_FDE
DW_DLE_NO_CIE_FOR_FDE
DW_DLE_DIE_ABBREV_LIST_NULL
DW_DLE_DEBUG_FUNCNAMES_DUPLICAE
DW_DLE_DEBUG_FUNCMMES_NULL

PGequested not in address range of FDE
Errorin executing instructions in CIE
Errorin executing instructions in FDE
NullPointer to Dwarf_Fde specified
Ndocation to store pointer to Dwarf_Frame_Oq
Dwarf_Line has no context
dbbas no CU context for dwarf_siblingof()
Dwarf Die has no CU context
FirstDIE in CU not DW_TRAG_compilation_unit
Erroin moving to next DIE in .debug_info
Multiple .debug_frame sections
Nodata in .debug_frame section
Errorin decoding abbreviation
Null Dwarf_Abbres specified
Null Dwarf_Attribute specified
DIE bad
No abbreviation found for code in DIE
Inappropriateattribute form for attribute
NdCU context for Dwarf_Attribute struct
Sizeof block in attribute value bad
NoDwarf_Debug for Dwarf_Attribute struct
Inappropriaterm for reference attribute
Offset reference attribute outside current CU
Offset of lines for current CU outside .debug_lin
Offset into .debug_str past its end
Pointeto pointer into .debug_str NULL
\ersion stamp of pubnames incorrect
Readpubnames past end of .debug_pubnames
Null Dwarf_Global specified
No context for Dwarf_Global gen
Errorin directory inde read
Badoperator read for location expression
Expectedblock value for attribute not found
Offset for next compilation-unit in .debug_info b
Could not male CU mntext
Offset into .debug_info in .debug_aranges bad
Segment size should be 0 for MIPS processors
Lengthof arange section in .debug_arange bad
Arangeglo not end at end of .debug_aranges
NULL pointer to Dwarf_Arange specified
NULL Dwarf_Arange specified
No file name for Dwarf_Line struct
NdCompilation directory for compilation-unit
CU header address size not match EIf class
Errorin elf_getident() on object
DIEdoes not hee DW_AT_MIPS_fde attribute
NEIE specified for FDE
Noabbreviation for the code in DIE found
Multiple .debug_funcnames sections
Nodata in .debug_funcnames section

Figure 8. List of Dwarf 2 Error Codes (continued)

rev 1.66, 04 July 2007

-68 -

[©)



-69 -

SYMBOLIC NAME DESCRIPTION
DW_DLE_DEBUG_FUNCNAMES VERSION_ERBR \ersion stamp in .debug_funcnames bad
DW_DLE_DEBUG_FUNCNAMES LENGTH_BD Lengtherror in reading .debug_funcnames
DW_DLE_FUNC_NULL NULL Dwarf_Func specified
DW_DLE_FUNC_CONTEXT_NULL Nacontext for Dwarf_Func struct
DW_DLE_DEBUG_TYPENAMES_ DUPLICAE Multiple .debug_typenames sections
DW_DLE_DEBUG_TYPEMMES NULL Nodata in .debug_typenames section
DW_DLE_DEBUG_TYPENAMES VERSION_ERBR \ersion stamp in .debug_typenames bad
DW_DLE_DEBUG_TYPENAMES LENGTH_BD Lengtherror in reading .debug_typenames
DW_DLE_TYPE_NULL NULL Dwarf_Type specified
DW_DLE_TYPE_CONTEXT_NULL Nacontext for Dwarf_Type gien
DW_DLE_DEBUG_VARNAMES DUPLICAE Multiple .debug_varnames sections
DW_DLE_DEBUG_VARMMES NULL Nodata in .debug_varnames section
DW_DLE_DEBUG_VARNAMES VERSION_ ERBR \ersion stamp in .debug_varnames bad
DW_DLE_DEBUG_VARNAMES LENGTH_BD Lengtherror in reading .debug_varnames
DW_DLE_VAR_ NULL NULL Dwarf_Var specified
DW_DLE_VAR_CONTEXT_NULL Nocontext for Dwarf_Var gien
DW_DLE_DEBUG_WEAKNAMES DUPLICAE Multiple .debug_weaknames section
DW_DLE_DEBUG_WEAKMMES_ NULL Nodata in .debug_varnames section
DW_DLE_DEBUG_WEAKNAMES VERSION_ERBR \krsion stamp in .debug_varnames bad
DW_DLE_DEBUG_WEAKNAMES LENGTH_BD Lengtherror in reading .debug_weaknames
DW_DLE_WEAK_NULL NULL Dwarf_Weak specified
DW_DLE_WEAK_CONTEXT_NULL Nocontext for Dwarf_Weak gen

Figure9. List of Dwarf 2 Error Codes

This list of errors is not necessarily complete; additional errors might be added when functionality to create
delugging information entries are added ltbdwarf and by the implementors dfbdwarf to describe
internal errors not addressed by theablist. Someof the abwe arors may be unused. Errors may not
have the same meaning in different implementations.

5.20.3 dwarf_seterrhand()

Dwar f _Handl er dwarf _set errhand(
Dwar f _Debug dbg,
Dwar f _Handl er errhand)

The functiondwar f _set er r hand() replaces the error handler (sthear f _i ni t () ) with er r hand.
The old error handler is returned. This function is currently unimplemented.

5.20.4 dwarf_seterrarg()

Dwarf _Ptr dwarf_seterrarg(
Dwar f _Debug dbg,
Dwarf _Ptr errarg)

The functiondwar f _set errar g() replaces the pointer to the error handler communication area (see
dwarf _init()) with errarg. A pointer to the old area is returnedhis function is currently
unimplemented.

5.20.5 dwarf_dealloc()

rev 1.66, 04 July 2007 - 69 -



-70 -

voi d dwarf_deal | oc(
Dwar f _Debug dbg,
voi d* space,
Dwar f _Unsi gned type)

The functiondwar f _deal | oc frees the dynamic storage pointed tosipace, and allocated to the gén
Dwar f _Debug. The agumentt ype is an intger code that specifies the allocation type of tlggore
pointed to by thspace. Refer to section 4 for details dilbdwarf memory management.

rev 1.66, 04 July 2007 -70-



rev 1.66, 04 July 2007

-71-

71 -



CONTENTS

L.INTRODUCTION  coeiiiiiiiie ettt e e e e e et a e e e e e e e e eeeenees 1
0 I 0] )Y/ 1 o | o | SRR 1
1.2 PUrpPOSE and SCOPE......coeviiiiiiiiiiiiee ettt e e 1
1.3 DOCUMENT HISTOMY .oieiiiiee et 2
1.4 DEfiNItIONS  oovueiiiiie i e e e e e eae e 2
1.5 OVEIVIBW ottt e et e e e et e e e e e e aaa e e e e e eennnns 2
1.6 IteMS ChanQed ......coooieeiiiii e 3
1.7 HeMS REMMEA ..ot 3
1.8 ReVISION HISIOIY ...coiieiiiie e 3

2.Types DEefiNItIONS ...oooveeiiiiiei e 4
2.1 General DesCriPLiON ........uvuii i 4
2.2 SCAlAr TYPES s 4
2.3 AQOrEIaE TYPES .ottt ettt eaas 5

2.3.1L0CAtioN RECOI .....uuiiiiiiieeiiiieeeei e 5
2.3.2L0ocation DEeSCIPLION .........ciiiiiieieiiiiieeiiiir e 6
2.3.3Data BIOCK ...covveiiiiiee e 6
2.3.4Frame Operation CodesSMBRF 2 ..o, 6
2.3.5Frame RegtableMARF 2 ..o 7
2.3.6 Frame Operation CodesMARF 3 (and WARF2) ........... 8
2.3.7Frame RegtableMARF 3 ..., 8
2.3.8Macro Details ReCOrd.........ccccuuviiiiiiiiiiiiieeceeece e 10
2.4 OPAGUE TYPES .oeneiiiieeeeie ettt ettt e e e e eeaans 10

S.Error HandliNg .....oooioiiiiiicceeei et 12
3.1 Returned values in the functional interface.............ccccccceeeeeeeee 13

4. Memory ManagemMeENt ........c.. i 14
4.1 Read-only Properti€s.........ciiieeiiiiiiiii e 14
4.2 Storage DealloCation ............oviieiiiiiiiii e 14

5. Functional INterface ... 16
5.1 Initialization OPerations ............uuceiieeiiieiiiii e e e 16

5.2.2dwarf init() coveeeeeieeeeeee e 16
5.1.2dwarf_elf init()) ..oooovveeeiiiieee 17
5.1.3dwarf_get_elf() ..oocovverriiiiieie 17



5.1.4dwarf _finish() oooveeiiiiiie 18

5.2 Debugging Information Entry Deéry Operations .................... 18

5.2.1 Debugging Information Entry Debugger bety
OPEIALIONS ..ot 18

5.2.2dwarf_next_cu_header()......cccccceeeiieiiiiiiinieeeeiicee e 18
5.2.3dwarf_siblingof() .......ooiiiiiiiiie e 19
5.2.4dwarf_Child() ....oovviiieeii e 19
5.2.5dwarf_offdie() ....ooeviiiii 19

5.3 Debugging Information Entry Query Operations...................... 19
TG T N0 1117 Ty = Vo [ 20
5.3.2dwarf_dieoffSet() .....uvviiiiiiiiiie e 20
5.3.3dwarf_die_ CU_offSet() ......ooveeerieiiiiiiieieeiii e 20
5.3.4dwarf_diename() .....eee oo 21
5.3.5dwarf_attrlist() ....cooevoviriiiiii s 21
5.3.6dwarf_hasattr() .......cooeeeeiiiiiiieeeeeee e 21
5.3.7dwart_attr() ooeeevveoeieeeeeiie e 22
5.3.8dWarf_IOWPC() oevvvrnriieiiiiiiiiie et 22
5.3.9dwarf_highpC() ..ooevvvriiiiiieiii e 22
5.3.1@warf _DYIESIZE() vevvvrniieeieeiiiie e 22
5.3.1Hwarf _DItSIZE() .oveeveeiieeieeiiie s 23
5.3.12warf_DbItoffSet() .....covveeiiiiiiie e 23
5.3.13Ilwarf_Srclang() .oooeeeeeeeiiieieieee e 23
5.3.14warf_arrayorder() ..o 23

5.4 Attribute FOrm QUEIIES .......ceevii e 23
5.4.1dwarf_hasform() .....ccooooeeeiiiiiiie e 24
5.4.2dwarf_whatform() .......ceeiiiiiiiii 24
5.4.3dwarf_whatform_direct() ........cccccceeiirieiiiiiiie e, 24
5.4.4dwarf_whatattr() ......cocooeeeriiiiiieiieii e 24
5.4.5dwarf_formref() ..o 25
5.4.6dwarf_global _formref() ......cccoooeviiriiiiii 25
5.4.7dwarf_formaddr() .......ooeeiiiiiiiiii 25
5.4.8dwarf_formflag() .....ccccooviiiiiiiii 25
5.4.9dwarf_formudatal) .......cccooeeeieiiiiiiiii s 26
5.4.1@warf_formsdatal) ........ccoeeerreriiiiiiiii e 26
5.4.18Hwarf_formblock() ......coovvviiiiiii 26
5.4.12warf_formstring() .....ccoevvviieieeiiie e 26

5.4.12. 1dwarf _10Clist_ N() .eeovveeeieeiiiie e 27



5.4.12.A0warf _10ClSt() .vvvvvieiiieiiiiieeeee e 27

5.4.12.3warf_loclist_from_expr().......ccccceeeirnriiiiiiniineeneennns 28
5.5 Line Number Operations...........ccccuiiiieiiiiiiiie e 29
5.5.1Get ASetof LINES ...ccooviviiiiieeeeee e 29
5.5.1.1 dwarf_Srclines() ..oceeveeeeeiieeiiiiieeeeeeiin e 29
5.5.2Get the set of Source File Names...........ccccevvvvvivviiiinnnennn. 30
5.5.3 Get information about a Single Table Line....................... 31
5.5.3.1 dwarf_linebeginstatement()...........ccccvviiiiiiiiinnnnnnn. 31
5.5.3.2 dwarf_lineendsequence()........ccccevvevrriiieereeeniinneenn, 31
5.5.3.3 dwarf_liNeNo() ...cooveeeveeiiiiiieiiee e 31
5.5.3.4 dwarf_line_srcfileno() ......cccooovviiiiiiiiiiiiiiie, 32
5.5.3.5 dwarf_lineaddr() ......ccoooevieiiiiiiiii e, 32
5.5.3.6 dwarf_lineoff() .......ccovvrriiiiiiiiii 32
5.5.3.7 dwarf_lINESIC() wuvvuviiiiiiiiiiiie e 32
5.5.3.8 dwarf_lineblock() ........ccovviiiiiiiiiiii e 33
5.6 Global Name Space Operations................uuviiiiniiiieeiiiiiieiiiiiinnnns 33
5.6.1 Debugger Interface Operations.........ccccceveeeveeiiiinieeeeeennnnnn. 33
5.6.1.1 dwarf_get_globals().......ccccoeeviiiiiiiiiiiiii e, 33
5.6.1.2 dwarf_globname() .....cccooeevveiiiiiiiiiee e 34
5.6.1.3 dwarf_global_die_offset() ........ccccceeiviriiiiiiiiinieieenns 34
5.6.1.4 dwarf_global _cu_offset() ......cccccoeeeveeeiiiiiiiineeeeeennn, 35
5.6.1.5 dwarf_get _cu_die_offsetvgn_cu_header_offset() 35
5.6.1.6 dwarf_global_name_offsetS().........cccccceeivrirreennnnnn. 35
5.7 DWARF3 Type Names Operations.............ccoevvvviiiieeeeeiviineeeeennnns 36
5.7.1 Debugger Interface Operations.........ccccceveevveeviiiieeeeeennnnnn. 36
5.7.1.1 dwarf_get_pubtypes()......ccceerririeerriiiiiiiiiiiiie e 36
5.7.1.2 dwarf_pubtypename().........cccceevevriiiiiiiiiiiiiie e 37
5.7.1.3 dwarf_pubtype_die_offset().......cccceevverrrrriinieennnnns 37
5.7.1.4 dwarf_pubtype_cu_offset()........ccccuvvriiiiriiiiinnnnnnne. 37
5.7.1.5 dwarf_pubtype_name_offsets()........ccccceeeeerrennnnnnn. 37
5.8 User Defined Static Variable Names Operations..................... 38
5.9 Weak Name Space OperationS........coceuvuiiieeiieiiiiineeeeeeiiieeeeeeeeeens 38
5.9.1 Debugger Interface Operations..........ccccoeeevveeviiieeeeeennnnnnn. 38
5.9.1.1 dwarf_get_ WeakKsS() .....ccuvvvereereriiiiiieeeeeiiie e eeeeerie 38
5.9.1.2 dwarf_weakname() .....ccccoovveiiiiiiiniiiie e 39
5.9.1.3 dwarf_weak cu_offset()..........cccevvririiiiiiiiiiiiineeee, 40
5.9.1.4 dwarf_weak _name_offsets()..........cccevvevriieeerrnnnns 40



5.10Static Function Names Operations..............uueeiiiiieeeeiiieeeeeniinnnns 40

5.10.Debugger Interface Operations...........cceeveeeveeiiiiiieeeeeenennnn. 40
5.10.1.1dwarf_get funcs().......ccevvmrriiieeeiiiiiii e 40
5.10.1.Awarf_funcname() .....ccooeeevveiviiiieeeeein e 42
5.10.1.3warf_func_die_offset() ........ceveerriiiiiiiiiiiiiieeieeens 42
5.10.1.4dwarf_func_cu_offset() .......cccevverviiiieriiiiiiiieeeeeeens 42
5.10.1.5dwarf_func_name_offsets()..........cccccuvririrerrernnnnnnn. 42

5.11User Defined Type Names Operations..........cccceeevvvveeeevnneeeennnn. 43

5.11.Debugger Interface Operations..........cccceeeeeveeiiiieeeeeeninnnnn. 43
5.11.1.1dwarf_get types()...cceeeeereerriiieeeeeiiiii e 43
5.11.1.Awarf_typename()........cceeeruriiiierieeiiinieeeeeeiiee e 44
5.11.1.3warf_type _die_offset() .......coeeevrerriiiieriiiiiiiieeeeenns 44
5.11.1.4dwarf_type_cu_offSet().......cccccuvrirrieriiriiiieeeeeeiinnnnn. 44
5.11.1.5dwarf_type _name_offsetS()..........ccevvrrivirereernnnnnnn. 45

5.12User Defined Static Variable Names Operations..................... 45

5.12.Debugger Interface Operations.........cccccevveeveeiviieeeeeeennnnnn. 45
5.12.1.1dwarf_get_vars()......cccoeeeeeriieeiiiiieeeeeein e 45
5.12.1.Awarf_varname().......cccoeeveeeeeiiiiiiieeeein e 46
5.12.1.3warf_var_die_offset() ........cccccveeiieirieiiiiiieeeeeeiiinn. 46
5.12.1.4dwarf_var_cu_offset() ......cccceeeviriiiiiiiiiiieieeiiieeeee, 47
5.12.1.5dwarf_var_name_offsetS().......ccccceeerrirriiiininiiennnnns 47

5.13Macro Information Operations............cooeevvivieiiiiiiiiiiinie e, 47

5.13.15eneral Macro Operations............ccoveevveineeeeeeiiiinneeeeeeiinnnn 47
5.13.1.1dwarf_find_macro_value_start(}...........ccccceeeeeeneee. 47

5.13.Debugger Interface Macro Operations...........ccccceeeeeeeeenns 47

5.13.3 av Levd Macro Information Operations............cccccc....... 48
5.13.3.1dwarf_get_macro_details()..........cccceeevreerierrnnnnnnn. 48

5.14Lon Levd Frame Operations ..........ccuuvvveeiiiiinneeeeeeeeeeeeiiiiiinee e 48
5.14.0.dwarf_get_fde_liSt() .....coovveervniiiiiiiiiiiieeei e 51
5.14.0.Awarf_get_fde_list_ eh().....ceeveeveeriiiiiiiiiiiiieeeee, 52
5.14.0.3warf_get_cie_of fde().........ccemrrriiiiiiiiiiiiiieeeeeennns 53
5.14.0.4dwarf_get_fde_for_die()......ccoeevveerriiiiiiiiiiiiiieieeens 53
5.14.0.5dwarf_get_fde_range().......cccccceeeireerriririiiieerieninnnnn. 54
5.14.0.adwarf_get_cie_info() .....cooveeerieeriiiiiiriiiiie e, 54
5.14.0. dwarf_get_fde_instr_bytes()......cccccoeevvrerriiirrerrnnnns 54
5.14.0.&warf_get _fde_info_for_reg()...........cccceuvvieeeerennnnn 55
5.14.0.9dwarf_get_fde_info_for_all regs()........ccccceeeeerenns 55



5.14.0.1@warf_set_frame_rule_table_size().........c............ 56

5.14.0.1dwarf_set_frame_rule_inital_value().................... 56
5.14.0.1@warf_get fde_info_for reg3().....ccccccveeveeerrrnnnnnnn. 56
5.14.0.1@wvarf_get_fde_info_for_cfa_reg3().........ccccuvvunn... 57
5.14.0.1dwarf_get fde_info_for_all_regs3(}........ccccccuunn... 58
5.14.0.1@warf_get fde N() ...cooeveeeieeriiiii e 58
5.14.0.1@warf_get fde_at pC().....cccveeivieriirriiiiieeieeiiiieeee, 59
5.14.0.1dwarf_expand_frame_instructions()..........ccccc...... 59
5.14.0.1@wvarf_get_fde_exception_info()..........ccccuvvueeneee, 60
5.15Location Expression Evaluation................cccceeiiiiiieeeiiiiiiiiiiinnnnnn, 60
5.15.1 ocation List Internaldel Interface ..........cccccveiiiiieennnnnnn. 60
5.15.1.1dwarf_get_loclist_entry() ......ccevveeieeeriiiiiieeeeeeenn, 60
5.16ADDIEVIAtIONS ACCESS. . ..t iiiieriiieeeeeeeiis e e e et e e et e e e eaeas 61
5.16.0warf_get_abbrev().......cccviiii 61
5.16.2lwarf_get_abbrev_tag().....cccccoovveriiiiiiiii 62
5.16.38lwarf_get_abbrev_code().........cvvveviiiiiiiii e, 62
5.16.4lwarf_get_abbrev_children_flag()..........ccovevvviiiriiiinnnnnnnn. 62
5.16.8lwarf_get _abbrev_entry().........ccoovviiiiiiiii 62
5.17String Section OPeratioNS........cooeeiiiiiiiiiiiiiiiiia e 63
5.17.0warf_get Str() .oooeeeeeeieeieei s 63
5.18Address Range OperationsS...........ccovveeiviiiiiiieeeeeiie e 63
5.18.Hwarf_get_aranges().......ceeeeerreerriiiieeeeiiiie e e 63
5.18.2lwarf_get_cu_die_offset()......cccccevreriiiiiiiiiiiieee, 64
5.18.8lwarf_get _arange cu_header_offset()..............ceevvrrunnnnn. 64
5.18.4lwarf_get_arange _info()........cccccuvuiiiiiiiiiiiiii e ee e, 65
5.19General Lay Levd Operations ........oooeevveiiiieieeiiiineeeeeeiieneeeeeenenns 65
5.19.Hwarf_get_address _Siz€().....ccoevevvrerriiiiieeiiiiiiee e, 65
5.20UtIlItYy OPEratiONS ....cooeeeieiiiieeiiiieiee et 65
5.20.Hwarf_errno() c.oeeoeeeeieeiiiie e 65
5.20.2warf_errmsg() ..ooooeveeriiiiieeeiie e 65
5.20.8lwarf_seterrhand()...........ceeveeeiieiiiiiieeeee e 69
5.20.4warf_seterrarg() ....c.ceeee e 69
5.20.8lwarf_dealloC() .....ccovvvriiieiiieie e 69



LIST OF FIGURES

Figure Bealar TYPES ... 4
Figure Error INdiCatioNS .........ooieeiiiiiiiii e 13
Figure Allocation/Deallocation ldentifiers.........ccccoveevveviiiii v, 15
Figure &£rame Information Rule Assignments...........cccvvviiiievveiinnnnnn. 49
Figure B:rame Information Special Values..............cccccceeiiieiiiiiiienee, 50
Figure &ist of Dwarf Error COdes........ccuveiiiiiiiiiiiiie e 66
Figure List of Dwarf 2 Error Codes (continued).............cccevvvuiierernnnns 66
Figure &.ist of Dwarf 2 Error Codes (continued).............ccceevveeeeernnnns 67
Figure Qist of Dwarf 2 Error Codes........cooovvvviiiiiiiiiieiiiie e 69

Vi






A Consumer Library Interface to DWARF

David Anderson

ABSTRACT

This document describes an intaé to a library of functions to access
DWARF debugging information entries and WARF line number
information (and other WARF2/3 information). It does not mak
recommendations as towdhe functions described in this document should
be implemented nor does it suggest possible optimizations.

The document is oriented to readingV/BRF version 2 and version 3 here
are certain sections which are SGI-spedthose are clearly identified in the
document).

rev 1.66, 04 July 2007

0. UNIX is a registered trademark of UNIX System Laboratories, incthe United
States and other countries.

viii



