DWARF Debugging Information Format

UNIX International
Programming Languages SIG
Revision: 2.0.0 (July 27, 1993)

Industry Reviav Draft

Published by:

UNIX International
Waterview Corporate Center
20 Waterviev Boulevard
Pasippary, NJ 07054

for further information, contact:
Vice President of Marketing

Phone: +1201-263-8400
Fax: +1201-263-8401

Copyright © 1992, 1993 NIX International, Inc.

Permission to use, cgpmodify, and distribute this documentation foryapurpose and without fee is
hereby granted, provided that the ebaopyright notice appears in all copies and that both thayragipt

notice and this permission notice appear in supporting documentation, and that thenmamméethational

not be used in advertising or publicity pertaining to distribution of the software without specific, written
prior permission.UNIX International makes no representations about the suitability of this documentation
for ary purpose. lis provided "as is" without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. INNO EVENT SHALL UNIX INTERNATIONAL BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL BMAGES OR ANY DAMAGES WHATSOEVER RESULING
FROM LOSS OF USE, BTA OR PROFITS, WHETHER IN AN ACTION OF CONTRHN,
NEGLIGENCE OR OTHER DRTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS DOCUMERNTION.

NOTICE:

UNIX International is making this documentatioveilable as a reference point for the industiyhile

UNIX International beliees that this specification is well defined in this first release of the document, minor
changes may be made prior to products meeting this specification beingvaitad#eafrom WNIX System
Laboratories or Nix International members.

Trademarks:

Intel386 is a trademark of Intel Corporation.
UNIX® is a regstered trademark of iUx System Laboratories in the United States and other countries.

Industry Reviav Draft

Programming Languages SIG

\Lix \$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9 \Lix \$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9

Revision: 2.0.0 Page 1 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

FOREWORD

This document specifies the second generation of symboligdety information based on the
DWARF format that has been d#oped by the WX International Programming Languages
Special Interest Group (SIG). It is being circulated for industvjeve The first version of the
DWAREF specification was published byl International in Januarg992. Thecurrent \ersion
adds significant ve functionality but its main thrust is to achie a nuch denser encoding of the
DWAREF information. Because of thewencoding, DVARF Version 2 is not binary compatible
with DWARF Version 1.

At this point, the SIG belies that this document sufficiently supports the debugging needs of C,
C++, FORTRAN 77, Fortran90, Modula2 andseal, and we ka released it for public
comment. V& will accept comments on this document until September 30, 1@&Mmments
may be directed via email to the SIG mailing list (plsig@ugi.oif you are unable to send email,
paper mail, FAX, or machine readable gam UNIX, MS-DOS, or Macintosh compatible media
can be sent to \X International at the address listed belend will be forwarded to the SIG.

UNIX International
Waterview Corporate Center
20 Waterviev Boulevard
Pasippary, NJ 07054
Phone: +1201-263-8400
Fax: +1201-263-8401

Revision: 2.0.0 Page 2 July 27, 1993
Industry Reviwav Draft

Programming Languages SIG

1. INTRODUCTION

This document defines the format for the information generated by compilers, assemblers and
linkage editors that is necessary for symbolic, soured-lelebugging. The debugging
information format does noa¥a the design of ancompiler or debgger Instead, the goal is to
create a method of communicating an accurate picture of the source progranuétLgyger in a

form that is economically extensible to different languages while retaining badkw
compatibility.

The design of the debugging information format is open-ended, allowing for the addition of ne
delugging information to accommodatewnéanguages or debugger capabilities while remaining
compatible with other languages or different debuggers.

1.1 Pumose and Scope

The delngging information format described in this document is designed to meet the symbolic,
source-lgel debugging needs of different languages in a unified fashion by requiring language
independent debugging information wheerepossible. Indiidual needs, such as C++ virtual
functions or Brtran common blocks are accommodated by creating attributes that are used only
for those languages. TheNX International Programming Languages SIG belethat this
document sufficiently a@rs the debgging information needs of C, C++, FORAN77,
Fortran90, Modula2 and Pascal.

This document describesWARF Version 2, the second generation of wghng information
based on the WARF format. While DVARF Version 2 preides n&v delugging information not
available in Version 1, the primary focus of the changes #sign 2 is the representation of the
information, rather than the information content itself. The basic structure of étmoly 2
format remains as in Version 1: the debugging information is represented as a serieggihdeb
information entries, each containing one or more aiteib (hame/value pairs). The Version 2
representation, leever, is much more compact than the Version 1 representation. In some cases,
this greater density has been aghikat he expense of additional complexity or greatefialifty

in producing and processing th&BRF information. We telieve that the reduction in 1/O and in
memory paging should more than realp or ary increase in processing time.

Because the representation of information has changed from Version 1 to Versiersign \2
DWAREF information is not binary compatible with Version 1 informatidim. make it easier for
consumers to support botheidsion 1 and Version 2 WARF information, the Version 2
information has been med to a dfferent object file sectiondebug_info

The intended audience for this document are tlvelalgers of both producers and consumers of
delugging information, typically language compilers, dgbers and other tools that need to
interpret a binary program in terms of its original source.

1.2 Owrview

There are tw major pieces to the description of th&®MBRF format in this document. The first
piece is the informational content of the debugging entries. The second piece iaythiew
debugging information is encoded and represented in an object file.

The informational content is described in sections trough six. Section tw describes the
overall structure of the information and attuiles that are common to myaor dl of the different
dehugging information entries. Sections three, four ane figscribe the specific degging
information entries and ko they communicate the necessary information about the source

Revision: 2.0.0 Page 3 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

program to a delgger Section six describes defging information contained outside of the
delugging information entries, themseb: Theencoding of the WARF information is
presented in section\sm.

Section eight describes some future directions for WA RF specification.

In the following sections, text in normal font describes required aspects oMARD format.
Tex in italics is explanatory or supplementary material, and not part of the format definition
itself.

1.3 \endor Extensibility

This document does not attempt tove@oall interesting languages owven to wver al of the
interesting debgging information needs for its primary target languages (C, C++TRBR77,
Fortran90, Modula2, &scal). Thereforthe document provides vendors a way to define thair o
dehugging information tags, attuibes, base type encodings, location operations, language names,
calling cowventions and call frame instructions by reserving a portion of the name spacalidnd v
values for these constructs for vendor specific additidghsture versions of this document will

not use names or values reserved for vendor specific additions. All nameswsesinot reseed

for vendor additions, hwever, are reserved for future versions of this document. See section 7
for details.

1.4 Changedrom Version 1

The following is a list of the major changes made to tNgAIRF Debugging Informationd¥mat
since Version 1 of the format was published (January 20, 19B#29. list is not meant to be
exhaustve.

+ Delugging information entries ka been moed from the.debug to the.debug_info
section of an object file.

« The tag, attribte names and attribute forms encodingsehbeen meed out of the
debugging information itself to a separate abbreviations table.

« Explicit sibling pointers hee been made optional. Each entrywngpecifies (through the
abbreviations table) whether or not it has children.

+ New more compact attribute forms V& been added, including a variable length constant
data form. Attribute values may wdaveary form within a gven dass of forms.

 Location descriptions wva keen replaced by a we more compact and morexgressie
format. Thereis nov a way of epressing multiple locations for an object whose location
changes during its lifetime.

» There is a ne@ format for line number information that provides information for code
contributed to a compilation unit from an included file. Line number informationusino
the.debug_line section of an object file.

« The representation of the type of a declaration has baemked.
« A new ction provides an encoding for pre-processor macro information.

« Delugging information entries mo provide for the representation of non-defining
declarations of objects, functions or types.

« More complete support for Modula2 and Pascal has been added.

Revision: 2.0.0 Page 4 July 27, 1993
Industry Reviwav Draft

Programming Languages SIG

« There is nav a way of describing locations for segmented address spaces.

A new fction provides an encoding for information about call frameatictns.

« The representation of enumeration and array types has beerked so that WARF
presents only a single way of representing lists of items.

» Support has been added for C++ templates and exceptions.

Revision: 2.0.0 Page 5 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 6 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

2. GENERAL DESCRIPTION
2.1 TheDebugging Information Entry

DWARF uses a series of daiging information entries to define aMdevel representation of a
source program. Each debugging information entry is described by an identifying tag and
contains a series of attutes. Thetag specifies the class to which an entry belongs, and the
attributes define the specific characteristics of the entry.

The set of required tag names is listed in FigureThe debugging information entries the
identify are described in sections three, four and five.

The debugging information entries iINnWARF \ersion 2 are intended to exist in the
.debug_info section of an object file.

DW_TAG_access_declaration
DW_TAG_base_type
DW_TAG_class_type
DW_TAG_common_inclusion
DW_TAG_const_type
DW_TAG_entry point
DW_TAG_enumerator
DW_TAG_formal_parameter
DW_TAG_imported_declaration
DW_TAG_inlined_subroutine
DW_TAG_lexical_block
DW_TAG_module
DW_TAG_namelist_item
DW_TAG_pointer_type
DW_TAG_reference_type
DW_TAG_string_type
DW_TAG_subprogram
DW_TAG_subroutine_type
DW_TAG_template value param
DW_TAG_try block
DW_TAG_union_type
DW_TAG_variable
DW_TAG_variant_part
DW_TAG_with_stmt

DW_TAG_array_type
DW_TAG_catch_block
DW_TAG_common_block
DW_TAG_compile_unit
DW_TAG_constant
DW_TAG_enumeration_type
DW_TAG file_type
DW_TAG_friend
DW_TAG_inheritance
DW_TAG_label
DW_TAG_member
DW_TAG_namelist
DW_TAG_packed_type
DW_TAG_ptr_to_member_type
DW_TAG_set_type
DW_TAG_structure_type
DW_TAG_subrange_type
DW_TAG_template_type_param
DW_TAG_thrown_type
DW_TAG_typedef
DW_TAG_unspecified_parameters
DW_TAG_variant
DW_TAG_volatile_type

2.2 Attrib ute Types

Figure 2.

Figure 1L Tag names

Each attribute value is characterized by an attribute name. The set of attribute names is listed in

The permissible values for an attribute belong to one or more

clafssiisbute value forms. Each form class may be represented in one or more
ways. For instance, some attribute values consist of a single piece
of constant data. “Constant data” is the class of attribute value
that those attributes may have. There are several representations

Revision: 2.0.0 Page 7

Industry Reviav Draft

July 27, 1993

DWARF Debugging Information Format

DW_AT abstract_origin
DW_AT_ address_class
DW_AT_ base_types
DW_AT _bit_size
DW_AT_calling_convention
DW_AT_ comp_dir

DW_AT _containing_type
DW_AT data_member_location
DW_AT decl file
DW_AT_declaration
DW_AT_discr

DW_AT discr_value
DW_AT external

DW_AT friend

DW_AT identifier_case
DW_AT inline
DW_AT_language

DW_AT low_pc
DW_AT_macro_info
DW_AT namelist_item
DW_AT _priority
DW_AT_prototyped
DW_AT_segment

DW_AT _specification
DW_AT _static_link

DW_AT stride_size
DW_AT _type

DW_AT use_location
DW_AT _virtuality

DW_AT vtable elem_location

Figure 2 Attribute names

of constant data, however (one, two, four, eight bytes and variable
length data). The particular representation for any given instance
of an attribute is encoded along with the attribute name as part

of the information that guides the interpretation of a debugging
information entry. Attribute value forms may belong

to one of the following classes.

address Refers to some location in the address space of the described program.
block An arbitrary number of uninterpreted bytes of data.
constant One, two, four or eight bytes of uninterpreted data, or data encoded
in the variable length format known as LEB128 (see section 7.6).
flag A small constant that indicates the presence or absence of an attribute.
reference Refers to some member of the set of debugging information entries that describe

the program. There are two types of reference. The first is an
offset relative to the beginning of the compilation unit in

D\

DV

—_—e— 1)

DV

Revision: 2.0.0 Page 8 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

which the reference occurs and must refer to an entry within
that same compilation unit. The second type of reference

is the address of any debugging information entry within

the same executable or shared object; it may refer to an entry
in a different compilation unit from the unit containing the
reference.

string A null-terminated sequence of zero or more (hon-null) bytes.
Data in this form are generally printable strings. Strings
may be represented directly in the debugging information entry
or as an offset in a separate string table.

There are no limitations on the ordering of attributes within a debugging
information entry, but to prevent ambiguity,

no more than one attribute with a given name may appear in any debugging
information entry.

2.3 Relationshipof Debugging Information Entries

A variety of needs can be met by permitting a single debugging

information entry to “own” an arbitrary number of other debugging

entries and by permitting the same debugging information entry to be

one of many owned by another debugging information entry.

This makes it possible to describe, for example,

the static block structure within

a source file, show the members of a structure, union, or class, and associate
declarations with source files or source files with shared objects.

The ownership relation

of debugging information entries is achieved naturally

because the debugging information is represented as a tree.

The nodes of the tree are the debugging information entries
themselves. The child entries of any node are exactly those
debugging information entries owned by that node. 3

The tree itself is represented by flattening it in prefix

order. Each debugging information entry

is defined either to have child entries or not to have child entries

(see section 7.5.3).

If an entry is defined not to have children, the next physically

succeeding entry is the sibling of the prior entry. If an entry

is defined to have children, the next physically succeeding entry

is the first child of the prior entry. Additional children of the parent

entry are represented as siblings of the first child. A chain
of sibling entries is terminated by a null entry.

In cases where a producer of debugging information

feels that it will be important for consumers of that information
to quickly scan chains of sibling entries, ignoring the children
of individual siblings, that producer may attach an

Revisidfhilz. ;i@ ownership relation of the debuggir@agéogmation July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

AT_sibling
attribute to any debugging information entry. The value of
this attribute is a reference to the sibling entry of the
entry to which the attribute is attached.

2.4 LocationDescriptions

The debugging information must provide consumers a way to find the location
of program variables, determine the bounds of dynamic arrays and strings
and possibly to find the base address of a subroutine’s stack frame or

the return address of a subroutine. Furthermore, to meet the needs

of recent computer architectures and optimization techniques, the debugging
information must be able to describe the location of an object

whose location changes over the object’s lifetime.

Information about the location of program objects is provided by
location descriptions. Location
descriptions can be either of two forms:

1. Location expressionsvhich are a language independent representation of
addressing rules
of arbitrary complexity built from a few basic
building blocks, or operations T hey are sufficient for describing
the location of any object as long as its lifetime is either static
or the same as the lexical block that owns it, and it does not move throughout
its lifetime.

2. Location lists which are used to describe objects that
have a limited lifetime or change their location throughout their
lifetime. Location lists are more completely described below.

The two forms are distinguished in a context sensitive manner. As the value
of an attribute, a location expression is

encoded as a block and a location list is encoded as a constant offset into

a | ocation list table.

Note: The Version 1 concept of "location descriptions" was replaced in Version 2
with this new abstraction because it is denser and more descriptive.

2.4.1 LocationExpressions

A | ocation expression consists of zero or more location operations.

An expression with zero operations

is used to denote an object that is

present in the source code but not present in the object code

(perhaps because of optimization).

The location operations fall into two categories, register names and
addressing operations. Register names always appear alone and indicate
that the referred object is contained inside a particular

register. Addressing operations are memory address computation
rules. All location operations are encoded as a stream of opcodes that
are each followed by zero or more literal operands. The number of operands
is determined by the opcode.

Revision: 2.0.0 Page 10 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

2.4.2 RegisteName Operators
The following operations can be used to name a register.

Note that the

register number represents a DWARF specific mapping of numbers onto
the actual registers of a given architecture.

The mapping should be chosen to gain optimal density and

should be shared by all users of a given architecture.
The Programming Languages SIG recommends
that this mapping be defined by the ABI

authoring committee for each

architecture.

1. DW_OP_regQ DW_OP _req] ..,DW_OP_reg31
The
DW_OP_rem
operations encode the names of up to 32 registers, numbered from
0 t hrough 31, inclusive. The object addressed is in register n.

2. DW_OP_regx
The
DW_OP_regx
operation has a single unsigned LEB128 literal operand that encodes the
name of a register.

4

2.4.3 Addressing Operations

Each addressing operation represents a postfix operation on a simple stack
machine. Each element of the stack is the size of an

address on the target machine.

The value on the top of the stack after

“executing” the location expression is taken to be the result (the address

of the object, or the value of the array bound, or the length of a

dynamic string). In the case of locations used for structure members,

the computation assumes that the base address of the containing structure
has been pushed on the stack before evaluation of the addressing operation.

2.4.3.1 LiteralEncodings
The following operations all push a value onto the addressing stack.

1. DW_OP_lit0 , DW_OP_lit1 , ...,DW_OP_lit31
The
DW_OP_lit n operations encode the unsigned
literal values from 0 through 31, inclusive.

2. DW_OP_addr
The
DW_OP_addr
operation has a single operand that encodes a
machine address and whose size is the size of an address on the

RevisiByst2r0.9 Application Binary Interface onsigfiggeol the generic July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

target machine.

3. DW_OP_constlu
The single operand of the
DW_OP_constlu

operation provides a 1-byte unsigned integer constant.

4. DW_OP_constls
The single operand of the
DW_OP_constls
operation provides a
1-byte signed integer constant.

5. DW_OP_const2u
The single operand of the
DW_OP_const2u
operation provides a
2-byte unsigned integer constant.

6. DW_OP_const2s
The single operand of the
DW_OP_const2s
operation provides a
2-byte signed integer constant.

7. DW_OP_const4u
The single operand of the
DW_OP_const4u
operation provides a
4-byte unsigned integer constant.

8. DW_OP_const4s
The single operand of the
DW_OP_const4s
operation provides a
4-byte signed integer constant.

9. DW_OP_const8u
The single operand of the
DW_OP_const8u
operation provides an
8-byte unsigned integer constant.

10. DW_OP_const8s

The single operand of the
DW_OP_const8s

operation provides an

8-byte signed integer constant.

11. DW_OP_constu

The single operand of the
DW_OP_constu

operation provides an

unsigned LEB128 integer constant.

Revision: 2.0.0

Industry Reviav Draft

Page 12

July 27, 1993

Programming Languages SIG

12. DW_OP_consts

The single operand of the
DW_OP_consts

operation provides a

signed LEB128 integer constant.

2.4.3.2 RegisteBased Addressing

The following operations push a value onto the stack that
is the result of adding the contents of a register with
a given signed offset.

1. DW_OP_fbreg
The
DW_OP_fbreg
operation provides a signed LEB128 offset from the address specified
by the location descriptor in the
DW_AT frame_base
attribute of the current

function. (This is typically a "stdcpointer” regster
plus or minus some
offset. On more sophisticated systems it might be a location list that

adjusts the offset according to changes in the stack pointer as
the PC changes.)

2. DW_OP_bregd DW_OP_bregy, ..., DW_OP_breg31
The single operand of the
DW_OP_brem
operations provides a signed LEB128 offset from the specified register.

3. DW_OP_bregx
The
DW_OP_bregx
operation has two operands: a signed LEB128 offset from the specified register
which is defined with an unsigned LEB128 number.

2.4.3.3 StaclkOperations

The following operations

manipulate the “location stack.”

Location operations that index the location stack assume that
the top of the stack (most recently added entry) has index 0.

1. DW_OP_dup
The
DW_OP_dup
operation duplicates the value at the top of the location stack.

2. DW_OP_drop
The
DW_OP_drop
operation pops the value at the top of the stack.

Revision: 2.0.0 Page 13 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

3. DW_OP_pick
The single operand of the
DW_OP_pick
operation provides a 1-byte index. The stack entry with the specified index
(O through 255, inclusive) is pushed on the stack.

4. DW_OP_over
The
DW_OP_over
operation duplicates the entry currently second in the stack
at the top of the stack. This is equivalent to an
DW_OP_pick
operation, with index 1.

5. DW_OP_swap
The
DW_OP_swap
operation swaps the top two stack entries. The entry at
the top of the stack becomes the second stack entry, and
the second entry becomes the top of the stack.

6. DW_OP_rot
The
DW_OP_rot
operation rotates the first three stack entries. The entry at
the top of the stack becomes the third stack entry, the second entry
becomes the top of the stack, and the third entry becomes the second
entry.

7. DW_OP_deref
The
DW_OP_deref
operation pops the top stack entry and treats it as an address.
The value retrieved from that address is pushed. The size of the
data retrieved from the dereferenced address is the size of an address
on the target machine.

8. DW_OP_deref _size
The
DW_OP_deref_size
operation behaves like the
DW_OP_deref
operation: it
pops the top stack entry and treats it as an address.
The value retrieved from that address is pushed.
In the
DW_OP_deref_size
operation, however,
the size in bytes of the
data retrieved from the dereferenced address is specified by the
single operand. This operand is a 1-byte unsigned integral constant

Revision: 2.0.0 Page 14 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

whose value may not be larger than the size of an address on

the target machine. The data retrieved is zero extended to the size
of an address on the target machine before being pushed on

the expression stack.

9. DW_OP_xderef

The
DW_OP_xderef

operation provides an extended dereference mechanism. The entry at the
top of the stack is treated as an address. The second stack entry
is treated as an “address space identifier” for those architectures
that support multiple address spaces. The top two stack elements
are popped, a data item is retrieved through an implementation-defined
address calculation and pushed as the new stack top. The size of the
data retrieved from the dereferenced address is the size of an address
on the target machine.

10. DW_OP_xderef_size
The
DW_OP_xderef_size
operation behaves like the
DW_OP_xderef
operation: the entry at the
top of the stack is treated as an address. The second stack entry
is treated as an “address space identifier” for those architectures
that support multiple address spaces. The top two stack elements
are popped, a data item is retrieved through an implementation-defined
address calculation and pushed as the new stack top.
In the
DW_OP_xderef_size
operation, however,
the size in bytes of the
data retrieved from the dereferenced address is specified by the
single operand. This operand is a 1-byte unsigned integral constant
whose value may not be larger than the size of an address on
the target machine. The data retrieved is zero extended to the size
of an address on the target machine before being pushed on
the expression stack.

2.4.3.4 Arithmeticand Logical Operations

The following provide arithmetic and logical operations.

The arithmetic operations perform “addressing arithmetic,”

that is, unsigned arithmetic that wraps on an address-sized

boundary. The operations do not cause an exception on overflow.

1. DW_OP_abs
The
DW_OP_abs
operation pops the top stack entry and pushes its absolute value.

Revision: 2.0.0 Page 15 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

2. DW_OP_and
The
DW_OP_and
operation pops the top two stack values, performs a bitwise and
operation on the two, and pushes the result.

3. DW_OP_div
The
DW_OP_div
operation pops the top two stack values, divides the former second entry
by the former top of the stack
using signed division,
and pushes the result.

4. DW_OP_minus
The
DW_OP_minus
operation pops the top two stack values, subtracts the former top of the stack
from the former second entry, and pushes the result.

5. DW_OP_mod
The
DW_OP_mod
operation pops the top two stack values and pushes the result of the
calculation: former second stack entry modulo the former top of the
stack.

6. DW_OP_mul
The
DW_OP_mul
operation pops the top two stack entries, multiplies them together,
and pushes the result.

7. DW_OP_neg
The
DW_OP_neg
operation pops the top stack entry, and pushes its negation.

8. DW_OP_not
The
DW_OP_not
operation pops the top stack entry, and pushes its bitwise complement.

9. DW_OP_or
The
DW_OP_or
operation pops the top two stack entries, performs a bitwise or
operation on the two, and pushes the result.

10. DW_OP_plus
The
DW_OP_plus
operation pops the top two stack entries, adds them together,

Revision: 2.0.0 Page 16 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

and pushes the result.

11. DW_OP_plus_uconst
The
DW_OP_plus_uconst
operation pops the top stack entry, adds it to the unsigned LEB128
constant operand and pushes the result.
This operation is supplied specifically to be able to encode more field
offsets in two bytes than can be done with "DW_OP_it n DW_OP_add".

12. DW_OP_shl
The
DW_OP_shl
operation pops the top two stack entries, shifts the former second
entry left by the number of bits specified by the former top of
the stack, and pushes the result.

13. DW_OP_shr
The
DW_OP_shr
operation pops the top two stack entries, shifts the former second
entry right (logically) by the number of bits specified by the former top of
the stack, and pushes the result.

14. DW_OP_shra
The
DW_OP_shra
operation pops the top two stack entries, shifts the former second
entry right (arithmetically) by the number of bits specified by the former top of
the stack, and pushes the result.

15. DW_OP_xor
The
DW_OP_xor
operation pops the top two stack entries, performs the logical
exclusive-or operation on the two, and pushes the result.

2.4.3.5 Contol Flow Operations

The following operations provide simple control of the flow of a location
expression.

1. Relational operators

The six relational operators each pops the top two stack values,
compares the former top of the stack with the former second entry,
and pushes the constant value 1 onto the stack if the result of the
operation is true or the constant value 0 if the result of the operation
is false. The comparisons are done as signed operations. The six
operators are

DW_OP_le
(less than or equal to),

DW_OP_ge
(greater than or equal to),

Revision: 2.0.0 Page 17 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_OP_eq

(equal to),
DW_OP_lIt

(less than),
DW_OP_gt

(greater than) and
DW_OP_ne

(not equal to).

2. DW_OP_skip
DW_OP_skip
is an unconditional branch. Its
single operand is a 2-byte signed integer constant.
The 2-byte constant is the number of bytes of the location
expression to skip from the current operation, beginning after the
2-byte constant.

3. DW_OP_bra
DW_OP_bra
is a conditional branch. Its
single operand is a 2-byte signed integer constant.
This operation pops the top of stack. If the value
popped is not the constant 0, the 2-byte constant operand is the number
of bytes of the location
expression to skip from the current operation, beginning after the
2-byte constant.

2.4.3.6 SpeciaDperations
There are two special operations currently defined:

1. DW_OP_piece
Many compilers store a single variable in sets of registers, or store
a variable partially in memory and patrtially in registers.
DW_OP_piece
provides a way of describing how large a part of a variable
a particular addressing expression refers to.

DW_OP_piece
takes a single argument which is an unsigned LEB128 number. The number
describes the size in bytes of the piece of the object referenced
by the addressing expression whose result is at the top of
the stack.

2. DW_OP_nop
The
DW_OP_nop
operation is a place holder. It has no effect on the location stack or
any of its values.

2.4.4 SampleStack Operations

The stack operations defined in section 2.4.3.3 are fairly

Revision: 2.0.0 Page 18 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

conventional, but the following examples illustrate their behavior
graphically.

box expand center tab(;);

2.4.5 ExampleLocation Expressions

The addressing expression represented by a location expression,
if evaluated, generates the

runtime address of the value of a symbol exceptenther
DW_OP_req,

or

DW_OP_regx

operations ag used.

Here are ome examples of how location operations aged to form location
expressions:

Revision: 2.0.0 Page 19 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_OP_reg3
The value is inaggster 3.

DW_OP_regx 54
The value is inggster 54.

DW_OP_addr 0x80d0045c
The value of a static variable is
at machine address 0x80d0045c.

DW_OP_bregll 44
Add 44 to the value in
register 11 to get the address of an
automatic variable instance.

DW_OP_fbreg -50
Given anDW_AT frame_base value of
"OPBREG31 64" this example
computes the address of a local variable
that is -50 bytes from a logical frame
pointer that is computed by adding
64 to the current st&cpointer (regster 31).

DW_OP_bregx 54 32 DW_OP_deref
A call-by-reference parameter
whose address is in the
word 32 bytes from whey regster
54 points.

DW_OP_plus_uconst 4
A dructure member is four bytes
from the start of the structure
instance The base address is
assumed to be already on the stack.

DW_OP_reg3 DW_OP_piece 4 DW_OP_regl0 DW_OP_piece 2
A variable whose first four bytes reside
in regster 3 and whose next two bytes
reside in egster 10.

2.4.6 LocationLists

Location lists are used in place of location expressions wkene
the object whose location is being described can change location
during its lifetime. Location lists are contained in a separate
object file section called

.debug_loc.

A location list is indicated by a location

attribute whose value is represented as a

constant offset from the beginning of the

Revision: 2.0.0 Page 20
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

.debug_loc
section to the first byte of the list for the object in question.

Each entry in a location list consists of:

1. Abeginning address. This address is reéath the base address
of the compilation unit referencing this location list. It marks
the beginning of the address rangeravhich the location is valid.

2. Anending address, again relegito the base address
of the compilation unit referencing this location list. It marks
the first address past the end of the address ramege o
which the location is valid.

3. Alocation expression describing the location of the objeatthe
range specified by the beginning and end addresses.

Address ranges mayerlap. Whenthey do, they describe a situation
in which an object exists simultaneously in more than one place.
If all of the address ranges

in a given location list do not collectely cover the entire

range @er which the object in question is defined, it is assumed
that the object is nowailable for the portion of the range that is not
covered.

The end of apgiven location list is marked by a 0 for the beginning
address and a 0 for the end address; no location description is present.
A location list containing

only such a 0 entry describes an object that exists in the source

code but not in thexecutable program.

2.5 Types of Declarations

Any debugging information entry describing a declaration that
has a type has a

DW_AT type

attribute, whose value is a reference to another debugging
information entry The entry referenced may describe

a base type, that is, a type that is not defined in terms

of other data types, or it may describe a user-defined type,
such as an arragtructure or enumeration. Alternady,

the entry referenced may describe a type modifier: constant,
packed, pointerreference or volatile, which in turn will reference
another entry describing a type or type modifier (using a
DW_AT type

attribute of its an). Seesection 5 for descriptions of

the entries describing base types, user-defined types and
type modifiers.

2.6 Accessibilityof Declarations

Some languges, notably C++ and Ada, have the concept of

the accessibility of an object or of some othergmm antity.

The accessibility specifies whidasses of other pgram djects

are permitted access to the object in question.

Revision: 2.0.0 Page 21 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

The accessibility of a declaration is represented by a
DW_AT_accessibility

attribute, whose value is a constant drawn from the set of codes
listed in Figure 3.

DW_ACCESS_public
DW_ACCESS private
DW_ACCESS_protected

Figure 3 Accessibility codes

2.7 Msibility of Declarations

Modula2 has the concept of the visibility of a declaration.
The visibility specifies whicdeclarations ae to be isible outside
of the module in whitthey are declared.

The visibility of a declaration is represented by a

DW_AT visibility

attribute, whose value is a constant drawn from the set of codes
listed in Figure 4.

DW_VIS_local
DW_VIS_exported
DW_VIS_qualified

Figure 4. Visibility codes

2.8 \rtuality of Declarations

C++ provides for virtual and pue virtual structure or dass
member functions and for virtual base classes.

The virtuality of a declaration is represented by a

DW_AT _virtuality

attribute, whose value is a constant drawn from the set of codes
listed in Figure 5.

DW_VIRTUALITY_none
DW_VIRTUALITY_virtual
DW_VIRTUALITY_ pure_virtual

Figure 5 Virtuality codes

2.9 Artificial Entries

A compiler may wish to generate debugging information entries

for objects or types that werot actually declared

in the source of the application. An example is a formal parameter
entry to represent the hidden

this

parameter that most C++ implementations pass as the first argument
to non-static member functions.

Any debugging information entry representing the declaration of an

Revision: 2.0.0 Page 22
Industry Reviwv Draft

July 27, 1993

Programming Languages SIG

object or type artificially generated by a compiler and
not explicitly declared by the source program mayeha
DW_AT _artificial

attribute. Thevalue of this attribute is a flag.

2.10 Target-Specific Addressing Information

In some systems, addresses secified as offsets within a given
segment rather than as locations within a single flat address space.

Any debugging information entry that contains a description of the
location of an object or subroutine maywéa

DW_AT_segment

attribute, whose value is a location description. The description
evduates to the segment value of the item being described. If
the entry containing the

DW_AT_segment

attribute has a

DW_AT low_pc

or

DW_AT high_pc

attribute, or a location description thatleiates to an address,
then those values represent the offset portion of the address
within the segment specified by

DW_AT_segment

If an entry has no

DW_AT_segment

attribute, it inherits the segment value from its parent entry.
If none of the entries in the chain of parents for this entry
back to its containing compilation unit entrya
DW_AT_segment

attributes, then the entry is assumed to exist within a flat
address space. Similariythe entry has a
DW_AT_segment

attribute containing an empty location description, that entry
is assumed to exist within a flat address space.

Some systems support different classes ofeadds. Thaddress
class may affect the way a pointer is dereferenced or the way
a subroutine is called.

Any debugging information entry representing a pointer or reference
type or a subroutine or subroutine type mayeha
DW_AT_address_class

attribute, whose value is a constant. The set of permissible

values is specific to each target architecture. The value
DW_ADDR_nong

however, is common to all encodings, and means that no address class
has been specified.

For example the Intel386™ processor might use the following
values:

Revision: 2.0.0 Page 23 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

Name \dlue Meaning

DW_ADDR_none 0 no class specified
DW_ADDR_nearl6 1 16-bit offset, no segment
DW_ADDR farl6 2 16-bit offset, 16-bit segment
DW_ADDR_hugel6 3 16-bit offset, 16-bit segment
DW_ADDR near32 4 32-bit offset, no segment
DW_ADDR_far32 5 32-bit offset, 16-bit segment

Figure 6 Example address class codes

2.11 Non-DefiningDeclarations

A debugging information entry representing a program object or type
typically represents the defining declaration of that object or type. In
certain contexts, hower, a cebugger might need information about a
declaration of a subroutine, object or type that is not also a
definition to @aluate an expression correctly.

As an exampleconsider the following igment of C code:

void myfunc()

{
int X;
{

extern float x;
g(x);

}

ANSI-C scoping rules requeitthat the value of the variable
passed to the functianis the value of the global variable
x rather than of the local version.

Debugging information entries that represent non-defining declarations
of a program object or type V@ a

DW_AT_declaration

attribute, whose value is a flag.

2.12 DeclarationCoordinates

It is sometimes useful in a delgagto be ale to associate a declaration
with its occurrence in the pgram source.

Any debugging information entry representing the declaration of
an object, module, subprogram or type mayeha

DW_AT decl_file ,

DW_AT_decl_line

and

DW_AT decl_column

attributes, each of whose value is a constant.

The value of the
DW_AT_decl_file
attribute corresponds

Revision: 2.0.0 Page 24
Industry Reviwv Draft

July 27, 1993

Programming Languages SIG

to a file number from the statement information table for the compilation
unit containing this debugging information entry and represents the
source file in which the declaration appeared (see section 6.2).

The value 0 indicates that no source file has been specified.

The value of the

DW_AT decl_line

attribute represents the source line number at which the first
character of the identifier of the declared object appears.
The value 0 indicates that no source line has been specified.

The value of the

DW_AT decl_column

attribute represents the source column number at which the first
character of the identifier of the declared object appears.

The value 0 indicates that no column has been specified.

2.13 Identifier Names

Any debugging information entry representing a program entity that
has been gen a mme may hee a

DW_AT name

attribute, whose value is a string representing the name as it appears
in the source programA debugging information entry containing

no name attribute, or containing a name attribute whose value consists
of a name containing a single null byte,

represents a program entity for which no name wamnghn the source.

Note that since the names obgnam dbjects

described by B/ARF are the names as thi@ppear in the source pgram,
implementations of langge tanslators that use some form of mangled
name (as do many implementations of C++) should use the unmangled
form of the name in the\BARF

DW_AT name

attribute, including the &yword

operator

if present. Sequencesmultiple whitespace charactenay be compressed.

Revision: 2.0.0 Page 25 July 27, 1993
Industry Reviwa Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 26 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

3. PROGRAM SCOPE ENTRIES

This section describes debugging information entries that relate
to different levels of program scope: compilation unit, module,
subprogram, and so on. These entries may be thought of as
bounded by ranges of text addresses within the program.

3.1 Compilation Unit Entries

An object file may be denéd from one or more compilation units. Each
such compilation unit will be described by a debugging information
entry with the tadW_TAG_compile_unit

A compilation unit typically represents the text and data contributed
to an executable by a single relocatable object filenay

be derived from several source files, including pre-processed “include
files®

The compilation unit entry may ha the following attributes:

1. A
DW_AT low_pc
attribute whose value is the
relocated address of the first machine instruction generated for that
compilation unit.

2. A
DW_AT_high_pc
attribute whose value is the
relocated address of the first location
past the last machine instruction generated for that compilation unit.

The address may be beyond the last valid instruction in the executable,
of coursefor this and other similar attributes.

The presence of W@and high pc attributes in a compilation unit entry
imply that the code generated for that compilation unit is
contiguous and exists totally within the boundaries specified

by those tw atributes. Ifthat is not the case, no low

and high pc attributes should be produced.

3. A
DW_AT name
attribute whose value is a
null-terminated string containing the full or relatipath name of
the primary source file from which the compilation unit waswedri

4. A
DW_AT language
attribute whose constant value is
a aode indicating the source language of the compilation unit.
The set of language names and their meanings are
given in FHgure 7.

Revision: 2.0.0 Page 27 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_LANG_C Non-ANSI C, such as K&R
DW_LANG_C89 ISO/ANSI C
DW_LANG_C_plus_plus C++
DW_LANG_Fortran77 FORTRAN77
DW_LANG_Fortran90 Fortran90
DW_LANG_Modula2 Modula2
DW_LANG_Pascal83 ISO/ANSI Pascal

Figure 7. Language names

5 A
DW_AT_stmt_list
attribute whose value is a reference to
line number information for this compilation unit.

This information is placed in a separate object file section from the debugging
information entries themsedg. Thevalue of the statement list attribute

is the offset in thedebug_line section of the first byte of the

line number information for this compilation unit. See section 6.2.

6. A
DW_AT_macro_info
attribute whose value is a reference to the macro information for this
compilation unit.

This information is placed in a separate object file section from the debugging
information entries themsedg. Thevalue of the macro information attribute

is the offset in thedebug_macinfo section of the first byte of the

macro information for this compilation unit. See section 6.3.

7. A
DW_AT_comp_dir
attribute whose value is a null-terminated string containing
the current working directory of the compilation command that
produced this compilation unit in whage form makes sense
for the host system.

The sugested form for the value of ti®W_AT _comp_dir
attribute on Wix systems is “hostnam@athnameé. If no
hostname is availabj¢he sugested form is ¢ pathname”.

8. A
DW_AT_producer
attribute whose value is a null-terminated string containing information
about the compiler that produced the compilation unit. The
actual contents of the string will be specific to each producer,
but should begin with the name of the compiler vendor or some
other identifying character sequence that showutitla
confusion with other producer values.

9. A
DW_AT identifier_case
attribute whose constant value is a code describing the treatment of
identifiers within this compilation unit. The set of identifier case

Revision: 2.0.0 Page 28 July 27, 1993
Industry Reviwv Draft

Programming Languages SIG

codes is gien in Fgure 8.

DW_ID_ case_sensitive
DW_ID_up_case
DW_ID_down_case
DW_ID_case_insensitive

Figure 8 ldentifier case codes

DW_ID_case_sensitive

is the default for all compilation units that do novédnis attribute.

It indicates that nameswgh as he values of

DW_AT _name

attributes in debugging information entries for the compilation unit
reflect the names as thappear in the source program.

The debugger should be senatio the case of identifier names
when doing identifier lookups.

DW_ID_up_case

means that the producer of the debugging information for this compilation
unit corverted all source names to upper case. The values of the

name attributes may not reflect the names asdyeear in the source
program. Thealebugger should ceert all names to upper case

when doing lookups.

DW_ID_down_case

means that the producer of the debugging information for this compilation
unit corverted all source names to lower case. The values of the

name attributes may not reflect the names asdyeear in the source
program. Thealebugger should ceert all names to lower case when

doing lookups.

DW _ID case_insensitive

means that the values of the name attributes reflect the names
as thg appear in the source program but that a case insensiti
lookup should be used to access those hames.

10. A
DW_AT base_types
attribute whose value is a reference. This attribute points to
a debugging information entry representing another compilation
unit. Itmay be used to specify the compilation unit containing
the base type entries used by entries in the current compilation
unit (see section 5.1).

This attribute povides a consumer a way to find the definition
of base types for a compilation unit that does not itself
contain sub definitions. Thisllows a consumefor example,
to interpret a type conversion to a base type correctly.

A compilation unit entry
owns debugging information entries that represent the declarations made in
the corresponding compilation unit.

Revision: 2.0.0 Page 29 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

3.2 ModuleEntries
Several languges have the concept of a “module

A module is

represented by a debugging information entry with the tag
DW_TAG_module

Module entries may own other debugging information entries describing
program entities whose declaration scopes end at the end of the module
itself.

If the module has a name, the module entry has a

DW_AT_name

attribute whose

value is a null-terminated string containing the module name as it appears
in the source program.

If the module contains initialization code, the module entry

has a

DW_AT low_pc

attribute whose value is the

relocated address of the first machine instruction generated for that
initialization code. It also has a

DW_AT_high_pc

attribute whose value is

the relocated address of the first location past the last machine
instruction generated for the initialization code.

If the module has been assigned a priptitynay have a

DW_AT _priority

attribute. Thevalue of this attribute is a reference to another
debugging information entry describing a variable with a constant
value. Thevalue of this variable is the actual constant

value of the modules griority, represented as it would be on the
target architecture.

A Modula2 definition module may be represented by a module entry
containing a

DW_AT_declaration

attribute.

3.3 Subroutine and Entry Point Entries

The following tags exist to describe debugging information
entries for subroutines and entry points:

DW_TAG_subprogram A global or file static subroutine or function.
DW_TAG inlined_subroutine A particular inlined instance of a subroutine or function.
DW_TAG_entry_point A Fortran entry point.

3.3.1 GeneralSubroutine and Entry Point Information

The subroutine or entry point entry has a
DW_AT_name

Revision: 2.0.0 Page 30 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

attribute
whose value is a null-terminated string containing the subroutine or entry
point name as it appears in the source program.

If the name of the subroutine described by an entry with the tag
DW_TAG_subprogram

is visible outside of its containing compilation unit, that

entry has a

DW_AT external

attribute, whose value is a flag.

Additional attributes for functions thatenembes of a dass or
structue are described in section 5.5.5.

A common debuggr featuee is to dlow the debuger user to call a
subroutine within the subjectqggram. Incertain cases, however,
the generated code for a subroutine will notyothee standad calling
conventions for the tget architecture and will therefoe rot

be safe to call from within a debys.

A subroutine entry may contain a

DW_AT _calling_convention

attribute, whose value is a constant. If this attribute is not
present, or its value is the constant

DW_CC_normal,

then the subroutine may be safely called by obeying the “standard”
calling comwentions of the target architecture. If the value of
the calling comention attribute is the constant
DW_CC_nocall ,

the subroutine does not ghgtandard calling corentions, and it
may not be safe for the debugger to call this subroutine.

If the semantics of the language of the compilation unit

containing the subroutine entry distinguishes between ordinary subroutines
and subroutines that can semas he “main prograni,t hat is, subroutines

that cannot be called directly following the ordinary callingventions,

then the debugging information entry for such a subroutine mayda

calling comwvention attribute whose value is the constant

DW_CC_program

The

DW_CC_program

value is intended to support Fortran mairograms.

Itis not intended as a way of finding the entry address for tigegm.

3.3.2 Subputine and Entry Point Return Types

If the subroutine or entry point is a function that returns a value, then
its debugging information entry has a

DW_AT type

attribute to denote the type returned by that function.

Debugging information entries for C

void

Revision: 2.0.0 Page 31 July 27, 1993
Industry Reviwav Draft

DWARF Debugging Information Format

functions should not have an attribute for the return type.

In ANSI-C thee is a dfference between the types of functions
declared using function prototype style declarations and those
declared using non-prototype declarations.

A subroutine entry

declared with a function prototype style declaration mase fza
DW_AT_prototyped

attribute, whose value is a flag.

3.3.3 Subputine and Entry Point Locations

A subroutine entry has a

DW_AT low_pc

attribute whose value is the relocated address of the first machine instruction
generated for the subroutine.

It also has a

DW_AT_high_pc

attribute whose value is the relocated address of the

first location past the last machine instruction generated

for the subroutine.

Note that for the low and high pc attributes to have meaigARF
makes the assumption that the code for a single subroutine is allocated
in a single contiguous bl&mf memory.

An entry point has a

DW_AT low_pc

attribute whose value is the relocated address of the first machine instruction
generated for the entry point.

Subroutines and entry points may alswéha

DW_AT_segment

and

DW_AT address_class

attributes, as appropriate, to specify which segments the code
for the subroutine resides in and the addressing mode to be used
in calling that subroutine.

A subroutine entry representing a subroutine declaration
that is not also a definition does novédow and high pc attributes.

3.3.4 DeclarationgOwned by Subroutines and Entry Points

The declarations enclosed by a subroutine or entry point

are represented by debugging information entries that are

owned by the subroutine or entry point entry.

Entries representing the formal parameters of the subroutine or

entry point appear in

the same order as the corresponding declarations in the source program.

Thele is no @dering requirement on entries for declarations that are
children of subroutine or entry point entries but that do not represent
formal parametes. Theformal parameter entries may be interspersed

Revision: 2.0.0 Page 32 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

with other entries used by formal parameter entriesh stgciype entries.

The unspecified parameters of a variable parameter list
are represented by a debugging information entry with the tag
DW_TAG_unspecified_parameters

The entry for a subroutine or entry point that includes a Fortran
common block has a child entry with the tag
DW_TAG_common_inclusion .

The common inclusion entry has a

DW_AT common_reference

attribute whose value is a reference to the debugging entry for
the common block being included (see section 4.2).

3.3.5 Low-Levd | nformation

A subroutine or entry point entry mayvea

DW_AT return_addr

attribute, whose value is a location description.

The location calculated is the place where the return address for
the subroutine or entry point is stored.

A subroutine or entry point entry may alsovhaa

DW_AT frame_base

attribute, whose value is a location description that
computes the “frame baséor the subroutine or entry point.

The frame base for a proceduis typically an address fixed
relative to the first unit of stage dlocated for the procedure’s
stak frame The

DW_AT frame_base

attribute can be used in several ways:

1. Inprocedures that need location lists to locate local variables, the
DW_AT_frame_base
can hold the needed location list, while all variables’
location descriptions can be simpler location expressions involving the frame
base.

2. ltcan be used as &% n resolving "up-level" addressing with nested
routines. (See
DW_AT_static_link
below)

Some languges support nested subutines. Insud languayes, it is possible
to reference the local variables of an outer subroutine from within

an inner subroutine The

DW_AT_static_link

and

DW_AT frame_base

attributes allow debuggrs to support this same kind of referencing.

If a subroutine or entry point is nested, it mayéha
DW_AT static_link
attribute, whose value is a location description that

Revision: 2.0.0 Page 33 July 27, 1993
Industry Reviwa Draft

DWARF Debugging Information Format

computes the frame base of the vale instance of the subroutine
that immediately encloses the subroutine or entry point.

In the context of supporting nested subroutines, the
DW_AT frame_base
attribute value should olpehe following constraints:

1. Itshould compute a value that does not change during the life of the procedure,

and

2. Thecomputed value should be unique among instances of the same subroutine.

(For typical

DW_AT frame_base

use, this means that a recuesi

subroutines dack frame must he ron-zero size.)

If a debuger is attempting to resolve an up-level reference to a varidble
uses the nesting structuof DVARF to determine whitsubroutine is the lexical
parent and the

DW_AT static_link

value to identify the appropriate active frame

of the paent. Itcan then attempt to find the reference within the context

of the parent.

3.3.6 Types Thrown by Exceptions

In C++ a subroutine may declara €t of types for which
that subroutine may generate or “throwh exception.

If a subroutine explicitly declares that it may thran
exception for one or more types, each such type is
represented by a debugging information entry with the tag
DW_TAG_thrown_type .

Each such entry is a child of the entry representing the
subroutine that may thwothis type. All thrown type entries
should follawv all entries representing the formal parameters
of the subroutine and precede all entries representing the
local variables or lexical blocks contained in the subroutine.
Each thrown type entry contains a

DW_AT _type

attribute, whose value is a reference to an entry describing
the type of the exception that may be thrown.

3.3.7 FunctionTemplate Instantiations

In C++ a function template is a generic

definition of a function that

is instantiated differently when called with values

of different typesDWARF does not represent the generic
template definition, but does representtemstantiation.

A template instantiation is represented by a debugging information
entry with the tag

DW_TAG_subprogram.

With three exceptions,

Revision: 2.0.0 Page 34
Industry Reviwav Draft

July 27, 1993

Programming Languages SIG

such an entry will contain the same attributes ane tiee same
types of child entries as would an entry for a subroutine
defined explicitly

using the instantiation types. The exceptions are:

1. Eachformal parameterized type declaration appearing in the
template definition is represented by a debugging information entry
with the tag
DW_TAG_template type_ parameter
Each such entry has a
DW_AT name
attribute, whose value is a null-terminated
string containing the name of the formal type parameter as it
appears in the source program. The template type parameter
entry also has a
DW_AT type
attribute describing the actual type by
which the formal is replaced for this instantiation.

All template type parameter entries should appear before
the entries describing the instantiated formal parameters
to the function.

2. Ifthe compiler has generated a special compilation unit
to hold the template instantiation and that compilation unit
has a different name
from the compilation unit containing the template definition,
the name attribute for the debugging entry representing
that compilation unit should be empty or omitted.

3. Ifthe subprogram entry representing the template instantiation
or ary of its child entries
contain declaration coordinate attributes, those attributes
should refer to the source for the template definition, not
to ary source generated artificially by the compiler for this
instantiation.

3.3.8 Inline Subroutines

A declaration or a definition of an inlinable subroutine

is represented by a debugging information entry with the tag
DW_TAG_subprogram.

The entry for a subroutine that is explicitly declared

to be @ailable for inline expansion or that was expanded inline
implicitly by the compiler has a

DW_AT _inline

attribute whose value is a constant. The set of values

for the

DW_AT inline

attribute is gven in Fgure 9.

3.3.8.1 Abstractinstances
For the remainder of this discussion,

Revision: 2.0.0 Page 35 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

Name Meaning

DW_INL_not_inlined Not declared inline nor inlined by the compiler
DW_INL_inlined Not declared inline but inlined by the compiler
DW_INL_declared_not _inlined Declared inline but not inlined by the compiler
DW_INL_declared_inlined Declared inline and inlined by the compiler

Figure 9 Inline codes

ary debugging information entry that is owned (either directly or
indirectly) by a debugging information entry that contains the

DW_AT _inline

attribute will be referred to as an “abstract instance éntry

Any subroutine entry that contains a

DW_AT inline

attribute will be known as an “abstract instance foot.

Any set of abstract instance entries that are all children (either directly
or indirectly) of some abstract instance root, together with the root itself,
will be known as an “abstract instance ttee.

A debugging information entry that is a member of an abstract instance
tree should not contain a

DW_AT_high_pc,

DW_AT low_pc,

DW_AT_location ,

DW_AT return_addr ,

DW_AT start_scope

or

DW_AT_segment

attribute.

It would not mak snse to put these attributes

into abstract instance entries since

sud entries do not represent actual (concrete) instances and thus
do not actually exist at run-time.

The rules for the relate location of entries belonging to abstract instance
trees are exactly

the same as for other similar types of entries that are not abstract.
Specifically the rule that requires that an entry representing a

declaration be a direct child of the entry representing the scope of

the declaration applies equally to both abstract and

non-abstract entries. Also, the ordering rules for formal parameter entries,
member entries, and so on, all applgaréless of whether or not avgh entry

is abstract.

3.3.8.2 Concete Inlined Instances

Each inline expansion of an inlinable subroutine is represented

by a debugging information entry with the tag

DW_TAG inlined_subroutine

Each such entry should be a direct child of the entry that represents the
scope within which the inlining occurs.

Revision: 2.0.0 Page 36
Industry Reviwav Draft

July 27, 1993

Programming Languages SIG

Each inlined subroutine entry contains a

DW_AT low_pc

attribute, representing the address of the first

instruction associated with thevgn inline

expansion. Eacinlined subroutine entry also contains a
DW_AT_high_pc

attribute, representing the

address of the first location past the last instruction associated with
the inline expansion.

For the remainder of this discussion,

ary debugging information entry that is owned (either directly or indirectly)
by a debugging information entry with the tag
DW_TAG_inlined_subroutine

will be referred to as a “concrete inlined instance enhtry

Any entry that has the tag

DW_TAG inlined_subroutine

will be known as

a “concrete inlined instance root.

Any set of concrete inlined instance entries that are all children (either
directly or indirectly) of some concrete inlined instance root, together
with the root itself, will be known as a “concrete inlined instance

tree’

Each concrete inlined instance tree is uniquely associated with one (and
only one) abstract instance tree.

Note howeverthat the ewerse is not true Any given abstract instance
tree may be associated with several different concrete inlined instance
trees, or may even be associated witlo zencrete inlined instance

trees.

Also, each separate entry within @i concrete inlined instance tree is
uniquely associated with one particular entry in the associated abstract
instance tree. In other words, there is a one-to-one mapping from entries
in a given concrete inlined instance tree to the entries in the associated
abstract instance tree.

Note howeverthat the ewverse is not true A given abstract instance
tree that is associated with a given concrete inlined instance tree
may (and quite probably will) contain neentries than the associated
concrete inlined instance tree (see below).

Concrete inlined instance entries do notehaost of the attributes (except
for

DW_AT low_pc,

DW_AT_high_pc,

DW_AT location

DW_AT_return_addr

DW_AT_start_scope

and

DW_AT_segment)

that such entries

Revision: 2.0.0 Page 37 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

would otherwise normally he. In place of these omitted attributes,
each concrete inlined instance entry has a

DW_AT abstract_origin

attribute that

may be used to obtain the missing information (indirectly) from

the associated abstract instance enftitye value of the abstract

origin attribute is a reference to the associated abstract instance entry.

For each pair of entries that are associated via a

DW_AT abstract_origin

attribute, both members of the pair willMeethe same tag. So, for
example, an entry with the tag

DW_TAG_local_variable

can only be associated

with another entry that also has the tag
DW_TAG_local_variable.

The only exception to this rule is that the root of a concrete
instance tree (which muswedys hare the tag
DW_TAG_inlined_subroutine)

can only be associated with the root of its associated abstract
instance tree (which mustvyeate tag

DW_TAG_subprogram).

In general, the structure and content of given concrete

instance tree will be directly analogous to the structure and content
of its associated abstract instance tree.

There are tw exceptions to this general rule hovee

1. Noentries representing anonymous types &ee made a part
of ary concrete instance inlined tree.

2. Noentries representing members of structure, union or class
types are eer made a part of anconcrete inlined instance tree.

Entries that represent memiseand anonymous typeseaomitted from concrete
inlined instance trees becauseythould simply be redundant duplicates of
the corresponding entries in the associated abstract instaees.trf

any entry within a concrete inlined instance tree needs to refer to an
anonymous type that was declared within the scope of the

relevant inline function, the reference should simply refer to the abstract
instance entry for the given anonymous type.

If an entry within a concrete inlined instance tree contains
attributes describing the declaration coordinates of

that entry,

then those attributes should refer to the file, line and column
of the original declaration of the subroutine, not to the

point at which it was inlined.

3.3.8.3 Out-of-Linelnstances of Inline Subroutines

Under some conditions, compilers may need to generate congeetgadle
instances of inline subroutines other than at points where those subroutines
are actually calledFor the remainder of this discussion,

Revision: 2.0.0 Page 38
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

such concrete instances of inline subroutines will
be referred to as “concrete out-of-line instantes.

In C++, for exampletaking the address of a function declared to be inline
can necessitate the generation of a concrete out-of-line
instance of the given function.

The DNARF representation of a concrete out-of-line instance of an inline
subroutine is essentially the same as for a concrete inlined instance of

that subroutine (as described in the preceding section). The representation
of such a concrete out-of-line instance makes use of

DW_AT abstract_origin

attributes in exactly the same way as/thee used for a concrete inlined
instance (that is, as references to corresponding entries

within the associated

abstract instance tree) and, as for concrete instance trees, the

entries for anonymous types and for all members are omitted.

The differences between th&\IBRF representation of a concrete out-of-line
instance of a gen subroutine and the representation of a concrete inlined
instance of that same subroutine are as follows:

1. Theroot entry for a concrete out-of-line instance of\zegi
inline subroutine has the same tag as does its associated
(abstract) inline subroutine entry (that is, it does nueHae
tag
DW_TAG inlined_subroutine).

2. Theroot entry for a concrete out-of-line instance tree is
always directly owned by the same parent entry that
also owns the root entry of the associated abstract instance.

3.4 LexicalBlock Entries

A lexical blod is a lrackded sequence of source statements that may
contain any number of decktions. Insome languges (C and C++)
blocks can be nested within other blocks to any depth.

A lexical block is represented by a debugging information entry
with the tag
DW_TAG_lexical_block

The lexical block entry has a

DW_AT low_pc

attribute whose value is the

relocated address of the first machine instruction generated for the lexical
block.

The lexical block entry also has a

DW_AT high_pc

attribute whose value is the

relocated address of the first location

past the last machine instruction generated for the lexical block.

If a name has beenvgn to the lexical block in the source program,
then the corresponding lexical block entry has a

Revision: 2.0.0 Page 39 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_AT_name

attribute

whose value is a null-terminated string containing the name of the
lexical block as it appears in the source program.

This is not the
same as a C or C++ label (see below).

The lexical block entry owns debugging information entries that

describe the declarations within that lexical block.

There is one such debugging information entry for each local declaration
of an identifier or inner lexical block.

3.5 LabelEntries

A label is a way of identifying a source statemektabeled statement
is usually the taget of one or moe “go to” statements.

A label is represented by a debugging information entry

with the tag

DW_TAG_label.

The entry for a label should be owned by

the debugging information entry representing the scope within which the name
of the label could be tglly referenced within the source program.

The label entry has a

DW_AT_low_pc

attribute whose value is the

relocated address of the first machine instruction generated for the
statement identified by the label in the source program.

The label entry also has a

DW_AT_name

attribute

whose value is a null-terminated string containing the name of the
label as it appears in the source program.

3.6 With Statement Entries

Both Pascal and Modula support the concept of a “wittdtement.

The with statement specifies a sequence of executable statements
within whid the fields of a recarvariable may be referenced, unqualified
by the name of the reabvariable.

A with statement is represented by a debugging information entry with
the tag

DW_TAG_with_stmt .

A with statement entry has a

DW_AT low_pc

attribute whose value is the relocated

address of the first machine instruction generated for the body of

the with statementA with statement entry also has a

DW_AT high_pc

attribute whose value is the relocated

address of the first location after the last machine instruction generated for the body of

Revision: 2.0.0 Page 40 July 27, 1993
Industry Reviwv Draft

Programming Languages SIG

the statement.

The with statement entry has a

DW_AT type

attribute, denoting

the type of record whose fields may be referenced without full qualification
within the body of the statement. It also has a

DW_AT_location

attribute, describing Woto find the base address

of the record object referenced within the body of the with statement.

3.7 Try and Catch Block Entries

In C++ a lexical blok may be designated as a “cdidlock’

A catch block is an exception handler that handles exceptions
thrown by an immediately preceding “try bldcld catch block
designates the type of the exception that it can handle.

A try block is represented by a debugging information entry
with the tag

DW_TAG_try block .

A catch block is represented by a debugging information entry
with the tag

DW_TAG_catch_block .

Both try and catch block entries contain a

DW_AT low_pc

attribute whose value is the

relocated address of the first machine instruction generated for that
block. Theseentries also contain a

DW_AT_high_pc

attribute whose value is the

relocated address of the first location

past the last machine instruction generated for that block.

Catch block entries a & least one child entry,

an entry representing the type of exception accepted

by that catch block. This child entry will i ane of the tags
DW_TAG_formal_parameter

or

DW_TAG_unspecified_parameters :

and will hare the same form as other parameter entries.

The first sibling of each try block entry will be a catch block
entry.

Revision: 2.0.0 Page 41 July 27, 1993
Industry Reviwav Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 42 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

4. DATA OBJECT AND OBJECT LIST ENTRIES

This section presents the debugging information entries that
describe individual data objects: variables, parameters and
constants, and lists of those objects that may be grouped

in a single declaration, such as a common block.

4.1 DataObject Entries

Program variables, formal parameters and constants are represented
by debugging information entries with the tags

DW_TAG_variable ,

DW_TAG_formal_parameter

and

DW_TAG_constant ,

respectiely.

The tag

DW_TAG_constant

is used for languges that distinguish between variables
that may have constant value and true named constants.

The debugging information entry for a program variable, formal
parameter or constant mayweahe following attributes:

1. A
DW_AT name
attribute whose value is a null-terminated
string containing the data object name as it appears in the source program.

If a variable entry describes a C++ anonymous union, the name
attribute is omitted or consists of a single zero byte.

2. Ifthe name of a variable is visible outside of its enclosing
compilation unit, the variable entry has a
DW_AT external
attribute, whose value is a flag.

The definitions of C++ static data members

of structures or classesarepresented by variable entriesgitad
as external.

Both file static and local variables in C and C++earepresented
by non-external variable entries.

3. A
DW_AT location
attribute, whose value describes the location of a variable or parameter
at run-time.

A data object entry representing a non-defining declaration of the object
will not have a bcation attribute, and will ve the

DW_AT_declaration

attribute.

In a variable entry representing the definition of the variable
(that is, with no
Revision: 2.0.0 Page 43 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_AT_declaration

attribute)

if no location attribute is present, or if

the location attribute is present but describes

a rull entry (as described in section 2.4), the variable

is assumed to exist in the source code but not inxgsutable
program (but see number 9, below).

The location of a variable may be further specified with a
DW_AT_ segment
attribute, if appropriate.

4. A
DW_AT type
attribute describing the type of the variable, constant or formal
parameter.

5. Ifthe variable entry represents the defining declaration for a C++ static
data member of a structure, class or union, the entry has a
DW_AT_specification
attribute, whose value is a reference to the debugging information
entry representing the declaration of this data membee
referenced entry will be a child of some class, structure or
union type entry.

Variable entries containing the

DW_AT_specification

attribute do not need to duplicate information provided by the
declaration entry referenced by the specification attribute.

In particular such variable entries do not need to contain
attributes for the name or type of the data member whose
definition the represent.

6. Some languges dstinguish between paramesanhose value in the
calling function can be madified by the callee (variable parameters),
and parametes whose value in the calling function cannot be modified
by the callee (constant parameters).

If a formal parameter entry represents a parameter whose value
in the calling function may be modified by the callee, that entry
may hae a

DW_AT variable_parameter

attribute, whose value is a flag. The absence of this attribute
implies that the parametenalue in the calling function cannot

be modified by the callee.

7. Fortran90 has the concept of an optional parameter.

If a parameter entry represents an optional paramebars a
DW_AT is_optional
attribute, whose value is a flag.

8. Aformal parameter entry describing a formal parameter that has a default
value may hae a
DW_AT default_value
Revision: 2.0.0 Page 44 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

attribute. Thevaue of this attribute is a reference to the
debugging information entry for a variable or subroutine. The
default value of the parameter is the value of the variable (which
may be constant) or the value returned by the subroutine. If the
value of the

DW_AT_default_value

attribute is O, it means that no default value has been specified.

9. Anentry describing a variable whose value is constant
and not represented by an object in the address space of the program,
or an entry describing a named constant,
does not hee a bcation attrilute. Suctentries hae a
DW_AT_const_value
attribute, whose value may be a string oy afithe constant
data or data block forms, as appropriate for the representation
of the variables value. Thevalue of this attribute is the actual
constant value of the variable, represented as it would be
on the target architecture.

10. Ifthe scope of an object begins sometime after thgtovalue
for the scope most closely enclosing the object, the
object entry may hae a
DW_AT _start_scope
attribute. Thevalue of this attribute is the offset in bytes of the beginning
of the scope for the object from theMpc value of the debugging
information entry that defines its scope.

The scope of a variable may begin somewlrethe middle of a lexical
block in a languaye hat allows executable code in a

blodk before a \ariable declaration, or wherone declaration
containing initialization code may chamdhe scope of a subsequent
declamation. For examplein the following C code:

float x = 99.99;

int myfunc()

{

float f = x;
float x = 88.99;

return O;

}

ANSI-C scoping rules reqaitthat the value of the variable
assigned to the variablein the initialization sequence

is the value of the global variabke rather than the locak,
because the scope of the local variablenly starts after the full
declarator for the locak.

4.2 CommonBlock Entries

A Fortran common block may be described by a debugging information
entry with the tag

Revision: 2.0.0 Page 45 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

DW_TAG_common_block

The common block entry has a

DW_AT name

attribute whose value is a null-terminated

string containing the common block name as it appears in the source program.
It also has a

DW_AT_location

attribute whose value describes the location of the beginning of the

common block. The common block entry owns debugging information

entries describing the variables contained within the common block.

4.3 Imported Declaration Entries

Some languges support the concept of importing into a given
module declarations made in a different module.

An imported declaration is represented by a debugging information
entry with the tag

DW_TAG_imported_declaration

The entry for the imported declaration has a

DW_AT name

attribute whose value

is a null-terminated string containing the name of the entity
whose declaration is being imported as it appears in the source
program. Theémported declaration entry also has a

DW_AT import

attribute, whose value is a reference to the debugging information
entry representing the declaration that is being imported.

4.4 NamelistEntries

At least one languge, Fortran90, has the concept of a namelist.

A namelist is an ordered list of the hames of some set of declared objects.
The namelist object itself may be used as a replacement for the

list of names in various contexts.

A namelist is represented by a debugging information entry with

the tag

DW_TAG_namelist .

If the namelist itself has a name, the namelist entry has a

DW_AT_name

attribute, whose value is a null-terminated string containing the namelist’s
name as it appears in the source program.

Each name that is part of the namelist is represented by a debugging
information entry with the tag

DW_TAG_namelist_item

Each such entry is a child of the namelist erang all of

the namelist item entries for avgh namelist are ordered as were

the list of names tlyecorrespond to in the source program.

Each namelist item entry contains a
DW_AT namelist_item

Revision: 2.0.0 Page 46 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

attribute whose value is a reference to the debugging information
entry representing the declaration of the item whose name
appears in the namelist.

Revision: 2.0.0 Page 47 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 48 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

5. TYPEENTRIES

This section presents the debugging information entries
that describe program types: base types, modified types
and user-defined types.

If the scope of the declaration of a named type begins sometime after
the lawv pc value

for the scope most closely enclosing the declaration, the

declaration may he a

DW_AT_start_scope

attribute. Thevaue of this attribute is the offset in bytes of the beginning
of the scope for the declaration from ther pc value of the debugging
information entry that defines its scope.

5.1 Baselype Entries

A base type is a data type that is not defined in terms of
other data types. Elagqrogramming languge tas a set of
base types that arcmnsidered to be built into that langga

A base type is represented by a debugging information entry
with the tag

DW_TAG_base_type.

A base type entry has a

DW_AT name

attribute whose value is a null-terminated

string describing the name of the base type as recognized by
the programming language of the compilation unit containing
the base type entry.

A base type entry also has a

DW_AT_encoding

attribute describing vathe base type is encoded and is

to be interpreted. The value of this attribute is a constant.
The set of values and their meanings for the
DW_AT_encoding

attribute is gen in Hgure 10.

Name Meaning

DW_ATE_address linear machine address
DW_ATE_boolean true or false
DW_ATE_complex_float comple floating-point numbey
DW_ATE_float floating-point number
DW_ATE_signed signed binary integer
DW_ATE_signed_char signed character
DW_ATE_unsigned unsigned binary integer
DW_ATE_unsigned_char unsigned character

Figure 10. Encoding attribute values

All encodings assume the representation that is “nofral’
the target architecture.

Revision: 2.0.0 Page 49 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

A base type entry has a

DW_AT byte_size

attribute, whose value is a constant,
describing the size in bytes of the storage
unit used to represent an object of theegitype.

If the value of an object of thevgh type does not

fully occupy the storage unit described by the byte size attribute,
the base type entry mayJuwa

DW_AT bit_size

attribute and a

DW_AT bit_offset

attribute, both of whose values are constants.

The bit size attribute describes the actual size in bits used
to represent a value of thevgn type. Thebit offset

attribute describes the offset in bits of the high order

bit of a value of the gen type from the high order bit

of the storage unit used to contain that value.

For example the C type

int

on a machine that uses 32-bit igées would be
represented by a base type entry with a name
attribute whose value wasrit " an

encoding attribute whose value was
DW_ATE_signed

and a byte size attribute whose value was

4.

5.2 Type Modifier Entries

A base or user-defined type may be modified in different
ways in different languagesA type maodifier is represented

in DWARF by a debugging information entry with one of the
tags gven in FHgure 11.

Tag Meaning

DW_TAG_const_type C or Ct++ const qualified type

DW_TAG_packed_type Pascal packed type

DW_TAG_pointer_type The address of the object whose type is being modified
DW_TAG_reference_type A C++ reference to the object whose type is being modjfied
DW_TAG_volatile_type C or C++ volatile qualified type

Figure 11. Type modifier tags

Each of the type modifier entries has a

DW_AT type

attribute, whose value is a reference to a debugging information
entry describing a base type, a user-defined type or another type

modifier.

A modified type entry describing a pointer or reference type

may hae a

Revision: 2.0.0 Page 50 July 27, 1993

Industry Reviav Draft

DW_AT_address_class

attribute

to describe hw objects having the gén pointer or reference type
ought to be dereferenced.

When multiple type modifiers are chained together to modify
a base or user-defined type, yhare ordered as if part of

a right-associatie expression imolving the base or user-defined
type.

As examples of how type modiiere ardered, tale the following
C declarations:

const char * volatile p;
which represents a volatile pointer to a constant character.
This is encoded in WARF as:
DW_TAG_volatile_type >
DW_TAG_pointer_type -
DW_TAG_const_type -
DW_TAG_base_type

volatile char * const p;

on the other hand, represents a constant pointer

to a volatile character.

This is encoded as:

DW_TAG_const_type -

DW_TAG_pointer_type -
DW_TAG_volatile_type -
DW_TAG_base_type

5.3 Typedef Entries

Any arbitrary type named via a typedef is represented
by a debugging information entry with the tag
DW_TAG_typedef .

The typedef entry has a

DW_AT_name

attribute whose value is a null-terminated

string containing the name of the typedef as it appears in the
source program.

The typedef entry also contains a

DW_AT _type

attribute.

If the debugging information entry for a typedef represents a
declaration of the type that is not also a definition,
it does not contain a type attribute.

5.4 Array Type Entries

Many languges share the concept of an “arrgy which is a
table of components of identical type.

Revision: 2.0.0 Page 51
Industry Reviav Draft

Programming Languages SIG

July 27, 1993

DWARF Debugging Information Format

An array type is represented by a debugging information entry with
the tag
DW_TAG_array_type .

If a name has beenvgn to the array type in the source program, then the
corresponding array type entry has a

DW_AT name

attribute whose value is a

null-terminated string containing the array type name as it appears in the
source program.

The array type entry describing a multidimensional array mag ha
DW_AT_ordering

attribute whose constant value is interpreted to mean either
row-major or column-major ordering of array elements.

The set of values and their meanings for the ordering attribute
are listed in Figure 12.

If no ordering attribute is present, the default ordering for

the source language (which is indicated by the
DW_AT_language

attribute of the enclosing compilation unit entry)

is assumed.

DW_ORD_col_major
DW_ORD_row_major

Figure 12. Array ordering

The ordering attribute may optionally appear on one-dimensional arrays; it
will be ignored.

An array type entry has a
DW_AT type

attribute describing the type
of each element of the array.

If the amount of storage allocated to hold each element of an object of
the given array type is different from the amount of storage that is normally
allocated to hold an individual object of the indicated element type, then
the array type entry has a

DW_AT_stride_size

attribute, whose constant value

represents the size in bits of each element of the array.

If the size of the entire array can be determined statically at compile
time, the array type entry mayveaa

DW_AT_ byte_size

attribute, whose constant value represents the total size in bytes of an
instance of the array type.

Note that if the size of the array can be determined statically at
compile timethis value can usually be computed by multiplying
the number of array elements by the size o egmnent.

Each array dimension is described by a debugging information
Revision: 2.0.0 Page 52
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

entry with either the tag

DW_TAG_subrange_type

or the tag

DW_TAG_enumeration_type

These entries are children of the array type entry and are
ordered to reflect the appearance of the dimensions in the source
program (i.e. leftmost dimension first, next to leftmost second,
and so on).

In languayes, sut as ANSI-C, in whib there is no oncept of a

“ multidimensional array

an array of arrays may be represented by a debugging information entry
for a multidimensional array.

5.5 Structure, Union, and Class Type Entries

The languges C, G-+, and Pascal, among others,

allow the ppgrammer to define types that

are owllections of related components. In C and C++, these collections are
called “structures. | n Pascal, thg are called “records. T he components
may be of different types. The componendsaalted “members’in C and

C++, and “fields” in Pascal.

The components of these collectionshexést in their own space in
computer memoryThe components of a C or C++ “unidrall coexist in
the same memory.

Pascal and other languges have a “discriminated uniohalso called a

“ variant record. H ere, ®lection of a number of alternative substructures
(“variants”) is based on the value of a component that is not part of any of
those substructures (the “discriminant”).

Among the languges dscussed in this document,

the “class’ concept is unique to C++A dass is similar to a structer

A C++ class or structue may have “member functionishich are subroutines
that are within the scope of a class or struatur

5.5.1 GeneralStructur e Description

Structure, union, and class types are represented by

debugging information entries with the tags
DW_TAG_structure_type

DW_TAG_union_type

and

DW_TAG_class_type ,

respectiely.

If a name has beenvgn to the structure, union, or class in the source
program, then the corresponding structure type, union type, or class type
entry has a

DW_AT_name

attribute whose value is a null-terminated string

containing the type name as it appears in the source program.

If the size of an instance of the

Revision: 2.0.0 Page 53 July 27, 1993
Industry Reviwav Draft

DWARF Debugging Information Format

structure type, union type, or class type entry can be determined
statically at compile time, the entry has a

DW_AT byte_size

attribute whose constant value is the number of bytes required to
hold an instance of the structure, union, or class, apgauading bytes.

For C and C++, an incomplete structar wnion or class type is represented
by a structue, wnion or class entry that does not have

a byte size attribute and that has a

DW_AT declaration

attribute.

The members of a structure, union, or class are represented by
debugging information entries that are owned by the corresponding
structure type, union type, or class type entry and appear in the same
order as the corresponding declarations in the source program.

Data member declarations occurring within the declaration of a stractur
union or class type arconsidered to be “definitionsdf those members,
with the exception of C++ “statitdata members, whose definitions
appear outside of the declaration of the enclosing strectumion

or class type Function member declarations appearing within a strustur
union or class type declarationedefinitions only if the body

of the function also appesaithin the type declaration.

If the definition for a gien member of the structure, union or class
does not appear within the body of the declaration, that member
also has a debugging information entry describing its definition.
That entry will hae a

DW_AT _specification

attribute referencing

the debugging entry owned by the

body of the structure, union or class debugging entry and representing
a ron-defining declaration of the data or function mem€fére
referenced entry will

not hare information about the location of that membew(lmd high
pc attributes for function members, location descriptions for data
members) and will hae a

DW_AT declaration

attribute.

5.5.2 Derved Classes and Structures

The class type or structure type entry that describes eedefass

or structure owns debugging information entries describing each of
the classes or structures it is ded from, ordered as tlyavere

in the source program. Each such entry has the tag

DW_TAG _inheritance

An inheritance entry has a

DW_AT type

attribute whose

value is a reference to the debugging information entry describing

Revision: 2.0.0 Page 54
Industry Reviwv Draft

July 27, 1993

Programming Languages SIG

the structure or class from which the parent structure or class

of the inheritance entry is deed. Italso has a

DW_AT data_member_location

attribute, whose value is a location description describing

the location of the beginning of

the data members contributed to the entire class by this

subobject relatie © the beginning address of the data members of the
entire class.

An inheritance entry may ka a

DW_AT _accessibility

attribute.

If no accessibility attribute is present,

private access is assumed.

If the structure or class referenced by the inheritance entry serves
as a virtual base class, the inheritance entry has a

DW_AT virtuality

attribute.

In C++, a derived class may contain access declarations that
change the accessibility of individual class memb&om

the overall accessibility specified by the inheritance declaration.
A dngle access declaration may refer to a set of overloaded
names.

If a derived dass or structure contains access declarations,

each such declaration may be represented by a debugging information
entry with the tag

DW_TAG_access_declaration

Each such entry is a child of the structure or class type entry.

An access declaration entry has a

DW_AT name

attribute, whose value

is a null-terminated string representing the name used in the
declaration in the source program, including alass or structure
gualifiers.

An access declaration entry also has a
DW_AT_accessibility

attribute

describing the declared accessibility of the named entities.

5.5.3 Friends

Each “friend’ declared by

a dructure, union or class type may be represented by

a debugging information entry that is a child of the structure,
union or class type entry; the friend entry has the tag
DW_TAG_friend.

A friend entry has a

DW_AT _friend
attribute, whose value is a reference to the debugging information
Revision: 2.0.0 Page 55 July 27, 1993

Industry Reviav Draft

DWARF Debugging Information Format

entry describing the declaration of the friend.

5.5.4 Structure Data Member Entries

A data member (as opposed to a member function) is represented by
a debugging information entry with the tag

DW_TAG_member

The member entry for a named member has a

DW_AT name

attribute

whose value is a null-terminated string containing the member name
as it appears in the source program. If the member entry describes
a C++ anonymous union, the name attribute is omitted or consists

of a single zero byte.

The structure data member entry has a
DW_AT type

attribute

to denote the type of that member.

If the member entry is defined in the structure or class,liblys a

DW_AT data_member_location

attribute whose value is a location

description that describes the location of that

member relatie © the base address of the structure, union, or class that
most closely encloses the corresponding member declaration.

The addressing expression represented by the location
description for a structdr data member expects the base address
of the structue data member to be on the expression stack
before keing evaluated.

The location description for a data member of a union may be omitted,
since all data membsiof a nion begin at the same address.

If the member entry describes a bit field, then that entry has the following
attributes:

1. A
DW_AT byte_ size
attribute whose constant value is the number of bytes that
contain an instance of the bit field ang padding bits.

The byte size attribute may be omitted if the size of the object containing
the bit field can be inferred from the type attribute of the data
member containing the bit field.

2. A
DW_AT bit_offset
attribute whose constant value is the number of bits
to the left of the leftmost (most significant) bit of the bit field value.

3. A
DW_AT bit_size
attribute whose constant value is the number of bits occupied

Revision: 2.0.0 Page 56 July 27, 1993
Industry Reviwav Draft

Programming Languages SIG

by the bit field value.

The location description for a bit field calculates the address of
an anonymous object containing the bit field. The address is
relative o the structure, union, or class that

most closely encloses the bit field declaration. The number

of bytes in this anonymous object is the value of the byte

size attribute of the bit field. The offset (in bits)

from the most significant bit of the

anonymous object to the most significant bit of the bit field is the
value of the bit offset attribute.

For example take ane possible representation of the following
structure definition in both big and little endian byte orders:

struct S {
int j:5;
int Kk:6;
int m:5;
int n:8;
|3

In both cases, the location descriptions for the debugging information
entries forj , k, mandn

describe the address of

the same 32-bit wdrthat contains all three members.

(In the big-endian case,

the location description addresses the most significant inyte

the little-endian casdhe least significant).

The following diagram shows the struatuayout and lists the bit

offsets for eaecase The offsets

are from the most significant bit of the object addressed by the location
description.

Bit Offsets: Big-Endian
JO 0 .
k:5 31J 26k 2om 15 n 7 pad 0
m:11
n:16

Bit Offsets: Little-Endian

j:27 -
k:21 31 pad 23 n 15m 10k 4 0
m:16
n:8

Revision: 2.0.0 Page 57 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

5.5.5 Structure Member Function Entries

A member function is represented in the debugging information by a
debugging information entry with the tag

DW_TAG_subprogram.

The member function entry may contain the same attributes and follows

the same rules as non-member global subroutine entries (see section 3.3).

If the member function entry describes a virtual function, then that entry
has a

DW_AT _virtuality

attribute.

An entry for a virtual function also has a

DW_AT vtable elem_location

attribute whose value contains a location

description yielding the address of the slot for the function

within the virtual function table for the enclosing class or structure.

If a subroutine entry represents the defining declaration

of a member function and that definition appears outside

of the body of the enclosing class or structure declaration,

the subroutine entry has a

DW_AT_specification

attribute, whose value is a reference to the debugging information
entry representing the declaration of this function memmbbke
referenced entry will be a child of some class or structure

type entry.

Subroutine entries containing the

DW_AT_specification

attribute do not need to duplicate information provided by the
declaration entry referenced by the specification attribute.

In particular such entries do not need to contain

attributes for the name or return type of the function member whose
definition the represent.

5.5.6 ClassTemplate Instantiations

In C++ a class template is a generic

definition of a class type that

is instantiated differently when an instance of the class

is declared or defined. The generic description of the class

may include both parameterized types and parameterized constant
values. IWARF does not represent the generic

template definition, but does representtemstantiation.

A class template instantiation is represented by a debugging information
with the tag

DW_TAG_class_type .

With four exceptions,

such an entry will contain the same attributes ane tiee same

types of child entries as would an entry for a class type defined

explicitly using the instantiation types and values.

Revision: 2.0.0 Page 58
Industry Reviwv Draft

July 27, 1993

Programming Languages SIG

The exceptions are:

1. Eachformal parameterized type declaration appearing in the
template definition is represented by a debugging information entry
with the tag
DW_TAG_template_type_parameter
Each such entry has a
DW_AT_name
attribute, whose value is a null-terminated
string containing the name of the formal type parameter as it
appears in the source program. The template type parameter
entry also has a
DW_AT_type
attribute describing the actual type by
which the formal is replaced for this instantiation.

2. Eachformal parameterized value declaration appearing
in the templated definition is represented by a debugging information
entry with the tag
DW_TAG_template_value_parameter
Each such entry has a
DW_AT name
attribute, whose value is a null-terminated
string containing the name of the formal value parameter as it
appears in the source program. The template value parameter
entry also has a
DW_AT type
attribute describing the type of the parameterized
value. Finally the template value parameter entry has a
DW_AT const_value
attribute, whose value is the actual constant value of the value
parameter for this instantiation as represented on the target
architecture.

3. Ifthe compiler has generated a special compilation unit
to hold the template instantiation and that compilation unit
has a different name
from the compilation unit containing the template definition,
the name attribute for the debugging entry representing
that compilation unit should be empty or omitted.

4. |If the class type entry representing the template instantiation
or ary of its child entries
contain declaration coordinate attributes, those attributes
should refer to the source for the template definition, not
to ary source generated artificially by the compiler.

5.5.7 \ariant Entries

A variant part of a structure is represented by a debugging
information entry with the tag

DW_TAG_variant_part

and is owned by the corresponding structure type

Revision: 2.0.0 Page 59 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

entry.

If the variant part has a discriminant, the discriminant is represented

by a separate debugging information entry which is a child of

the variant part entryThis entry has the form of a structure data member
entry.

The variant part entry will hee a

DW_AT_discr

attribute whose value is a

reference to the member entry for the discriminant.

If the variant part

does not hee a dscriminant (tag field), the variant part entry has a
DW_AT_type

attribute to represent the tag type.

Each variant of a particular variant part is represented by a debugging
information entry with the tag

DW_TAG_variant

and is a child of the variant part entffhe value that selects a
given variant may be represented in one of thregsv The

variant entry may hee a

DW_AT discr_value

attribute whose value represents a single case label.

The value of this attribute

is encoded as an LEB128 numb@&he number is signed if the tag
type for the variant part containing this variant is

a dgned type. The number is unsigned if the tag type is an unsigned type.

Alternatively, the variant entry may contain a

DW_AT discr_list

attribute, whose value represents a list of discriminant values.
This list is represented by yanf the block forms and may contain
a mixture of case labels and label ranges. Each item on the list
is prefixed with a discriminant value descriptor that determines whether
the list item represents a single label or a label range.

A single case label is represented as an LEB128

number as defined ab®

for the

DW_AT _discr_value

attribute. Alabel range is represented byotWEB128 numbers,
the low value of the range followed by the highlwe. Bothvalues
follow the rules for signedness just described.

The discriminant value descriptor is a constant that meg ha
one of the values gén in Hgure 13.

DW_DSC _label
DW_DSC _range

Figure 13. Discriminant descriptor values

If a variant entry has neither a
DW_AT _discr_value

Revision: 2.0.0 Page 60
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

attribute nor a

DW_AT discr_list

attribute, or if it has a

DW_AT discr_list

attribute with O size, the variant is a default variant.

The components selected by a particular variant are represented

by debugging information entries owned by the corresponding variant
entry and appear in the same order as the corresponding declarations in
the source program.

5.6 EnumerationType Entries

An “enumeration typéis a scalar that can assume one of a fixed number of
symbolic values.

An enumeration type is represented by a debugging information entry
with the tag
DW_TAG_enumeration_type

If a name has beenvgn to the enumeration type in the source program,
then the corresponding enumeration type entry has a

DW_AT _name

attribute

whose value is a null-terminated string containing the enumeration type
name as it appears in the source program.

These entries also Y a

DW_AT byte_size

attribute whose

constant value is the number of bytes required to hold an

instance of the enumeration.

Each enumeration literal is represented by a debugging information
entry with the tag

DW_TAG_enumerator .

Each such entry is a child of the enumeration type earidy

the enumerator entries appear in the same order as the declarations of
the enumeration literals in the source program.

Each enumerator entry has a

DW_AT_name

attribute, whose value is

a rull-terminated string containing the name of the enumeration
literal as it appears in the source program. Each enumerator

entry also has a

DW_AT_const_value

attribute, whose value is the actual numeric value of the enumerator
as represented on the target system.

5.7 Subroutine Type Entries

Itis possible in C to declerpointers to sibroutines that return a value
of a specific typeln both ANSI C and C++, it is possible to declare
pointes to subroutines that not only return a value of a specific type,

Revision: 2.0.0 Page 61 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

but accept only arguments of specific types. The type bffmicters
would be described with a “pointer tahodifier applied to a user-defined

type.

A subroutine type is represented by a debugging information entry
with the tag

DW_TAG_subroutine_type

If a name has beenvgh to the subroutine type in the source program,
then the corresponding subroutine type entry has a

DW_AT name

attribute

whose value is a null-terminated string containing the subroutine type
name as it appears in the source program.

If the subroutine type describes a function that returns a value, then

the subroutine type entry has a

DW_AT type

attribute

to denote the type returned by the subroutine.

If the types of the arguments are necessary to describe the subroutine type,
then the corresponding subroutine type entry owns debugging

information entries that describe the arguments.

These debugging information entries appear in the order

that the corresponding argument types appear in the source program.

In ANSI-C thee is a dfference between the types of functions
declared using function prototype style declarations and those
declared using non-prototype declarations.

A subroutine entry

declared with a function prototype style declaration mae lza
DW_AT prototyped

attribute, whose value is a flag.

Each debugging information entry
owned by a subroutine type entry has a tag whose value has one of
two possible interpretations.

1. Eachdebugging information entry that is owned by a subroutine type entry and
that defines a single argument of a specific type has the tag
DW_TAG_formal_parameter

The formal parameter entry has a type attribute
to denote the type of the corresponding formal parameter.

2. Theunspecified parameters of a variable parameter list are represented by a
debugging information entry owned by the subroutine type entry with the tag
DW_TAG_unspecified_parameters

5.8 String Type Entries

A “string” is a sequence of charactethat have specific semantics and
operations that separate them from arrays of characters.

Fortran is one of

the languages that has a string type.

Revision: 2.0.0 Page 62 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

A string type is represented by a debugging information entry
with the tag

DW_TAG_string_type

If a name has beenvgn to the string type in the source program,
then the corresponding string type entry has a

DW_AT_name

attribute

whose value is a null-terminated string containing the string type
name as it appears in the source program.

The string type entry may ha a

DW_AT_string_length

attribute whose value is a location description

yielding the location where the length of the string

is stored in the program. The string type entry may alse ha
DW_AT byte_size

attribute, whose constant value is the size in bytes of the data
to be retrigzed from the location referenced by the string length
attribute. Ifno byte size attribute is present, the size of the
data to be retrieed is the same as the size of an address on
the target machine.

If no string length attribute is present, the string type entry may ha
a

DW_AT_ byte_size

attribute, whose constant value is the length in bytes of

the string.

5.9 SetEntries

Pascal povides the concept of a “skty hich represents a group of
values of ordinal type.

A set is represented by a debugging information entry

with the tag

DW_TAG_set_type .

If a name has beenvgn to the set type,

then the set type entry has a

DW_AT_name

attribute

whose value is a null-terminated string containing the set type name
as it appears in the source program.

The set type entry has a
DW_AT _type

attribute to denote the type
of an element of the set.

If the amount of storage allocated to hold each element of an object of
the given st type is different from the amount of storage that is normally
allocated to hold an individual object of the indicated element type, then
the set type entry has a

DW_AT byte_size

Revision: 2.0.0 Page 63 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

attribute, whose constant value
represents the size in bytes of an instance of the set type.

5.10 SubrangeType Entries

Several languges support the concept of a “subrangeype object.
These objects can represent a subset of the values that an
object of the basis type for the subrargn represent.

Subrang type entries may also be used to represent the bounds
of array dimensions.

A subrange type is represented by a debugging information entry

with the tag

DW_TAG_subrange_type .

If a name has beenvgn to the subrange type,

then the subrange type entry has a

DW_AT_name

attribute

whose value is a null-terminated string containing the subrange type name
as it appears in the source program.

The subrange entry mayvea

DW_AT type

attribute to describe

the type of object of whose values this subrange is a subset.

If the amount of storage allocated to hold each element of an object of

the given subrange type is different from the amount of storage that is normally
allocated to hold an individual object of the indicated element type, then

the subrange type entry has a

DW_AT_ byte_size

attribute, whose constant value

represents the size in bytes of each element of the subrange type.

The subrange entry mayveate attributes

DW_AT lower_bound

and

DW_AT_upper_bound

to describe, respewtly, the lower and upper bound values

of the subrange.

The

DW_AT upper_bound

attribute may be replaced by a

DW_AT count

attribute, whose value describes the number of elements in

the subrange rather than the value of the last element.

If a bound or count value is described by a constant

not represented in the progranatidress space and can

be represented by one of the constant attribute forms, then the value
of the lower or upper bound or count attribute may be one of the constant
types. Otherwisghe value of the lower or upper bound or count
attribute is a reference to a debugging information entry describing
an object containing the bound value or itself describing a constant

Revision: 2.0.0 Page 64 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

value.

If either the lower or upper bound or count values are missing, the
bound value is assumed to be a language-dependent default
constant.

The default lower bound value for C or C++ is Bor Fortran,
itis 1. No other default valueseturrently defined by W/ARF.

If the subrange entry has no type attribute describing the basis
type, the basis type is assumed to be the same as the object
described by the lower bound attribute (if it references an object).
If there is no lower bound attribute, or it does not reference

an object, the basis type is the type of the upper bound or count
attribute

(if it references an object). If there is no upper bound or count attribute
or it does not reference an object, the type is assumed to be

the same type, in the source language

of the compilation unit containing the subrange entry,

as a signed integer with the same size

as an address on the target machine.

5.11 Pointer to Member Type Entries

In C++, a pointer to a data or function member of a class or
structue is a wique type.

A debugging information entry

representing the type of an object that is a pointer to a structure
or class member has the tag

DW_TAG_ptr_to_member_type

If the pointer to member type has a name, the pointer to member entry
has a

DW_AT_name

attribute, whose value is a null-terminated string

containing the type name as it appears in the source program.

The pointer to member entry has a

DW_AT _type

attribute to describe

the type of the class or structure member to which objects
of this type may point.

The pointer to member entry also has a
DW_AT_containing_type

attribute, whose value is a reference to a debugging information
entry for the class or structure to whose members objects of
this type may point.

Finally, the pointer to member entry has a

DW_AT use_location

attribute whose value is a location description that computes
the address of the member of the class or structure to which the
pointer to member type entry can point.

Revision: 2.0.0 Page 65 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

The method used to find the address of a given member
of a class or structwis @mmon to any instance of that
class or structug and to any instance of the pointer or
member type The method is thus associated

with the type entryrather than with edtinstance of the type.

The

DW_AT use_location

expression, howevgecannot be used on its own, but must

be used in conjunction with the location expressions for

a particular object of the given pointer to member type

and for a particular structue or dass instance The

DW_AT use_location

attribute expects two values to be pushed onto the location expression
stak before the

DW_AT use_location

expression is ealuated. Thdirst value pushed should be

the value of the pointer to member object itself.

The second value pushed should be the base address of the entire
structue or wnion instance containing the member whose

address is being calculated.

So, for an expression like
object.*mbr_ptr

wherembr_ptr has some pointer to member type,
a debugyer should:

1. Pushhe value of
mbr_ptr
onto the location expression stack.

2. Pushthe base address of
object
onto the location expression stack.

3. Evaluatghe
DW_AT use_location
expression for the type of
mbr_ptr

5.12 FileType Entries

Some languges, sut as Riscal, povide a first class data type
to represent files.

A file type is represented by a debugging information entry
with the tag

DW_TAG _file_type.

If the file type has a name, the file type entry

has a

DW_AT name

attribute, whose value is a null-terminated string

containing the type name as it appears in the source program.

Revision: 2.0.0 Page 66
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

The file type entry has a

DW_AT _type

attribute describing the type

of the objects contained in the file.

The file type entry also has a

DW_AT_ byte_size

attribute, whose value

is a constant representing the size in bytes of an instance
of this file type.

Revision: 2.0.0 Page 67 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 68 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

6. OTHER DEBUGGING INFORMATION

This section describes debugging information that

is not represented in the form of debugging information
entries and is not contained within the

.debug_info

section.

6.1 AcceleratedAccess

A debugye frequently needs to find the debugging information for

a program dbject defined outside of the compilation unit

whete the debuged program is arrently stopped. Sometimes

it will know only the name of the object; sometimes only the address.
To find the debugging information

associated with a global object by ngrasing the IVARF debugging information
entries alonea debugyer would need

to run through all entries at the highest scope within each
compilation unit. For lookup by address, for a subroutine,

a debugyer can use the low and high pc attributes

of the compilation unit entries to quickly narrow down the cgar

but these attributes only cover

the range of aldresses for the text associated with a compilation

unit entry To find the debugging information associated with a

data object, an exhaustive selmould be needed.

Furthermoe, any seach through debugging information entries for
different compilation units within a lge pogram

would potentially requie the access of many memonggs

probably hurting debuggr performance.

To make lookups of program objects by name or by address faster,

a producer of WARF information may provide tvdifferent types

of tables containing information about the debugging information

entries owned by a particular compilation unit entry in a more condensed
format.

6.1.1 Lookupby Name

For lookup by name, a table is maintained in a separate

object file section called

.debug_pubnames .

The table consists of sets of variable length entries, each

set describing the names of global objects whose definitions

or declarations are represented by debugging information entries
owned by a single compilation unit. Each set begins

with a header containing four values: the total length of the entries
for that set, not including the length field itself, a version number,
the offset from the beginning of the

.debug_info

section of the compilation unit entry referenced by the set and
the size in bytes of the contents of the

.debug_info

Revision: 2.0.0 Page 69 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

section generated to represent that compilation unit. This
header is followed by a variable number of offset/name pairs.
Each pair consists of the offset from the beginning of the compilation
unit entry corresponding to the current set to the

debugging information entry for

the gven object, followed by a null-terminated character
string representing the name of the object aengy

the

DW_AT name

attribute of the referenced debugging entry.

Each set of names is terminated by zero.

In the case of the name of a static data member or function member
of a C++ structure, class or union, the name presented

in the

.debug_pubnames

section is not the simple name@i by the

DW_AT name

attribute of the referenced debugging enltxyt rather

the fully class qualified name of the data or function member.

6.1.2 Lookupby Address

For lookup by address, a table is maintained in a separate
object file section called

.debug_aranges

The table consists of sets of variable length entries, each
set describing the portion of the prograraddress space that
is covered by a single compilation unit. Each set begins
with a header containing Bwalues:

1. Thetotal length of the entries
for that set, not including the length field itself.

A version number.

Theoffset from the beginning of the
.debug_info
section of the compilation unit entry referenced by the set.

4. Thesize in bytes of an address on the target architeckore.
segmented addressing, this is the size of the offset portion of the
address.

5. Thesize in bytes of a segment descriptor on the target architecture.
If the target system uses a flat address space, this value is O.

This

header is followed by a variable number of address

range descriptors. Each descriptor is a pair consisting of

the beginning address

of a range of text or dataweed by some entry owned

by the corresponding compilation unit entigilowed by the length
of that range.A particular set is terminated by an entry consisting

Revision: 2.0.0 Page 70
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

of two zeroes. Byscanning the table, a debugger can quickly
decide which compilation unit to look in to find the debugging information
for an object that has avgn address.

6.2 Line Number Information

A source-level debuggr will need to know how to associate statements in
the source files with the corresponding machine instruction addresses in
the executable object or the shared objects used by that executable
object. Sul an association would makit possible for the debugr user

to specify machine instruction addresses in terms of source statements.
This would be done by specifying the line number and the source file
containing the statement. The debeagcan also use this information to
display locations in terms of the source files and to single step from
statement to statement.

As mentioned in section 3.1, al®)

the line number information generated for a compilation unit

is represented in thdebug_line section of an object file and is

referenced by a corresponding compilation unit debugging information entry
in the.debug_info section.

If space wes not a consideration, the information
provided in the

.debug_line

section could be represented as aylamatrix,

with one row for edeinstruction in the emitted
object code The matrix would have columns for:

— the source file name

— the source line number

— the source column number

— whether this instruction is the beginning of a source statement
— whether this instruction is the beginning of a basic block.

Sud a natrix, howeverwould be impractically lage We drink it with

two tediniques. kst, we delete from the matrix damow whose file,

line and source column information is identical with that of its predecessors.
Second, we design a byte-coded lamgufr a state machine and stoa gream
of bytes in the object file instead of the matrix. This lagguan be

mud more compact than the matrix. When a consumer of the statement
information executes, it must “rurthe state machine to generate

the matrix for eals compilation unit it is interested in. The concept

of an encoded matrix also leaves room fguansion. Irthe futue,

columns can be added to the matrix to encode other things that are
related to individual instruction addresses.

6.2.1 Definitions

The following terms are used in the description of the line number information
format:

Revision: 2.0.0 Page 71 July 27, 1993
Industry Reviwav Draft

DWARF Debugging Information Format

state machine The hypothetical machine used by a consumer of the line number information
to expand the byte-coded instruction stream into a
matrix of line number information.

statement program A series of byte-coded line number information instructions representing one
compilation unit.

basic block A sequence of instructions that is entered only at the first instruction
and exited only at the last instructiowe cefine a procedure wocation
to be an exit from a basic block.

sequence Aeries of contiguous target machine instructions. One compilation
unit may emit multiple sequences (that is, not all instructions within
a compilation unit are assumed to be contiguous).

shyte Smalkigned integer.

ubyte Smallunsigned integer.

uhalf Mediumunsigned integer.

sword Lage signed integer.

uword Lage unsigned integer.

LEB128 \ariable length signed and unsigned data. See section 7.6.

6.2.2 StateMachine Registers
The statement information state machine has the following registers:

address The program-counter value corresponding to a machine instruction generated
by the compiler.

file An unsigned integer indicating the identity of the source file corresponding
to a machine instruction.

line An unsigned integer indicating a source line numkénes are numbered
beginning at 1. The compiler may emit the value 0 in cases where an
instruction cannot be attributed toyagource line.

column An unsigned integer indicating a column number within a source line.
Columns are numbered beginning at 1. The value O is reserved to indicate
that a statement begins at the “left edgéthe line.

is_stmt A boolean indicating that the current instruction is the beginning of a
statement.

basic_block A boolean indicating that the current instruction is the beginning of
a basic block.

end_sequence A boolean indicating that the current address is that of the first

byte after the end of a sequence of target machine instructions.

At the beginning of each sequence within a statement program, the
state of the registers is:

Revision: 2.0.0 Page 72 July 27, 1993
Industry Reviwav Draft

Programming Languages SIG

address 0

file 1

line 1

column 0

is_stmt determined bylefault_is_stmt in the statement program prologue
basic_block “false”

end_sequence “ false”

6.2.3 StatemenProgram Instructions

The state machine instructions in a statement program belong to one
of three categories:

special opcodes Thesevieaa Uyte opcode field and no arguments.
Most of the instructions in a statement program are special opcodes.

standard opcodes Thesevba Upyte opcode field which may be followed by zero or more
LEB128 arguments (except for
DW_LNS_fixed_advance_pc
see below).
The opcode implies the number of arguments and their
meanings, but the statement program prologue also specifies the number
of arguments for each standard opcode.

extended opcodes Thesevieaa nultiple byte format. The first byte is zero;
the next bytes are an unsigned LEB128 integer giving the number of bytes
in the instruction itself (does not include the first zero byte or the size).
The remaining bytes are the instruction itself.

6.2.4 TheStatement Program Prologue

The optimal encoding of line number information depends to a certain

degree upon the architecture of the target machine. The statement program
prologue provides information used by consumers in decoding the statement
program instructions for a particular compilation unit and also provides
information used throughout the rest of the statement program. The statement
program for each compilation unit begins with a prologue containing the
following fields in order:

1. total_length
(uword)
The size in bytes of the statement information for this compilation unit
(not including the
total_length
field itself).

2. version
(uhalf)
Version identifier for the statement information format.

3. prologue_length
(uword)
The number of bytes following the
prologue_length

Revision: 2.0.0 Page 73 July 27, 1993
Industry Reviwav Draft

DWARF Debugging Information Format

field to the beginning of the first byte of the statement program itself.

4. minimum_instruction_length
(ubyte)
The size in bytes of the smallest target machine instruction. Statement
program opcodes that alter the
address
register first multiply their operands by this value.

5. default_is_stmt
(ubyte)
The initial value of the
is_stmt
register.

A ample code generator

that emits machine instructions in the order implied by the souamggm
would set this to “trug¢ and every entry in the matrix would represent
a gatement boundaryA pipeline scheduling code generator would set
this to “false’ and emit a specific statemenbgram gpocode for each
instruction that represented a statement boundary.

6. line_base
(sbyte)
This parameter affects the meaning of the special opcodes. See belo

7. line_range
(ubyte)
This parameter affects the meaning of the special opcodes. See belo

8. opcode_base
(ubyte)
The number assigned to the first special opcode.

9. standard_opcode_lengths
(array of ubyte)
This array specifies the number of LEB128 operands for each of
the standard opcodes. The first element of the array corresponds
to the opcode whose value is 1, and the last element corresponds
to the opcode whose value is
opcode base - 1
By increasing
opcode_base
and adding elements to this arragw dandard opcodes
can be added, while allowing consumers who do notvlamut these
new opcodes to be able to skip them.

10. include_directories
(sequence of path names)
The sequence contains an entry for each path that was searched
for included source files in this compilation. (The paths include
those directories specified explicitly by the user for the compiler
to search and those the compiler searches without explicit direction).
Each path entry is either a full

Revision: 2.0.0 Page 74 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

path name or is relag 1 the current directory of the compilation.

The current directory of the compilation is understood to be the first entry
and is not explicitly represented.

Each entry is a null-terminated

string containing a full path name. The last entry is followed by

a sngle null byte.

11. file_names
(sequence of file entries)
The sequence contains an entry for each source file that contributed
to the statement information for this compilation unit or is
used in other contexts, such as in a declaration coordinate
or a macro file inclusion. Each entry
has a null-terminated string containing the file name,
an unsigned LEB128 number representing the directoryiatide
directory in which the file was found,
an unsigned LEB128 number representing the time of last modification for
the file and an unsigned LEB128 number representing the length in
bytes of the file.A compiler may choose to emit LEB128(0) for the
time and length fields to indicate that this information is not
available. Thdast entry is followed by a single null byte.

The directory inde represents an entry in the
include_directories

section. Thendex is LEB128(0) if the file was found in

the current directory of the compilation, LEB128(1) if it was
found in the first directory in the

include_directories

section, and so on. The directory irndg ignored for file names
that represent full path names.

The statement program assigns numbers to each of the file entries
in order begnning with 1, and uses those numbers instead of file
names in the

file

register.

A compiler may generate a single null byte for the file names field

and define file names using the extended opcode
DEFINE_FILE .

6.2.5 TheStatement Program

As stated before, the goal of a statement program is to build a

matrix representing

one compilation unit, which may Y& produced multiple sequences of
target-machine instructions. Within a sequence, addresses may only increase.
(Line numbers may decrease in cases of pipeline scheduling.)

6.2.5.1 SpeciaDpcodes

Each 1-byte special opcode has the following effect on the state machine:

Revision: 2.0.0 Page 75 July 27, 1993
Industry Reviwav Draft

DWARF Debugging Information Format

1. Adda dgned integer to the
line
register.

2. Multiply an unsigned integer by the
minimum_instruction_length
field of the statement program prologue and
add the result to the
address
register.

3. Appenda row to the matrix using the current values of the state machine
registers.

4. Setthe
basic_block
register to “falsé€.

All of the special opcodes do those same four things;
they differ from one another

only in what values theadd to the

line

and

address

registers.

Instead of assigning a fixed meaning tolegaecial opcodethe statement
program wses several

parametes in the prologue to configarthe instruction set. Therare two

reasons for this.

First, although the opcode space available for special opcodes now

ranges from 10 through 255, the lower bound may increase if one adds new
standad opcodes. Thus, the

opcode_base

field of the statement @gram

prologue gives the value of the first special opcode.

Second, the best choice of special-opcode meanings depends ogehe tar
architecture. For examplefor a RISC machine whethe compiler-generated code
interleaves instructions from different lines to schedule the pipeline,

it is important to be able to add a negative value to the

line

register

to express the fact that a later instruction may have been emitted for an
earlier source line For a machine wherppeline scheduling never occurs,

it is advantgeous to trade away the ability to decrease the

line

register

(a standad opcode povides an alternate way to decrease the line number) in
return for the ability to add lager positive values to the

address

register To permit this variety of strategies, the statemewigmm prologue
defines a

Revision: 2.0.0 Page 76 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

line_base

field that specifies the minimum value vtdcpecial opcode can add
to the

line

register and a

line_range

field that defines the raegf

values it can add to the

line

register.

A special opcode value is chosen based on the amount that needs to
be added to the
line
and
address
registers. Thenaximum line increment
for a special opcode is the value of the
line_base
field in the
prologue, plus the value of the
line_range
field, minus 1
(line base + line range - 1). If the desired line increment
is greater than the maximum line increment, a standard opcode
must be used instead of a special opcode.
The “address advances calculated by dividing the desired address
increment by the
minimum_instruction_length
field from the
prologue. Thespecial opcode is then calculated using the following
formula:

opcode = (desired line increment - line_base) +

(line_range * address advance) + opcode_base

If the resulting opcode is greater than 255, a standard opcode
must be used instead.

To decode a special opcode, subtract the
opcode_base

from

the opcode itself. The amount to increment the
address

register is

the adjusted opcode divided by the
line_range

The amount to

increment the

line

register is the

line_base

plus the result

Revision: 2.0.0 Page 77 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

of the adjusted opcode modulo the
line_range
That is,

As an examplesuppose that the
opcode_base

is 16,

line_base

is -1 and

line_range

is 4.

This means that we can use a special opcode whenever two successive

rows in the matrix have source line nunbdffering by any value within

the rang [-1, 2] (and, because of the limited number of opcodes available,
when the difference between addresses is within the [@n&9]).

The opcode mapping would be:

Opcode Lineadwance

Addresadvance

16
17
18
19
20
21
22
23
253
254
255

-1

NROoONMvEFROPNMRO

PFRPFPRPFPOOOO

59
59
59

There is no requirement that the expres&bh - line_base + 1

integral multiple of
line_range

6.2.5.2 StandardOpcodes

There are currently 9 standard ubyte opcodes. In the future
additional ubyte opcodes may be defined by setting the

opcode_base
field in the statement program

prologue to a value greater than 10.

1. DW_LNS_copy

be an

Takes no aguments. Append row to the matrix using the current values of
the state-machine gisters. Therset the

basic_block
register to “falsé€.

2. DW_LNS advance_pc

Takes a $ngle unsigned LEB128 operand,

multiplies it by the

Revision: 2.0.0

Page 78
Industry Reviwav Draft

July 27, 1993

Programming Languages SIG

minimum_instruction_length

field of the prologue, and adds the result to the
address

register of the state machine.

3. DW_LNS advance_line
Takes a $ngle signed LEB128 operand and adds
that value to the
line
register of the state machine.

4, DW_LNS set file
Takes a $ngle unsigned LEB128 operand and stores
it in the
file
register of the state machine.

5. DW_LNS set column
Takes a $ngle unsigned LEB128 operand and stores
it in the
column
register of the state machine.

6. DW_LNS negate stmt
Takes no aguments.
Set the
is_stmt
register of the state machine to the
logical ngyation of its current value.

7. DW_LNS_set basic_block
Takes no aguments. Sethe
basic_block
register of the state machine to “true.

8. DW_LNS const_add_pc
Takes no aguments.
Add to the
address
register of the state machine the
address increment value corresponding to special
opcode 255.

The motivation for
DW_LNS const_add_pc
is this: when the statementggram reeds
to advance the address by a small amount, it can use a single special
opcode which occupies a single bytéMhen it needs to advance the
address by up to twice the rangf the last special opcodé can use
DW_LNS_const_add_pc
followed by a special opcodier a total of two bytes.
Only if it needs to advance the address byettwan twice that range
will it need to use both
DW_LNS_advance_pc
Revision: 2.0.0 Page 79 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

and a special opcodeequiring three or maz bytes.

9. DW_LNS fixed_advance_pc
Takes a $ngle uhalf operand. Add to the
address
register of the state machine the value of the (unencoded) operand.
This is the only extended opcode that takes an argument that is not
a variable length number.

The motivation for

DW_LNS fixed advance pc

is this: exsting assemblercannot emit

DW_LNS_advance_pc

or special opcodes becauseyimannot encode LEB128 numbers
or judge when the computation of a special opcode overflows and requires
the use of

DW_LNS_advance_pc.

Sud assemblers, howevecan use
DW_LNS_fixed_advance_pc

instead, sacrificing compression.

6.2.5.3 ExtendedOpcodes

There are three extended opcodes currently defined. The first byte
following the length field of the encoding for each contains a sub-opcode.

1. DW_LNE_end_sequence
Set the
end_sequence
register of the state machine
to “true” and append a k@ to the matrix using the
current values of the state-machingiséers. Then
reset the registers to the initial values specified
above.

Every statement program sequence must end with a
DW_LNE_end_sequence

instruction which creates a

row whose address is that of the byte after the last target machine instruction
of the sequence.

2. DW_LNE_set address
Takes a $ngle relocatable address as an operand. The size of the
operand is the size appropriate to hold an address on the target machine.
Set the
address
register to the value gin by the
relocatable address.

All of the other statementqyram gocodes that affect the
address

register add a delta to it.

This instruction stores a relocatable value into it instead.

Revision: 2.0.0 Page 80 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

3. DW_LNE_define_file
Takes 4 aguments. Thdirst is a null terminated string containing a
source file name. The second is an
unsigned LEB128 number representing the directoryximdéhe
directory in which the file was found.
The third is an unsigned LEB128 number representing
the time of last modification of the file. The fourth is an unsigned
LEB128 number representing the length in bytes of the file.
The time and length fields may contain LEB128(0) if the information is
not available.

The directory inde represents an entry in the
include_directories

section of the statement program prologue.

The inde is LEB128(0) if the file was found in

the current directory of the compilation, LEB128(1) if it was
found in the first directory in the

include_directories

section, and so on. The directory imde ignored for file names
that represent full path names.

The files are numbered, starting at 1,

in the order in which theappear; the names in the prologue
come before names defined by the

DW_LNE_define_file

instruction.

These numbers are used in the the

file

register of the state machine.

Appendix 3 gives some sample statemesgrams.

6.3 Macro Information

Some languges, sut as C and C++, provide a way to replace text
in the source mrgram with macros defined either in the source
file itself or in another file included by the source file.

Because these macrosant themselves defined in thegeir
language, t is difficult to represent their definitions

using the standarlanguaye ®nstructs of WWARFE The debugging
information therefoe reflects the state of the source after

the maco definition has been expanded, rather than as the
programmer wrote it.

The maaoo information table prvides a way of preserving the original
source in the debugging information.

As described in section 3.1, the macro information fovangi
compilation unit is represented in the

.debug_macinfo

section of an object file. The macro information for each compilation
unit is represented as a series of “macindotries. Each

macinfo entry consists of a “type cotlahd up to tvo additional
operands. Theeries of entries for axgn compilation unit

Revision: 2.0.0 Page 81 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

ends with an entry containing a type code of 0.

6.3.1 Macinb Types
The valid macinfo types are as follows:

DW_MACINFO_define A macro definition.

DW_MACINFO_undef A macro un-definition.
DW_MACINFO_start_file The start of a ne source file inclusion.
DW_MACINFO_end_file The end of the current source file inclusion.

DW_MACINFO_vendor_ext Vendor specific macro information direats that do not fit

into one of the standard categories.

6.3.1.1 Defineand Undefine Entries

All

DW_MACINFO_define

and

DW_MACINFO_undef

entries hge wo gperands.

The first operand encodes the line number of the source line
on which the rebeant defining or undefining

pre-processor direstés gpeared.

The second operand consists of a null-terminated character string.
In the case of a

DW_MACINFO_undef

entry, the value of this

string will be simply the name of the pre-processor

symbol which was undefined at the indicated source line.

In the case of a

DW_MACINFO_define

entry, the value of this

string will be the name of the pre-processor symbol
that was defined at the indicated source line,
followed immediately by the macro formal parameter
list including the surrounding parentheses (in the
case of a function-li& macro) followed by the
definition string for the macro. If there is no

formal parameter list, then the name of the defined
macro is followed directly by its definition string.

In the case of a function-gkmacro definition, no
whitespace characters should appear between the
name of the defined macro and the following left
parenthesis. Als@mo whitespace characters should
appear between successiormal parameters in the
formal parameter list. (Succegsiformal parameters
should, howeer, be sparated by commas.) Also, exactly
one space character

should separate the right parenthesis which terminates

Revision: 2.0.0 Page 82
Industry Reviwv Draft

July 27, 1993

Programming Languages SIG

the formal parameter list and the following definition
string.

In the case of a “normal(i.e. non-function-like)

macro definition, exactly one space character

should separate the name of the defined macro from the following definition
text.

6.3.1.2 StartFile Entries

Each

DW_MACINFO_start_file

entry also has twoperands. Thérst operand
encodes the line number of the

source line on which the inclusion pre-processor
directive accurred.

The second operand encodes a

source file name inae Thisindex corresponds to a file
number in the statement information table for thevagie
compilation unit. This index

indicates (indirectly) the name of the file

which is being included by the inclusion dirgetin

the indicated source line.

6.3.1.3 EndFile Entries

A

DW_MACINFO_end_file

entry has no operands. The presence of the entry marks the end of
the current source file inclusion.

6.3.1.4 \éndor Extension Entries

A

DW_MACINFO_vendor_ext

entry has tw operands.

The first is a constant. The second is a null-terminated
character string.

The meaning and/or significance of these operands is
intentionally left undefined by this specification.

A consumer must be able to totally ignore all
DW_MACINFO_vendor_ext
entries that it does not understand.

6.3.2 Base&source Entries

In addition to producing a matched pair of
DW_MACINFO_start_file

and

DW_MACINFO_end_file

entries for

each inclusion direaté actually processed during
compilation, a producer should generate such a matched
pair also for the “bas&source file submitted to the

Revision: 2.0.0 Page 83 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

compiler for compilation. If the base source file

for a compilation is submitted to the compiler via
some means other than via a named disk file (e.g. via
the standard inpugtreamon a UNIX system) then the
compiler should still produce this matched pair of
DW_MACINFO _start_file

and

DW_MACINFO_end_file

entries for

the base source file, howes, the file name indicated
(indirectly) by the

DW_MACINFO _start_file

entry of the

pair should reference a statement information file name entry consisting
of a null string.

6.3.3 Macinb Entries for Command Line Options

In addition to producing

DW_MACINFO_define

and

DW_MACINFO_undef

entries for each of the define and

undefine directies processed during compilation, the
DWARF producer should generate a
DW_MACINFO_define

or

DW_MACINFO_undef

entry for each pre-processor symbol

which is defined or undefined by some

means other than via a define or undefine directi
within the compiled sourcexe In particular,
pre-processor symbol definitions and un-definitions
which occur as a result of command line options
(when irvoking the compiler) should be represented by
their own

DW_MACINFO_define

and

DW_MACINFO_undef

entries.

All such

DW_MACINFO_define

and

DW_MACINFO_undef

entries representing compilation options should appear
before the first

DW_MACINFO _start_file

entry for that compilation unit and should encode the value
0 in their line number operands.

Revision: 2.0.0 Page 84
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

6.3.4 GeneralRules and Restrictions

All macinfo entries within a

.debug_macinfo

section for a gien compilation unit should appear in the same order
in which the directies were processed by the compiler.

All macinfo entries representing command line options
should appear in the same order as thevaatecommand
line options were gen to the compiler In the case
where the compiler itself implicitly supplies one or
more macro definitions or un-definitions in addition

to those which may be specified on the command line,
macinfo entries should also be produced for these
implicit definitions and un-definitions, and

these entries should also appear in the proper order
relatve © each other and to grdefinitions or
undefinitions gien explicitly by the user on the
command line.

6.4 CallFrame Information

Debugers diten need to be able to weand modify the state of any
subroutine activation that is on the call dtacAnactivation
consists of:

+ A code location that is within the subroutin@his location is
either the place wherthe pogram gopped when the debgg got
control (e.g a breakpoint), or is a place whera sibroutine
made a call or was interrupted by an asynchronous eventae.g
signal).

« An area of memory that is allocated on a ktealled a “call
frame” The call frame is identified by an address on the
stak. e refer to this address as the Canonicedfie Address or CFA.

« A st of egsters that are in use by the subroutine at the code
location.

Typically, a st of egsters ae designated to be preserved across a
call. If a callee wishes to use dua regster, it saves the value

that the egster had at entry time in its call frame and restores it

on «it. Thecode that allocates space on the call framelstad
performs the save operation is called the subrouipelogue and the
code that performs the reseogperation and deallocates the frame is
called its epilogue Typically, the prologue code is physically at the
beginning of a subroutine and the epilogue code is at the end.

To ke able to viev or modify an activation that is not on the top of

the call frame stack, the delyey must “virtually unwind’ the sta& of
activations until it finds the activation of interest.

A debugyer unwinds a

stadk in geps. Startingvith the current activation it restores any
registers that wee preserved by the current activation and computes the

Revision: 2.0.0 Page 85 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

predecessos CFA and code location. This has the logical effect of
returning from the current subroutine to its predeces$r say that
the debuger virtually unwinds the stdcbecause it preserves enough
information to be able to #wind” the sta& badk to the state it was

in befoe it attempted to unwind it.

The unwinding operation needs to know vehregsters are saved and how
to compute the predecessofFA and code location. When considering
an architecture-independent way of encoding this information one has to
consider a number of special things.

+ Prologue and epilogue code is not always in distinct blocks at the
beginning and end of a subroutink is common to duplicate the
epilogue code at the site of éaeturn from the codeSometimes
a compiler breaks up theegister save/unsave operations and moves
them into the body of the subroutine to just wHheey are needed.

« Compiles use different ways to mage he call frame Sometimes
they use a frame pointeregster, sometimes not.

» The algorithm to compute the £lehanges as you pgress through
the prologue and epilogue cadéy definition, the Ck value
does not charg)

- Some subroutines have no call frame.

« Sometimes aegster is saved in anotheegster that by
convention does not need to be saved.

+ Some achitectures have special instructions that
perform some or all of theegster mangement in one instruction,
leaving special information on the skaibat indicates how
registers are saved.

« Some achitectures treat return address values
specially For examplein one achitecture,
the call instruction guarantees that the low order two
bits will be zeo and the return instruction ignores those bits.
This leaves two bits of sege hat are available to other uses
that must be treated specially.

6.4.1 Structure of Call Frame Information

DWARF supports virtual unwinding by defining an architecture independent
basis for recording e procedures sa and restore registers throughout

their lifetimes. This basis must be augmented on some machines with
specific information that is defined by either an architecture specific

ABI authoring committee, a hardware vendara @mpiler producer.

The body defining a specific augmentation is referred to

below as e “augmentet

Abstractly this mechanism describes a very large table that has the
following structure:

Revision: 2.0.0 Page 86
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

LOC CFA RO R1 .. RN
LO
L1

LN
The first column indicates an address fearg location that contains
code in a program. (In shared objects, this is an objectuelati
offset.) Theremaining columns contain virtual unwinding rules that are
associated with the indicated location. The first column of the rules

defines the C&rule which is a register and a signed offset that are
added together to compute the/CFalue.

The remaining columns are labeled by register numbkis includes
some registers that & pecial designation on some architectures such
as the PC and the stack pointer regisf@he actual mapping of

registers for a particular architecture is performed by the augmenter.)
The register columns contain rules that describe

whether a gien regster has been ged and the rule to find

the value for the register in the previous frame.

The register rules are:

undefined Aregister that has this rule has no value in the
previous frame. (By comntion, it is not preserved by a callee.)

same alue Thisregister has not been modified from the
previous frame. (By camntion, it is preserved by the callee,
but the callee has not modified it.)

offset(N) Theprevious value of this register isved at he address CFA+N where
CFA is the current CR value and N is a signed offset.

register(R) Theprevious value of this register is stored in
another register numbered R.

architectural Theule is defined externally to this specification by the augmenter.

This table would be extremely ¢gr if actually constructed as
described. Mosbf the entries at any point in the tableeddentical

to the ones above them. The whole table can be represented quite
compactly by recording just the differences starting at the beginning
address of edtsubroutine in the gsgram.

The virtual unwind information is encoded in a self-contained section
called

.debug_frame

Entries in a

.debug_frame

section are aligned on

an addressing unit boundary and come io farms: A Common Information
Entry (CIE) and a Frame Description Entry (FDE).

Sizes of data objects used in the encoding of the

.debug_frame

section are described in terms of the same data definitions

Revision: 2.0.0 Page 87 July 27, 1993
Industry Reviwav Draft

DWARF Debugging Information Format

used for the line number information (see section 6.2.1).

A Common Information Entry holds information that is shared among many
Frame Descriptors. There is at least one ClB/@nyenon-empty

.debug_frame

section. ACIE contains the following fields, in order:

1.

length

A uword constant that ges the number of bytes of the CIE
structure, not including the length field, itself

(length mod <addressing unit size> == 0).

CIE_id
A uword constant that is used to distinguish CIEs
from FDEs.

version
A ubyte version numberThis number is specific to the call frame
information and is independent of th®€MBRF version number.

augmentation

A null terminated string that identifies the
augmentation to this CIE or to the FDEs that use

it. If a reader encounters an augmentation string that is
unexpected, then only the following fields can be read:
CIE:

length ,

CIE_id ,

version

augmentation

FDE:

length ,

CIE_pointer ,

initial_location ,

address_range

If there is no augmentation, this value is a zero byte.

code_alignment_factor
An unsigned LEB128 constant that is factored out
of all advance location instructions (see below).

data_alignment_factor
A signed LEB128 constant that is factored out
of all offset instructions (see b&ig

return_address_register

A ubyte constant that indicates

which column in the rule table represents the return address
of the function. Note that this column might not correspond
to an actual machine register.

initial_instructions
A sequence of rules that are interpreted to
create the initial setting of each column in the table.

Revision: 2.0.0 Page 88

Industry Reviav Draft

July 27, 1993

Programming Languages SIG

9. padding
Enough
DW_CFA _nop
instructions to mad the size of this entry
match the
length
value abwe.

An FDE contains the following fields, in order:

1. length
A uword constant that ges the number of bytes of the header
and instruction stream for this function (not including the length
field itself) (length mod <addressing unit size> == 0).

2. CIE_pointer
A uword constant offset into the
.debug_frame
section that denotes the CIE that is associated with this FDE.

3. initial_location
An addressing-unit sized constant indicating
the address of the first location associated with this table entry.

4. address_range
An addressing unit sized constant indicating the
number of bytes of program instructions described by this entry.

5. instructions
A sequence of table defining instructions that are
described belw.

6.4.2 CallFrame Instructions

Each call frame instruction is defined to

take O or nmore operands. Some of the operands may be
encoded as part of the opcode (see section 7.23).

The instructions are as follows:

1. DW_CFA advance_loc
takes a single argument that represents a constant delta.
The required action is to
create a n#& table rav with a location value that
is computed by taking the current engridcation value and
adding (delta tode_alignment_factor). All other values in the
new row ae initially identical to the current vo

2. DW_CFA offset
takes tvo alguments:
an unsigned LEB128 constant representing a factored offset
and a register numhefhe required action is
to change the rule for the register indicated by the register
number to be an offset(N) rule with a value of
(N = factored offset tlata_alignment_factor).

Revision: 2.0.0 Page 89 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

3. DW_CFA_restore
takes a single argument that represents a register number.
The required action is
to change the rule for the indicated register
to the rule assigned it by tl@tial_instructions in the CIE.

4, DW_CFA set loc
takes a single argument that represents an address.
The required action is to create awtable row
using the specified address as the location.
All other values in the
new row ae initially identical to the current vo
The nev location value shouldabys be greater than the current
one.

5. DW_CFA_advance_locl
takes a single ubyte argument that represents a constant delta.
This instruction is identical to
DW_CFA advance_loc
except for the encoding and size of the delta argument.

6. DW_CFA_advance_loc2
takes a single uhalf argument that represents a constant delta.
This instruction is identical to
DW_CFA_ advance_loc
except for the encoding and size of the delta argument.

7. DW_CFA _advance_loc4
takes a single uword argument that represents a constant delta.
This instruction is identical to
DW_CFA advance_loc
except for the encoding and size of the delta argument.

8. DW_CFA offset_extended
takes tvo unsigned LEB128 arguments representing a register number
and a factored offset.
This instruction is identical to
DW_CFA offset
except for the encoding and size of the register argument.

9. DW_CFA restore_extended
takes a single unsigned LEB128 argument that represents a register number.
This instruction is identical to
DW_CFA restore
except for the encoding and size of the register argument.

10. DW_CFA _undefined
takes a single unsigned LEB128 argument that represents a register number.
The required action is to set the rule for the specified register
to “undefined:

11. DW_CFA _same_value
takes a single unsigned LEB128 argument that represents a register number.
The required action is to set the rule for the specified register

Revision: 2.0.0 Page 90 July 27, 1993
Industry Reviwv Draft

Programming Languages SIG

to “same valué.

12. DW_CFA register
takes tvo unsigned LEB128 arguments representing register numbers.
The required action is to set the rule for the first register
to be the second register.

13. DW_CFA_remember_state

14. DW_CFA_restore_state
These instructions define a stack of information. Encountering the
DW_CFA _remember_state
instruction means to ga the rules for eery register
on the current ne on the stack. Encountering the
DW_CFA _restore_state
instruction means to pop the set of rules
off the stack and place them in the curremt.ro
(This
operation is useful for compilethat move epilogue
code into the body of a function.)

15. DW_CFA _def cfa
takes tvo unsigned LEB128 arguments representing a
register number and an offset.
The required action is to define the currenACEle
to use the provided register and offset.

16. DW_CFA_def_cfa_register
takes a single unsigned LEB128 argument representing a register
number The required action is to define the current CFA
rule to use the provided register (but to keep the old offset).

17. DW_CFA def cfa_offset
takes a single unsigned LEB128 argument representing an offset.
The required action is to define the current CFA
rule to use the provided offset (but to keep the old register).

18. DW_CFA_nop
has no arguments and no required actions. Itis used as padding
to male the FDE an appropriate size.

6.4.3 CallFrame Instruction Usage

To determine the virtual unwind rule set for a given location (L1), one
seaches through the FDE headelooking at the

initial_location

and

address_range

values to see if L1 is contained in the FDE. If so, then:

1. |Initializea regster set by reading the
initial_instructions
field of the associated CIE.

Revision: 2.0.0 Page 91 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

2. Readand process the FDE'instruction sequence until a
DW_CFA advance_loc ,
DW_CFA set_loc ,
or the end of the instruction stream is
encountered.

3. Ifa
DW_CFA_advance_loc
or
DW_CFA set_loc
instruction was encountered, then
compute a ng location value (L2). If L1 >= L2 then process the
instruction and go bdcto dep 2.

4. Theend of the instruction stream can be thought of as a
DW_CFA_set_loc(initial_location + address_range)
instruction.
Unless the FDE is ill-formed, L1 should be less than L2 at this point.

The rules in theagster set now apply to location L1.

For an example see Appendix 5.

Revision: 2.0.0 Page 92 July 27, 1993
Industry Reviwav Draft

Programming Languages SIG

7. DATA REPRESENTATION

This section describes the binary representation of the debugging
information entry itself, of the
attribute types and of other fundamental elements described. abo

7.1 \endor Extensibility

To resene a prtion of the IVARF name space and ranges of
enumeration values for use for vendor specific extensions,
special labels are reserved for tag names, attribute names,
base type encodings, location operations, language names,
calling coventions and call frame instructions.

The labels denoting the beginning and end of the reserved value
range for vendor specific extensions consist of the appropriate prefix (
DW_TAG

DW_AT

DW_ATE

DW_OP

DW_LANG

or

DW_CFA

respectrely) followed by

_lo_user

or

_hi_user

For example, for entry tags, the special labels are
DW_TAG_lo_user

and

DW_TAG_hi_user.

Values in the range betweerefix lo_user and
prefix_hi_user

inclusive, are reserved for vendor specific extensions.
Vendors may use values in this range without

conflicting with current or future system-defined values.

All other values are reserved for use by the system.

Vendor defined tags, attributes, base type encodings, location atoms,
language names, calling a@ntions and call frame instructions,
conventionally use the form

prefix_ vendor_id name wherevendor_idis some

identifying character sequence chosen so agdid aonflicts with other
vendors.

To ensure that extensions added by one vendor may be safely ignored
by consumers that do not understand those extensions,
the following rules should be followed:

1. Naew attributes should be added in such a way that a debugger may recognize
the format of a ne attribute value without knowing the content of that
attribute value.

Revision: 2.0.0 Page 93 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

2. Thesemantics of annew dtributes should not alter the semantics of
previously existing attributes.

3. Thesemantics of annew tags
should not conflict with the semantics of previously existing tags.

7.2 Reseved Error Values

As a conenience for consumers ofVWARF information,

the value 0 is reserved in the encodings for attribute names, attribute
forms, base type encodings, location operations, languages,
statement program opcodes, macro information entries and tag names
to represent an error condition or unknovatne. DVARF does

not specify names for these reserved values, singaltheot

represent valid encodings for thergi type and should not appear

in DWARF debugging information.

7.3 ExecutableObjects and Shared Objects

The relocated addresses in the debugging information foxegnteble
object are virtual addresses and the relocated addresses in the
debugging information for a shared object are offsets vel#di

the start of the lowest segment used by that shared object.

This requirement makes the debugging information for shared objects
position independent.

Virtual addresses in a shared object may be calculated by adding the
offset to the base address at whilce object was attached.

This offset is available in the run-time linkedata structures.

7.4 FileConstraints

All debugging information entries in a relocatable object file,
executable object or shared
object are required to be physically contiguous.

7.5 Format of Debugging Information

For each compilation unit compiled with &IARF Version 2 producer,

a oontribution is made to the

.debug_info

section of the object file. Each such contribution consists of

a compilation unit header followed by a series of debugging information
entries. Unlile the information encoding for\WARF Version 1, Version 2
debugging information entries do not themselves contain the debugging
information entry tag or the attribute name and form encodings for

each attribte. Insteadeach debugging information entry begins with

a aode that represents an entry in a separate abbreviations table.

This code is followed directly by a series of attribute values.

The appropriate entry in the abbreviations table guides the interpretation
of the information contained directly in the

.debug_info

section. Eacleompilation unit is associated with a particular
abbreviation table, but multiple compilation units may share

Revision: 2.0.0 Page 94
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

the same table.

This encoding was based on the observation that typM&RF producers
produce a very limited number of different types of debugging information
entries. Byextracting the common information from those entries

into a separate tableve ae able to compress the generated information.

7.5.1 CompilationUnit Header

The header for the series of debugging information entries contributed
by a single compilation unit consists of the following information:

1. AA4-byte unsigned integer representing the length of the
.debug_info
contribution for that compilation unit, not including the length field itself.

2. A2-byte unsigned integer representing the version of WA RF information
for that compilation unitFor DWARF Version 2, the value in this field is 2.

3. A4-byte unsigned offset into the
.debug_abbrev
section. Thioffset associates the compilation unit with a particular
set of debugging information entry abbreviations.

4. A l-byte unsigned integer representing the size in bytes of an address
on the target architecture. If the system uses segmented addressing,
this value represents the size of the offset portion of an address.

The compilation unit header does not replace the
DW_TAG_compile_unit

debugging information entryit is additional information that

is represented outside the standl@WARF tag/attributes format.

7.5.2 Delugging Information Entry

Each debugging information entry begins with an unsigned LEB128
number containing the abbreviation code for the entry.

This code represents an entry within the abbreviation table associated
with the compilation unit containing this entryhe abbreviation

code is followed by a series of attribute values.

On some architectures, there are alignment constraints on section boundaries.
To make it easier to pad debugging information sections to satisfy

such constraints, the abbreviation code 0 is reserDeligging

information entries consisting of only the 0 abbreviation code are considered
null entries.

7.5.3 Abbreviation Tables

The abbreviation tables for all compilation units are contained in

a eparate object file section called

.debug_abbrev

As mentioned before, multiple compilation units may share the same
abbreviation table.

The abbreviation table for a single compilation

unit consists of a series of abbreviation declarations.

Revision: 2.0.0 Page 95 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

Each declaration specifies the tag and attributes for a particular
form of debugging information entryEach declaration begins with
an unsigned LEB128 number representing the abbreviation code itself.
It is this code that appears at the beginning of a debugging information

entry in the
.debug_info

section. Aglescribed abge, the abbreviation code 0 is reserved for null

debugging information entries.

The abbreviation code is followed by another unsigned LEB128

number that encodes the ensridg.

The encodings for the tag names areagin FHgures 14

and 15.
Tag name \Alue
DW_TAG_array_type 0x01
DW_TAG_class_type 0x02
DW_TAG_entry point 0x03
DW_TAG_enumeration_type 0x04
DW_TAG_formal_parameter 0x05
DW_TAG_imported_declaration 0x08
DW_TAG_label O0x0a
DW_TAG_ lexical_block 0x0b
DW_TAG_member 0x0d
DW_TAG_pointer_type 0xOf
DW_TAG_reference_type 0x10
DW_TAG_compile_unit O0x11
DW_TAG_string_type 0x12
DW_TAG_structure_type 0x13
DW_TAG_subroutine_type 0x15
DW_TAG_typedef 0x16
DW_TAG_union_type 0x17
DW_TAG_unspecified_parameters 0x18
DW_TAG_variant 0x19
DW_TAG_common_block Oxla
DW_TAG_common_inclusion 0x1b
DW_TAG_inheritance Oxlc
DW_TAG _inlined_subroutine Ox1d
DW_TAG_module Oxle
DW_TAG_ptr_to_member_type Ox1f
DW_TAG_set type 0x20
DW_TAG_subrange_type 0x21
DW_TAG_with_stmt 0x22
DW_TAG_access_declaration 0x23
DW_TAG_base_type 0x24
DW_TAG_catch_block 0x25
DW_TAG_const_type 0x26
DW_TAG_constant 0x27
DW_TAG_enumerator 0x28
DW_TAG _file_type 0x29
Figure 14. Tag encodings (part 1)
Revision: 2.0.0 Page 96

Industry Reviav Draft

July 27, 1993

Programming Languages SIG

Tag name \alue
DW_TAG_friend Ox2a
DW_TAG_namelist 0x2b
DW_TAG_namelist_item 0x2c
DW_TAG_packed_type Ox2d
DW_TAG_subprogram Ox2e

DW_TAG_template_type_param Ox2f
DW_TAG_template_value_param 0x30

DW_TAG_thrown_type 0x31
DW_TAG_try block 0x32
DW_TAG_variant_part 0x33
DW_TAG_variable 0x34
DW_TAG_volatile_type 0x35
DW_TAG_lo_user 0x4080
DW_TAG_hi_user Oxffff

Figure 15. Tag encodings (part 2)

Following the tag encoding is a 1-byte value that determines
whether a debugging information entry using this abbreviation
has child entries or not. If the value is

DW_CHILDREN_yes

the next physically succeeding entry oy alebugging information
entry using this abbreviation is the first child of the prior entry.

If the 1-byte value following the abbreviatisrtag encoding

is

DW_CHILDREN_np

the next physically succeeding entry ofalebugging information entry
using this abbreviation is a sibling of the prior entfgither

the first child or sibling entries may be null entries).

The encodings for the child determination byte avergin Figure 16.
(As mentioned in section 2.3, each chain of sibling entries is
terminated by a null entry).

Child determination name Value

DW_CHILDREN_no 0
DW_CHILDREN_yes 1

Figure 16. Child determination encodings

Finally, the child encoding is followed by a series of attribute specifications.
Each attribute specification consists obtparts. Thefirst part

is an unsigned LEB128 number representing the attriodee.

The second part is an unsigned LEB128 number representing the
attributes form. Theseries of attribute specifications ends

with an entry containing O for the name and 0 for the form.

The attribute form

DW_FORM _indirect

is a special casd-or attributes with this form, the attribute value
itself in the

Revision: 2.0.0 Page 97 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

.debug_info

section begins with an unsigned LEB128 number that represents its form.
This allows producers to choose forms for particular attributes dynamically,
without having to add a meentry to the abbreviation table.

The abbreviations for axgn compilation unit end with an entry
consisting of a 0 byte for the abbreviation code.

See Appendix 2 for a depiction of the organization

of the debugging information.

7.5.4 Attribute Encodings

The encodings for the attribute names avergin Fgures 17

and 18.
Attribute name Value Classes
DW_AT sibling 0x01 reference
DW_AT location 0x02 block, constant
DW_AT name 0x03 string
DW_AT_ordering 0x09 constant
DW_AT byte_ size 0x0b constant
DW_AT_bit_offset 0x0c constant
DW_AT bit_size 0Oxod constant
DW_AT stmt_list 0x10 constant
DW_AT low_pc O0x11 address
DW_AT_high_pc 0x12 address
DW_AT_language 0x13 constant
DW_AT_discr 0x15 reference
DW_AT discr_value 0x16 constant
DW_AT visibility 0x17 constant
DW_AT import 0x18 reference
DW_AT_string_length 0x19 block, constant
DW_AT_common_reference 0xla reference
DW_AT_comp_dir 0x1b string
DW_AT const_value Oxlc string, constant, bloc
DW_AT containing_type 0x1d reference
DW_AT default_value Oxle reference
DW_AT _inline 0x20 constant
DW_AT is_optional 0x21 flag
DW_AT_lower_bound 0x22 constant, reference
DW_AT producer 0x25 string
DW_AT _prototyped 0x27 flag
DW_AT return_addr Ox2a block, constant
DW_AT _start_scope 0Ox2c constant
DW_AT_stride_size Ox2e constant
DW_AT_upper_bound Oox2f constant, reference

Figure 17. Attribute encodings, part 1

The attribute form geerns hav the value of the attribute is encoded.

The possible forms may belong to one of the following

form classes:
Revision: 2.0.0

Industry Reviwv Draft

Page 98

July 27, 1993

address

block

Revision: 2.0.0

Programming Languages SIG

Attribute name Value Classes
DW_AT _abstract_origin 0x31 reference
DW_AT_accessibility 0x32 constant
DW_AT address_class 0x33 constant
DW_AT _artificial 0x34 flag

DW_AT base_types 0x35 reference
DW_AT_calling_convention 0x36 constant
DW_AT_count 0x37 constant, reference
DW_AT_data_member_location 0x38 block, reference
DW_AT decl_column 0x39 constant
DW_AT decl file Ox3a constant
DW_AT decl line 0x3b constant
DW_AT declaration 0x3c flag

DW_AT discr_list 0x3d block
DW_AT_encoding 0x3e constant
DW_AT external 0x3f flag

DW_AT frame_base 0x40 block, constant
DW_AT friend 0x41 reference
DW_AT identifier_case 0x42 constant
DW_AT_macro_info 0x43 constant
DW_AT_namelist_item 0x44 block

DW_AT priority 0x45 reference
DW_AT segment 0x46 block, constant
DW_AT _specification 0x47 reference
DW_AT static_link 0x48 block, constant
DW_AT_type 0x49 reference
DW_AT_use_location Ox4a block, constant
DW_AT variable parameter 0x4b flag

DW_AT virtuality Ox4c constant
DW_AT vtable_elem_location 0x4d block, reference
DW_AT lo_user 0x2000 —

DW_AT _hi_user Ox3fff —

Figure 18. Attribute encodings, part 2

Representad an object of appropriate size to hold an
address on the target machibdy_FORM_addx.

This address is relocatable in

a relocatable object file and is relocated in an

executable file or shared object.

Blockscome in four forms. The first consists of a 1-byte length
followed by 0 to 255 contiguous information bytd3WW_FORM _blockl).

The second consists of a 2-byte length

followed by 0 to 65,535 contiguous information byt&W_FORM_block2.

The third consists of a 4-byte length
followed by O to 4,294,967,295 contiguous information byt@sV(FORM_block4).
The fourth consists of an unsigned LEB128 length followed by the number

of bytes specified by the length\V_FORM _block.
In all forms, the length is the number of information bytes thatvollo
The information bytes may containyamixture of relocated (or

Page 99
Industry Reviwav Draft

July 27, 1993

DWARF Debugging Information Format

constant

flag

reference

string

Revision: 2.0.0

relocatable) addresses, references to other debugging information entries or
data bytes.

Therare six forms of constants:
one, two, four and eight byte values (respebt
DW_FORM_datal
DW_FORM_data2
DW_FORM_data4
and
DW_FORM_data$.
There are also variable length constant data forms encoded
using LEB128 numbers (see belo Bothsigned DW_FORM_sdatg
and unsigned@wW_FORM_udata variable length constants areaable.

Aflag is represented as a single byte of dai&/ (FORM_flag).

If the flag has value zero, it indicates the absence of the attribute.
If the flag has a non-zero value, it indicates the presence of

the attribute.

Therare two types of reference. The first is an
offset relatve o the first byte of the compilation unit header
for the compilation unit containing the reference.
The offset must refer to an entry within
that same compilation unit. There areefferms for this
type of reference:
one, two, four and eight byte offsets (respastyi
DW_FORM_ref]
DW_FORM_ref2
DW_FORM_ref4
and
DW_FORM_ref§.
There are is also an unsigned variable length offset encoded
using LEB128 numberOW_FORM_ref_udata).

The second type of reference

is the address of grdebugging information entry within

the samexecutable or shared object; it may refer to an entry
in a different compilation unit from the unit containing the
reference. Thisype of referencedW_FORM_ref_addr) is the
size of an address on the target architecture; it is relocatable
in a relocatable object file and relocated in xecetable file

or shared object.

The use of compilation unit relative references will reduce
the number of link-time relocations and so speed up linking.

The use of address-type references allows for the commonization
of information, sule as ¥pes, across compilation units.

Astring is a sequence of contiguous non-null bytes followed by one null
byte. Astring may be represented immediately in the debugging information
entry itself DW_FORM_string), or may be represented as a 4-byte offset
into a string table contained in the
.debug_str
Page 100 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

section of the object fillDW_FORM_strp).

The form encodings are listed in Figure 19.

Form name Value Class
DW_FORM_addr 0x01 address
DW_FORM_block2 0x03 block
DW_FORM_block4 0x04 block
DW_FORM_data2 0x05 constant
DW_FORM_data4 0x06 constant
DW_FORM_data8 0x07 constant
DW_FORM_string 0x08 string
DW_FORM_block 0x09 block
DW_FORM_blockl 0x0a block
DW_FORM_datal 0x0Ob constant
DW_FORM_flag 0x0c flag
DW_FORM_sdata 0x0d constant
DW_FORM_strp 0x0e string
DW_FORM_udata OxOf constant
DW_FORM _ref addr 0x10 reference
DW_FORM refl Ox11 reference
DW_FORM_ref2 0x12 reference
DW_FORM_ref4 0x13 reference
DW_FORM_ref8 0x14 reference
DW_FORM _ref udata 0x15 reference
DW_FORM indirect 0x16 (see section 7.5.3)

Figure 19. Attribute form encodings

7.6 Variable Length Data

The special constant data forms

DW_FORM_sdata

and

DW_FORM_udata

are encoded using “Little Endian Base 1Z8EB128)

numbers. LEB128 is a scheme for encoding integers densely that
exploits the assumption that most integers are small in magnitude.
(This encoding is equally suitable whether the target machine
architecture represents data in big-endian or little-endian order.
Itis “little endian” only in the sense that ivaids using space

to represent the “bigend of an unsigned integevhen the big

end is all zeroes or sign extension bits).

DW_FORM_udata

(unsigned LEB128) numbers are encoded as follows:

start at the

low order end of an unsigned integer and chop it into 7-bit chunks.
Place each chunk into then@rder 7 bits of a byteTypically,

several of the high order bytes will be zero; discard them. Emit the
remaining bytes in a stream, starting with th& twder byte;

set the high order bit on each byte except the last emitted byte.

Revision: 2.0.0 Page 101 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

The high bit of zero on the last byte indicates to the decoder
that it has encountered the last byte.

The integer zero is a special case, consisting of a single zero byte.

Figure 20 gves some examples of

DW_FORM_udata

numbes. The

0x80

in ead case is the high order bit of the bytedicating that
an additional byte follows:

Number Firstyte Secondbyte
2 2 —
127 127 —
128 0+0x80 1
129 1+0x80 1
130 2+0x80 1
12857 57+0x80 100

Figure 20. Examples of unsigned LEB128 encodings

The encoding for

DW_FORM_sdata

(signed, 2s complement LEB128) numbers is sip@asept that the
criterion for discarding high order bytes is not whethey tre

zero, but whether tlyeconsist entirely of sign extension bits.
Consider the 32-bit integer

2.

The three high leel bytes of the number are sign extension, thus LEB128
would represent it as a single byte containing tiedaler 7 bits,

with the high order bit cleared to indicate the end of the byte
stream. Notehat there is nothing within the LEB128 representation
that indicates whether an encoded number is signed or unsigned.
The decoder must kmowhat type of number to expect.

Figure 21 gves some examples of
DW_FORM_sdata
numbers.

Appendix 4 gives algorithms for encoding and decoding these forms.

Number Firstoyte Secondbyte
2 2 —
-2 Ox7e —
127 127+0x80 0
-127 1+0x80 Ox7f
128 0+0x80 1
-128 0+0x80 ox7f
129 1+0x80 1
-129 Ox7f+0x80 Ox7e

Figure 21. Examples of signed LEB128 encodings

Revision: 2.0.0 Page 102
Industry Reviev Draft

July 27, 1993

7.7 LocationDescriptions

7.7.1 LocationExpressions

Programming Languages SIG

A location expression is stored in a block of contiguous bytes.

The bytes form a set of operations.

Each location operation has a 1-byte code

that identifies that operation. Operations can be followed
by one or more bytes of additional data. All operations in a

location expression are concatenated from left to right.

The encodings for the operations in a location expression
are described in Figures 22 and 23.

Operation Code No. of Operands Notes
DW_OP_addr 0x03 1 constant address (size target specific)
DW_OP_deref 0x06 0
DW_OP_constlu 0x08 1 1-byte constant
DW_OP_constls 0x09 1 1-byte constant
DW_OP_const2u Ox0a 1 2-byte constant
DW_OP_const2s 0x0b 1 2-byte constant
DW_OP_const4u 0x0c 1 4-byte constant
DW_OP_const4s 0xod 1 4-byte constant
DW_OP_const8u 0x0e 1 8-byte constant
DW_OP_const8s OxOf 1 8-byte constant
DW_OP_constu 0x10 1 ULEB128 constant
DW_OP_consts Ox11 1 SLEB128 constant
DW_OP_dup 0x12 O
DW_OP_drop 0x13 0
DW_OP_over 0x14 0
DW_OP_pick 0x15 1 1-byte stack index
DW_OP_swap Ox16 O
DW_OP_rot 0x17 0
DW_OP_xderef 0x18 0
DW_OP_abs 0x19 O
DW_OP_and Oxla O
DW_OP_div 0x1b 0
DW_OP_minus Oxlc 0
DW_OP_mod Oxid O
DW_OP_mul Oxle O
DW_OP_neg Ox1f 0
DW_OP_not 0x20 0
DW_OP_or 0x21 O
DW_OP_plus 0x22 0
DW_OP_plus_uconst 0x23 1 ULEB128 addend
DW_OP_shl 0x24 0
DW_OP_shr 0x25 0
DW_OP_shra 0x26 0

Figure 2. Location operation encodings, part 1

Revision: 2.0.0 Page 103 July 27, 1993

Industry Reviav Draft

DWARF Debugging Information Format

Operation Code No. of Operands Notes

DW_OP_xor 0x27 0

DW_OP_skip Oox2f 1 dgned 2-byte constant

DW_OP_bra 0x28 1 sgned 2-byte constant

DW_OP_eq 0x29 O

DW_OP_ge Ox2a O

DW_OP_gt ox2b O

DW_OP_le 0Ox2c 0

DW_OP_lIt 0x2d 0

DW_OP_ne Ox2e O

DW_OP_lit0 0x30 0 literals 0..31 = (DW_OP_LITO|literal)
DW_OP_litl 0x31 0

DW_OP_lit31 OxAf 0

DW_OP_reg0 0x50 0 reg 0.31 = (DW_OP_REGO|regnum)
DW_OP_regl 0x51 0

DW_OP_reg31 0x6f 0

DW_OP_breg0 0x70 1 9 EB128 offset

DW_OP_bregl 0x71 1 base rg 0..31 = (DW_OP_BREGO|regnum)
DW_OP_breg31 Ox8f 1

DW_OP_regx 0x90 1 ULEB128 register

DW_OP_fbreg 0x91 1 S EB128 offset

DW_OP_bregx 0x92 2 ULEB128 register followed by SLEB128 offs
DW_OP_piece 0x93 1 ULEB128 size of piece addressed
DW_OP_deref_size 0x94 1 1-byte size of data retnved
DW_OP_xderef _size 0x95 1 1-byte size of data retred
DW_OP_nop 0x96 O

DW_OP_lo_user Oxe0

DW_OP_hi_user Oxff

et

Figure 23. Location operation encodings, part 2

7.7.2 LocationLists

Each entry in a location list consists obtvelative addresses
followed by a 2-byte length, followed by a block of contiguous
bytes. Thdength specifies the number of bytes in the block
that follovs. Thetwo addresses are the same size as used by

DW_FORM_addr
on the target machine.

7.8 Baselype Encodings

The values of the constants used in the
DW_AT_encoding
attribute are gien in Fgure 24.

7.9 AccessibilityCodes
The encodings of the constants used in the
Revision: 2.0.0

Page 104
Industry Reviwv Draft

July 27, 1993

DW_AT_accessibility

Base type encoding name Value

DW_ATE_address Ox1
DW_ATE_boolean 0x2
DW_ATE_complex_float 0x3
DW_ATE_float Ox4
DW_ATE_signed 0x5
DW_ATE_signed_char 0x6
DW_ATE_unsigned Ox7
DW_ATE_unsigned_char 0x8
DW_ATE_lo_user 0x80
DW_ATE_hi_user Oxff

Programming Languages SIG

Figure 24. Base type encoding values

attribute are gien in Fgure 25.

7.10 Msibility Codes

Accessibility code name Value

DW_ACCESS_public 1
DW_ACCESS_protected 2
DW_ACCESS_private 3

Figure 25. Accessibility encodings

The encodings of the constants used in the

DW_AT _visibility

attribute are gien in FHgure 26.

7.11 Mrtuality Codes

Visibility code name Value
DW_VIS local 1
DW_VIS_exported 2
DW_VIS_qualified 3

Figure 26. Visibility encodings

The encodings of the constants used in the

DW_AT virtuality

attribute are gien in FHgure 27.

Virtuality code name

Value

DW_VIRTUALITY_none 0
DW_VIRTUALITY virtual 1
DW_VIRTUALITY pure_virtual 2

Figure 27. Virtuality encodings

7.12 Souce Languages

The encodings for source languages avergin Fgure 28.

Revision: 2.0.0

Page 105
Industry Reviwv Draft

July 27, 1993

DWARF Debugging Information Format

Names marked with 1 and their associated
values are reserved, but the languages
they represent are not supported iIWWBRF Version 2.

Language name Value
DW_LANG_C89 0x0001
DW_LANG_C 0x0002
DW_LANG_Ada83t 0x0003
DW_LANG_C_plus_plus 0x0004
DW_LANG_Cobol74% 0x0005
DW_LANG_Cobol857 0x0006

DW_LANG_Fortran77 0x0007
DW_LANG_Fortran90 0x0008

DW_LANG_Pascal83 0x0009
DW_LANG_Modula2 0x000a
DW_LANG_lo_user 0x8000
DW_LANG_hi_user Oxffff

Figure 28. Language encodings

7.13 Address Class Encodings

The value of the common address class encoding
DW_ADDR_none
is 0.

7.14 ldentifier Case

The encodings of the constants used in the
DW_AT identifier_case
attribute are gien in Fgure 29.

Identifier Case Name Value
DW_ID_case_sensitive 0
DW_ID_up_case 1
DW_ID_down_case 2
DW_ID case_insensitive 3

Figure 2. Identifier case encodings

7.15 CallingConvention Encodings

The encodings for the values of the
DW_AT _calling_convention
attribute are gien in Fgure 30.

7.16 Inline Codes

The encodings of the constants used in the
DW_AT inline
attribute are gien in Fgure 31.

Revision: 2.0.0 Page 106
Industry Reviwv Draft

July 27, 1993

Programming Languages SIG

Calling Comwention Name Value
DW_CC_normal Ox1
DW_CC_program 0x2
DW_CC_nocall 0x3
DW_CC lo_user 0x40
DW_CC _hi_user Oxff

Figure 30. Calling comvention encodings

Inline Code Name Value
DW_INL_not_inlined 0
DW_INL_inlined 1
DW_INL_declared_not_inlined 2
DW_INL_declared_inlined 3

Figure 31. Inline encodings

7.17 Array Ordering

The encodings for the values of the order attributes of arrays
is given in Hgure 32.

Ordering name Value
DW_ORD_row_major 0
DW_ORD_col_major 1

Figure 2. Ordering encodings

7.18 DiscriminantLists

The descriptors used in the

DW_AT_dicsr_list

attribute are encoded as 1-byte constants.
The defined values are presented in Figure 33.

Descriptor Name Value

DW_DSC_label 0
DW _DSC range 1

Figure 33. Discriminant descriptor encodings

7.19 NamelLookup Table

Each set of entries in the table of global names contained in the
.debug_pubnames

section begins with a header consisting of: a 4-byte length containing
the length of the set of entries for this compilation unit, not including
the length field itself; a 2-byte version identifier containing

the value 2 for WARF Version 2; a 4-byte offset into the

.debug_info

section; and a 4-byte length containing the size in bytes

of the contents of the

.debug_info

Revision: 2.0.0 Page 107 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

section generated to represent this compilation unit.

This header is followed by a series of tuples.

Each tuple consists of a 4-byte offset

followed by a string of non-null bytes terminated by one null byte.
Each set is terminated by a 4-byte word containing the value 0.

7.20 Address Range Table

Each set of entries in the table of address ranges contained in the
.debug_aranges

section begins with a header consisting of: a 4-byte length containing
the length of the set of entries for this compilation unit, not including
the length field itself; a 2-byte version identifier containing

the value 2 for WARF Version 2; a 4-byte offset into the

.debug_info

section; &l-byte unsigned integer containing the size in bytes of an
address (or the offset portion of an address for segmented addressing)
on the target system; and a 1-byte unsigned integer containing the
size in bytes of a segment descriptor on the target system.

This header is followed by a series of tuples.

Each tuple consists of an address and a length, each

in the size appropriate for an address on the target architecture.

The first tuple following the header in each set begins at

an offset that is a multiple of the size of a single tuple

(that is, twice the size of an address). The header is

padded, if necessany the appropriate boundary.

Each set of tuples is terminated by a 0 for the address and 0 for the length.

7.21 LineNumber Information

The sizes of the integers used in the line number and
call frame information sections are as follows:

sbyte Signed.-byte value.
ubyte Unsigned-byte value.
uhalf Unsigne®-byte value.
sword Signed-byte value.
uword Unsignedi-byte value.

The version number in the statement program prologue is 2 for
DWARF Version 2.

The boolean values “trueand “false” used by the statement
information program are encoded as a single byte containing the
value O for “false” and a non-zero value for “truk.

The encodings for the pre-defined standard opcodes\are gi

in Figure 34.

The encodings for the pre-defined extended opcodes\are gi

in Figure 35.

Revision: 2.0.0 Page 108
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

Opcode Name Value
DW_LNS_copy 1
DW_LNS_advance_pc 2
DW_LNS_advance_line 3
DW_LNS_set file 4
DW_LNS set column 5
DW_LNS_negate_stmt 6
DW_LNS set basic_block 7
DW_LNS_const_add_pc 8
DW_LNS fixed_advance pc 9

Figure 34. Standard Opcode Encodings

Opcode Name Value

DW_LNE_end sequence 1
DW_LNE_set address 2
DW_LNE_define_file 3

Figure 3. Extended Opcode Encodings

7.22 Macro Information

The source line numbers and source file indices encoded in the

macro information section are represented as unsigned LEB128 numbers
as are the constants in an

DW_MACINFO_vendor_ext

entry.

The macinfo type is encoded as a single byte. The encodingvere gi

in Figure 36.
Macinfo Type Name Value
DW_MACINFO_define 1
DW_MACINFO_undef 2

DW_MACINFO_start_file 3
DW_MACINFO_end_file 4
DW_MACINFO_vendor_ext 255

Figure 3. Macinfo Type Encodings

7.23 CallFrame Information

The value of the CIE id in the CIE header is
OXffffffff
The initial value of the CIE version number is 1.

Call frame instructions are encoded in one or more bytes.
The primary opcode is encoded in the high order ltits of

the first byte (that is, opcode = byte >> 6).

An operand or extended opcode may be encoded inwhertter
6 bits. Additionaloperands are encoded in subsequent bytes.
The instructions and their encodings are presented

in Figure 37.

Revision: 2.0.0 Page 109 July 27, 1993
Industry Reviwv Draft

DWARF Debugging Information Format

Instruction High2 Bits Low 6 Bits Operandl Operand 2
DW_CFA_advance_loc Ox1 delta

DW_CFA_offset 0x2 register ULEB128offset

DW_CFA restore 0x3 register

DW_CFA set loc 0 0x01 address

DW_CFA_advance_locl 0 0x02 1-byte delta

DW_CFA _advance_loc2 0 0x03 2-byte delta

DW_CFA advance_loc4 0 0x04 4-byte delta
DW_CFA_offset_extended 0 0x05 ULEB128 rggister ULEB128&offset
DW_CFA restore_extended O 0x06 ULEB128 register
DW_CFA_undefined 0 0x07 ULEB128 register

DW_CFA _same_value 0 0x08 ULEB128 register
DW_CFA_register 0 0x09 ULEB128 rgister ULEB12&egister
DW_CFA_remember_state 0 0x0a

DW_CFA _restore_state 0 0x0b

DW_CFA_def cfa 0 0x0c ULEB128 raeyister ULEB1280offset
DW_CFA def cfa register 0 0xod ULEB128 register

DW_CFA _def cfa offset 0 0x0e ULEB128 offset

DW_CFA_nop 0 0

DW_CFA _lo_user 0 Ox1lc

DW_CFA_hi_user 0 Ox3f

Figure 37. Call frame instruction encodings

7.24 Dependencies

The debugging information in this format is intended to exist in the
.debug_abbrev ,

.debug_aranges

.debug_frame

.debug_info ,

.debug_line ,

.debug_loc

.debug_macinfo

.debug_pubnames

and

.debug_str

sections of an object file.

The information is not word-aligned, so the assembler must provide a
way for the compiler to produce 2-byte and 4-byte quantities without
alignment restrictions, and the linker must be able to

relocate a 4-byte reference at an arbitrary alignment.

In target architectures with 64-bit addresses, the assembler and linker
must similarly handle 8-byte references at arbitrary alignments.

Revision: 2.0.0 Page 110 July 27, 1993
Industry Reviwv Draft

Programming Languages SIG

8. FUTURE DIRECTIONS

The WNIX International Programming Languages SIG is working on a specification for a set of interfaces
for reading DVARF information, that will hide changes in the

representation of that information from its consumers. Itis

hoped that using these interfaces will mdie transition from

DWARF Version 1 to Version 2 much simpler and will reatk

easier for a single consumer to support objects using either

Version 1 or Version 2 WARF.

A draft of this specification isvailable for reviev from
UNIX International. The Programming Languages SIG wishes to stressydngtivat the specification
is still in flux.

Revision: 2.0.0 Page 111 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

Revision: 2.0.0 Page 112 July 27, 1993
Industry Reviav Draft

Programming Languages SIG

Appendix 1 -- Current Attributes by Tag Value

The list belov enumerates the attributes that are most applicable to each type
of debugging information entry.

DWARF does not in general require that wegidebugging information
entry contain a particular attribute or set of atitéds. Insteadq

DWARF producer is free to generateyadl, or none of the attributes
described in the text as being applicable tovargéntry. Other
attributes (both those defined within this document but not explicitly
associated with the entry in question, and,nendor-defined ones)
may also appear in avgh debugging entry.

Therefore, the list may be

taken as instructe, but cannot be considered defindi

TAG NAME APPLICABLE ATTRIBUTES

DW_TAG_access_declaration DECLYt
DW_AT_accessibility
DW_AT _name
DW_AT sibling
DW_TAG_array_type DECL
DW_AT _abstract_origin
DW_AT_accessibility
DW_AT byte size
DW_AT declaration
DW_AT name
DW_AT _ordering
DW_AT_sibling
DW_AT_start_scope
DW_AT stride_size
DW_AT type
DW_AT _visibility
DW_TAG_base_type DW_AT bit_offset
DW_AT bit_size
DW_AT byte size
DW_AT_encoding
DW_AT_name
DW_AT_sibling
DW_TAG_catch_block DW_AT abstract_origin
DW_AT_high_pc
DW_AT low_pc
DW_AT_segment

DW_AT sibling
T
DW_AT decl _column ,
DW_AT decl file ,
DW_AT _decl_line
Revision: 2.0.0 Page 113 July 27, 1993

Industry Reviav Draft

DWARF Debugging Information Format

Appendix 1 (cont'd) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES

DW_TAG_class_type DECL
DW_AT _abstract_origin
DW_AT_accessibility
DW_AT byte_size
DW_AT declaration
DW_AT name
DW_AT sibling
DW_AT _start_scope
DW_AT visibility
DW_TAG_common_block DECL
DW_AT declaration
DW_AT location
DW_AT_name
DW_AT_sibling
DW_AT visibility
DW_TAG_common_inclusion DECL
DW_AT_common_reference
DW_AT _declaration
DW_AT sibling
DW_AT visibility
DW_TAG_compile_unit DW_AT_ base_types
DW_AT_comp_dir
DW_AT identifier_case
DW_AT high_pc
DW_AT language
DW_AT low_pc
DW_AT_macro_info
DW_AT_name
DW_AT producer
DW_AT sibling
DW_AT stmt_list
DW_TAG_const_type DW_AT_sibling
DW_AT type

Revision: 2.0.0 Page 114 July 27, 1993
Industry Reviav Draft

Appendix 1 (cont'd) -- Current Attributes by Tag Value

Programming Languages SIG

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_constant

DECL
DW_AT_accessibility

DW_AT_constant_value

DW_AT_declaration
DW_AT external
DW_AT name
DW_AT sibling
DW_AT _start_scope
DW_AT_type
DW_AT _visibility

DW_TAG_entry_point

DW_AT address_class
DW_AT low_pc
DW_AT_name
DW_AT_return_addr
DW_AT_segment
DW_AT sibling
DW_AT static_link
DW_AT type

DW_TAG_enumeration_type

DECL

DW_AT abstract_origin

DW_AT_accessibility
DW_AT byte_size
DW_AT _declaration
DW_AT_name
DW_AT sibling
DW_AT _start_scope
DW_AT _visibility

DW_TAG_enumerator

DECL
DW_AT const value
DW_AT name
DW_AT sibling

DW_TAG_file_type

DECL

DW_AT abstract_origin

DW_AT byte size
DW_AT name
DW_AT_sibling
DW_AT start_scope
DW_AT _type
DW_AT visibility

Revision: 2.0.0

Page 115
Industry Reviav Draft

July 27, 1993

DWARF Debugging Information Format

Appendix 1 (cont'd) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES

DW_TAG_formal_parameter DECL
DW_AT _abstract_origin
DW_AT _artificial
DW_AT_default_value
DW_AT is_optional
DW_AT location
DW_AT name
DW_AT_segment
DW_AT _sibling
DW_AT type
DW_AT variable parameter

DW_TAG_friend DECL
DW_AT _abstract_origin
DW_AT_friend
DW_AT sibling

DW_TAG_imported_declaration DECL
DW_AT_accessibility
DW_AT_import
DW_AT _name
DW_AT sibling
DW_AT _start_scope

DW_TAG_inheritance DECL
DW_AT_accessibility
DW_AT data_member_location
DW_AT sibling
DW_AT type
DW_AT _virtuality

DW_TAG inlined_subroutine DECL
DW_AT _ abstract_origin
DW_AT_high_pc
DW_AT low_pc
DW_AT_segment
DW_AT sibling
DW_AT return_addr
DW_AT _start_scope

DW_TAG_label DW_AT_abstract_origin
DW_AT low_pc
DW_AT name
DW_AT_segment
DW_AT _start_scope
DW_AT _sibling

Revision: 2.0.0 Page 116
Industry Reviav Draft

July 27, 1993

Appendix 1 (cont'd) -- Current Attributes by Tag Value

Programming Languages SIG

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_lexical_block DW_AT abstract_origin

DW_AT_high_pc
DW_AT low_pc
DW_AT_name
DW_AT_segment
DW_AT sibling

DW_TAG_member

DECL
DW_AT_accessibility
DW_AT byte size
DW_AT bit_offset
DW_AT bit_size
DW_AT data_member_location
DW_AT declaration
DW_AT_name
DW_AT sibling
DW_AT type
DW_AT _visibility

DW_TAG_module

DECL
DW_AT_accessibility
DW_AT declaration
DW_AT high_pc
DW_AT low_pc
DW_AT_name
DW_AT_priority
DW_AT_segment
DW_AT sibling
DW_AT _visibility

DW_TAG_namelist

DECL

DW_AT_accessibility
DW_AT abstract_origin
DW_AT declaration
DW_AT _sibling

DW_AT _visibility

DW_TAG_namelist_item

DECL

DW_AT namelist_item

DW_AT _sibling
DW_TAG_packed_type DW_AT sibling
DW_AT type
Revision: 2.0.0 Page 117

Industry Reviav Draft

July 27, 1993

DWARF Debugging Information Format

Appendix 1 (cont'd) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES
DW_TAG_pointer_type DW_AT address_class

DW_AT _sibling

DW_AT _type
DW_TAG_ptr_to_member_type DECL

DW_AT _ abstract_origin
DW_AT address_class
DW_AT_containing_type

DW_AT_declaration
DW_AT _name
DW_AT sibling
DW_AT type

DW_AT use_location
DW_AT visibility

DW_TAG_reference_type

DW_AT address_class
DW_AT sibling
DW_AT type

DW_TAG_set type

DECL

DW_AT abstract_origin

DW_AT_accessibility
DW_AT_ byte_size
DW_AT_declaration
DW_AT_name
DW_AT_start_scope
DW_AT sibling
DW_AT type

DW_AT _visibility

DW_TAG_string_type

DECL
DW_AT_accessibility

DW_AT _ abstract_origin

DW_AT_ byte_size
DW_AT_declaration
DW_AT_name
DW_AT_segment
DW_AT sibling
DW_AT _start_scope
DW_AT_string_length
DW_AT visibility

Revision: 2.0.0

Page 118
Industry Reviav Draft

July 27, 1993

Appendix 1 (cont'd) -- Current Attributes by Tag Value

Programming Languages SIG

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_structure_type

DECL
DW_AT_abstract_origin
DW_AT_accessibility
DW_AT_byte_size
DW_AT declaration
DW_AT name
DW_AT sibling
DW_AT _start_scope
DW_AT visibility

DW_TAG_subprogram

DECL
DW_AT _ abstract_origin
DW_AT_accessibility
DW_AT_address_class
DW_AT_artificial
DW_AT calling_convention
DW_AT declaration
DW_AT external
DW_AT frame_base
DW_AT_high_pc
DW_AT _inline
DW_AT low_pc
DW_AT name
DW_AT _prototyped
DW_AT return_addr
DW_AT_segment
DW_AT_sibling
DW_AT _specification
DW_AT _start_scope
DW_AT static_link
DW_AT type
DW_AT visibility
DW_AT _virtuality
DW_AT vtable elem_location

Revision: 2.0.0

Page 119
Industry Reviav Draft

July 27, 1993

DWARF Debugging Information Format

Appendix 1 (cont'd) -- Current Attributes by Tag Value

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_subrange_type

DECL
DW_AT _abstract_origin
DW_AT_accessibility
DW_AT_byte_size
DW_AT_count
DW_AT declaration
DW_AT lower_bound
DW_AT name
DW_AT _sibling
DW_AT_type
DW_AT upper_bound
DW_AT visibility

DW_TAG_subroutine_type

DECL
DW_AT _abstract_origin
DW_AT_accessibility
DW_AT address_class
DW_AT declaration
DW_AT name
DW_AT_prototyped
DW_AT_sibling
DW_AT_start_scope
DW_AT type
DW_AT _visibility

DW_TAG_template_type_ param

DECL
DW_AT _name
DW_AT sibling
DW_AT type

DW_TAG_template_value_param

DECL
DW_AT _name
DW_AT const value
DW_AT sibling
DW_AT type

DW_TAG_thrown_type

DECL
DW_AT sibling
DW_AT type

DW_TAG_try_block

DW_AT_abstract_origin
DW_AT high_pc
DW_AT low_pc
DW_AT_segment
DW_AT_sibling

Revision: 2.0.0

Page 120

Industry Reviav Draft

July 27, 1993

Programming Languages SIG

Appendix 1 (cont'd) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES

DW_TAG_typedef DECL
DW_AT _abstract_origin
DW_AT_accessibility
DW_AT _declaration
DW_AT_name
DW_AT_sibling
DW_AT_start_scope
DW_AT type
DW_AT visibility
DW_TAG_union_type DECL
DW_AT _ abstract_origin
DW_AT_accessibility
DW_AT_ byte_size
DW_AT_declaration
DW_AT friends
DW_AT name
DW_AT sibling
DW_AT _start_scope
DW_AT visibility
DW_TAG_unspecified_parameters DECL
DW_AT _ abstract_origin
DW_AT _artificial
DW_AT _sibling
DW_TAG_variable DECL
DW_AT_accessibility
DW_AT constant_value
DW_AT_declaration
DW_AT_external
DW_AT location
DW_AT name
DW_AT_segment
DW_AT_sibling
DW_AT _specification
DW_AT _start_scope
DW_AT type
DW_AT visibility

Revision: 2.0.0 Page 121 July 27, 1993
Industry Reviav Draft

DWARF Debugging Information Format

Appendix 1 (cont'd) -- Current Attributes by Tag Value

TAG NAME

APPLICABLE ATTRIBUTES

DW_TAG_variant

DECL

DW_AT_accessibility
DW_AT _abstract_origin
DW_AT_declaration
DW_AT discr_list
DW_AT discr_value
DW_AT sibling

DW_TAG_variant_part

DECL

DW_AT_accessibility
DW_AT abstract_origin
DW_AT declaration
DW_AT discr

DW_AT _sibling
DW_AT_type

DW_TAG_volatile_type

DW_AT sibling

DW_AT type

DW_TAG_with_statement

DW_AT_accessibility

DW_AT address_class
DW_AT declaration
DW_AT_high_pc
DW_AT location
DW_AT_low_pc
DW_AT_segment
DW_AT sibling

DW_AT type

DW_AT _visibility

Revision: 2.0.0

Page 122
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

Appendix 2 -- Organization of Debugging Information

The following diagram depicts the relationship of the abbreviation
tables contained in the
.debug_abbrev

section to the information contained in the

.debug_info
section. lues are gien in symbolic form, where possible.

Compilation Unit 1 - .debug_info

length Abbreviation Table - .debug abbrev
2 al: 1
al (abbevation table offset) DW_TAG_compile_unit
4 DW_CHILDREN_yes
1 DW_AT_name DW_FORM_string
"myfile.c" DW_AT_producer DW_FORM_string
"Best Compiler Corp: Version 1.3" DW_AT_compdir DW_FORM_string
"mymachine:/home/mydir/src:" DW_AT_language DW_FORM_datal
DW_LANG_C89 DW_AT _low_poc DW_FORM_addr
0x0 DW_AT high_pc DW_FORM_addr
0x55 DW_AT_stmt_list DW_FORM_indirect
DW_FORM_data4 0 0
0x0
) 2
el 2 DW_TAG_base_type
"char" DW_CHILDREN_no
DW_ATE_unsigned_char DW_AT_name DW_FORM_string
1 DW_AT_encoding DW_FORM_datal
DW_AT_byte_size DW_FORM_datal
e2: 3 0 0
el
4 3
" " DW_TAG_pointer_type
ePZO'NTER DW_CHILDREN_no
DW_AT_type DW_FORM_refd
0 0
0
4
DW_TAG_typedef
DW_CHILDREN_no
Compilation Unit 2 - .debug_info DW_AT_name DW_FORM_string
DW_AT_type DW_FORM_ref4
length 0 0
2
al (abbevation table offset) 0
4
4
"strp"
e2
Revision: 2.0.0 Page 123 July 27, 1993

Industry Reviav Draft

DWARF Debugging Information Format

Appendix 3 -- Statement Program Examples

Consider this simple source file and the resulting machine code for
the Intel 8086 processor:

1. int

2: main()
0x239: push pb
0x23a: mov bp,sp

3 {

4: printf("Omit needless words\n");
0x23c: mov ax,0xaa
0x23f: push ax
0x240: call _printf
0x243: pop cx

5. exit(0);
0x244. Xor ax,ax
0x246: push ax
0x247: call _exit
Ox24a: pop cXx

6: }
0x24b: pop bp
0x24c: ret

7
0x24d:

If the statement program prologue specifies the following:

minimum_instruction_length 1

opcode_base 10
line_base 1
line_range 15

Then one encoding of the statement program would gct2ytes
(the opcodeSPECIAL(m, n) indicates the special

opcode generated for a line incrementrodnd an address increment
of n):

Opcode Operand Byte Stream
DW_LNS_advance_pc LEB128(0x239) 0x2, 0xb9, 0x04
SPECIAL(2, 0) Oxb

SPECIAL(2, 3) 0x38

SPECIAL(1, 8) 0x82

SPECIAL(1, 7) 0x73
DW_LNS_advance_pc LEB128(2) 0x2, 0x2
DW_LNE_end_sequence 0x0, Ox1, Ox1

An alternate encoding of the same program using standard opcodes to

advance the program counter would ogc@p bytes:

Revision: 2.0.0 Page 124
Industry Reviav Draft

July 27, 1993

Programming Languages SIG

Opcode Operand Byte Stream
DW_LNS_fixed_advance_pc 0x239 0x9, 0x39, 0x2
SPECIAL(2, 0) Oxb
DW_LNS_fixed_advance_pc 0x3 0x9, 0x3, 0x0
SPECIAL(2, 0) Oxb
DW_LNS_fixed_advance_pc 0x8 0x9, 0x8, 0x0
SPECIAL(1, 0) Oxa
DW_LNS_fixed_advance_pc 0x7 0x9, 0x7, 0x0
SPECIAL(1, 0) Oxa
DW_LNS_fixed_advance_pc 0x2 0x9, 0x2, 0x0
DW_LNE_end_sequence 0x0, 0x1, 0x1
Revision: 2.0.0 Page 125 July 27, 1993

Industry Reviav Draft

DWARF Debugging Information Format

Appendix 4 -- Encoding and decoding variable length data

Here are algorithms expressed in a @& ligeudo-code to encode and decode
signed and unsigned numbers in LEB128:

Encode an unsigned integer:

do
{
byte = low order 7 bits of value;
value >>=7;
if (value = 0) /* more bytes to come */
set high order bit of byte;
emit byte;
} while (value != 0);

Encode a signed integer:

more = 1,
negative = (value < 0);
size = no. of bits in signed integer;
while(more)
{
byte = low order 7 bits of value;
value >>=7;
/* the following is unnecessary if the implementation of >>=
* u ses an arithmetic rather than logical shift for a signed
* | eft operand
*/
if (negative)
[* sign extend */
value |= - (1 << (size - 7));
[* sign bit of byte is 2nd high order bit (0x40) */
if ((value == 0 && sign bit of byte is clear) ||
(value == -1 && sign bit of byte is set))

more = 0;
else
set high order bit of byte;
emit byte;
}
Revision: 2.0.0 Page 126

Industry Reviav Draft

July 27, 1993

Decode unsigned LEB128 number:

result = 0;
shift = 0;
while(true)
{
byte = next byte in input;
result |= (low order 7 bits of byte << shift);
if (high order bit of byte == 0)
break;
shift += 7;
}

Decode signed LEB128 number:

result = 0;
shift = 0;
size = no. of bits in signed integer;
while(true)
{
byte = next byte in input;
result |= (low order 7 bits of byte << shift);
shift += 7;
[* sign bit of byte is 2nd high order bit (0x40) */
if (high order bit of byte == 0)
break;
}
if ((shift < size) && (sign bit of byte is set))
[* sign extend */
result |= - (1 << shift);

Revision: 2.0.0 Page 127
Industry Reviwv Draft

Programming Languages SIG

July 27, 1993

DWARF Debugging Information Format

Appendix 5 -- Call Frame Information Examples

The following example uses a hypothetical RISC machine in the style of
the Motorola 88000.

« Memory is byte addressed.
« Instructions are all 4-bytes each and word aligned.
« Instruction operands are typically of the form:
<destination reg> <source reg> <constant>
» The address for the load and store instructions is computed by
adding the contents of the source register with the constant.
« There are 8 4-byte registers:

RO alvays 0

R1 holds return address on call

R2-R3 temp registers (not preserved on call)
R4-R6 preserved on call

R7 stack pointer.

« The stack grows in the gdive drection.

The following are tw code fragments from a subroutine
calledfoo that

uses a frame pointer (in addition to the stack paintEnefirst
column values are byte addresses.

;; start prologue

foo sub R7, R7, <fsize> . Allocate frame

foo+4 store R1, R7, (<fsize>-4) ;S ave the return address
foo+8 store R6, R7, (<fsize>-8) ; Save R6

foo+12 add R6, R7,0 ; R6 is n ow the Frame ptr
foo+16 store R4, R6, (<fsize>-12) ; S ave a preserve reg.

;; This subroutine does not change R5

;; Start epilogue (R7 has been returned to entry value)

foo+64 load R4, R6, (<fsize>-12) ; Restore R4

foo+68 load R6, R7, (<fsize>-8) ; Restore R6

foo+72 load R1, R7, (<fsize>-4) ; Restore return address

foo+76 add R7, R7, <fsize> ;. D eallocate frame

foo+80 jump R ; Return

foo+84

Revision: 2.0.0 Page 128 July 27, 1993

Industry Reviwv Draft

The table for théoo subroutine is as follows.
It is followed by the
corresponding fragments from the
.debug_frame

section.

Loc CFA RO R1 R2 R3 R4 R5 R6 R7 RS8
foo [R7]+0 s u u u S s s S
foo+4 [R7]+fsize s u u u s s s s
foo+8 [R7]+fsize s u u u S S s s
foo+12 [R7]+fsize s u u u S s c 8
foo+16 [R6]+fsize s u u u s S c 8
foo+20 [R6]+fsize s u u u cl2 s c8 s
foo+64 [R6]+fsize s u u u cl2 s c8 s
foo+68 [R6]+fsize s u u u s s c 8
foo+72 [R7]+fsize s u u u S s S s
foo+76 [R7]+fsize s u u u S s S
foo+80 [R7]+0 s u u u S S S S
notes:

1. Ra8is the return address

2. s=same_value rule

3. u=undefined rule

4. rN=regster(N) rule

5. cN=offset(N) rule

Common Information Entry (CIE):

cie 32 ; | ength

cie+t4 Oxffffffff ; CIE_id

ciet8 1 ; vV ersion

ciet9 0 ; @ ugmentation

cietl0 4 ; ¢ ode_alignment_factor
cie+ll 4 ; d ata_alignment_factor
cie+12 8 : R8 is t he return addr.
cie+tl3 DW_CFA_def cfa (7,0) ; CFA=[R7]+0

cie+tlé6 DW_CFA_same_value (0) ; RO not modified (=0)
cietl8 DW_CFA_undefined 1) ; R1 scratch

cie+t20 DW_CFA_undefined (2) ; R2 scratch

ciet22 DW_CFA_undefined 3) ; R3 scratch

ciet24 DW_CFA _same_value (4) ; R4 preserve

ciet26 DW_CFA _same_value (5) ; R5 preserve

cie+t28 DW_CFA_same_value (6) ; R6 preserve

cie+t30 DW_CFA_same_value (7) ; R7 preserve

cie+t32 DW_CFA_register 8, 1) ; RBisin R 1

cie+t35 DW_CFA_nop ; p adding

cie+36

Revision: 2.0.0 Page 129

Industry Reviwv Draft

r
r
c

Programming Languages SIG

[l it S

July 27, 1993

DWARF Debugging Information Format

Frame Description Entry (FDE):

fde 40 ; | ength

fde+4 cie ; CIE_ptr

fde+8 foo ; 1 nitial_location

fde+12 84 ; a ddress_range

fde+16 DW_CFA_advance_loc(1) ; | nstructions

fde+17 DW_CFA_def_cfa_offset(<fsize>/4) ; assuming <fsize> < 512

fde+19 DW_CFA_advance_loc(1)
fde+20 DW_CFA_offset(8,1)

fde+22 DW_CFA_advance_loc(1)
fde+23 DW_CFA offset(6,2)

fde+25 DW_CFA_advance_loc(1)
fde+26 DW_CFA_def _cfa_register(6)
fde+28 DW_CFA_advance_loc(1)
fde+29 DW_CFA_offset(4,3)

fde+31 DW_CFA_advance_loc(11)
fde+32 DW_CFA restore(4)

fde+33 DW_CFA_advance_loc(1)
fde+34 DW_CFA_restore(6)

fde+35 DW_CFA_def _cfa_register(7)
fde+37 DW_CFA_advance_loc(1)
fde+38 DW_CFA_restore(8)

fde+39 DW_CFA_advance_loc(1)
fde+40 DW_CFA_def cfa_offset(0)

fde+42 DW_CFA_nop ; p adding
fde+43 DW_CFA_nop ; p adding
fde+44

Revision: 2.0.0 Page 130

Industry Reviav Draft

July 27, 1993

Industry Reviev Draft

Table of Contents

FOREWORD ..ottt e e e e e ettt et e e e e e e aeae e e e e e e e e e s s s e nnnnnrneennnneees 2
1. INTRODUCGTION ittt e e e e e e e e e e e st e e e et e e e aaaaeeeeaaaessaaanns 3
1.1 PUIPOSE AN SCOPE.....ceieiiiiiiiiiiiiaa e e e e e e e ettt a e e e e e e e e e e e eeeeeseanannn s 3
I @ Y= YT 3
1.3 Vendor EXIENSIDIILYeiiiiiii e 4
1.4 Changes from VEISION L........coooiiiiiiiiiiiiiiiiie et e e e e e e e 4
2. GENERAL DESCRIPTION oottt a e e e e e e 7
2.1 The Debugging Information ENtry............cccoooviiiiiiiiiiiiiiiiiee e 7
2.2 AIIDULE TYPES it e ettt e e e e e e e e e e e e e e e eeaeraranae 7
2.3 Relationship of Debugging Information ENtries............ccccoiiiiiiiiinins 9
2.4 Location DESCIIPLIONScccoiiiiiieeiie e aeaeeaaes 10
2.5 Types Of DECIAratioNSuuuuuuiiiiiiiiie e e e eeenanees 21
2.6 Accessibility of Declarationscccuuuuiiiiiiiiiiiiieee e 21
2.7 Visibility of DeClarationScccoooeiiiiiiiiiiice e 22
2.8 Virtuality of DeClarations ... 22
2.9 ATTFICIAI ENTHES oot e e e e e e e e e e e e e e e e as 22
2.10 Target-Specific Addressing Information............cccceevieeeiiiiiiiiiiieeece, 23
2.11 Non-Defining DeCIaratioNsoooiiiiiiiiiiiiiiiiieee e 24
2.12 Declaration COOFAINALES...........uuuuuurrniiiiieeeeeeeeeereeeeeeeeeannara s e e eeeeeeeeeeeeeernnne 24
2.13 1dentifier NAMESooviiiiiiieeeee e 25
3. PROGRAM SCOPE ENTRIESuttiiiiiiiiiiiiiiiieeeee e a e 27
3.1 Compilation UNIt ENTHESoooiiiiiiiiiiiiieieeee et 27
3.2 MOAUIE ENLIIES .ooiieiieii et e e e e e 30
3.3 Subroutine and Entry Point ENrieS..........oooiiiiiiiiiiiiccii e 30
3.4 LeXical BIOCK ENMIIES ...uvvueiiiiiiiee et 39
R I - o1 = o4 = PP 40
3.6 With Statement ENLIEScoiiiiiiiieiieeeeeee e 40
3.7 Try and Catch BIOCK ENLIEScooviiiiiiiiiiiiiiiiii e 41
4. DATA OBJECT AND OBJECT LIST ENTRIEScoooiiiiiiiiiiiiiieeeeee 43
o R B = = W@ o] [T o = o1 [T 43
4.2 CommoN BIOCK ENLIIEScceeeieeeeeeee e e e e e 45
4.3 Imported Declaration ENtriesS...........ciiiiiiiii e 46
4.4 NAMELIST ENTIES ..ot e e e e e e e e e e eeeeeeeennnnes 46
5. TYPE ENTRIES ..ottt ettt e et r e aaaans 49
5.1 Base TYPE ENLIES.....coooeeeeiiieiii e 49
5.2 Type MOIfier ENTHES ...coiiiiiieiiiiiiiieie et e e e e e e e eeeeeeeees 50
5.3 TYPEUET ENMIIES ..ottt e e e e e e e e e e e e s 51
5.4 Array TYPE ENMIES .oovueiiiiii it e e e 51
5.5 Structure, Union, and Class Type ENtries.............uuuuiiiiinineeeeeeeeieeeeeeiiiiiene 53
5.6 Enumeration TYPE ENTIES.......uuuuuiiiiiiiiiiiieieeeeee e 61
5.7 Subroutine TYPE ENLIES.......ouuuiiiiiieii e e e e e e e e e e e e eeeanaeens 61
5.8 StNG TYPE ENIIES ..vveeiiiiii e e e e e 62

B O Sl BN IS e e 63

5.10 Subrange TYPe ENLIES.......ccooiiiiiiiiiiiiiieie e 64
5.11 Pointer to Member Type ENtrES........ccovvviviiieiiiiiiciiiee e e eee e 65
5.12 File TYPE ENLIES ooeiiiiiiieeee ettt e e s e 66
6. OTHER DEBUGGING INFORMATION ...iiiiiiiiiiiiiiiiieeeeee e 69
6.1 ACCEIErateU ACCESSciieiieeeeeeetiiiaa e e e e e e e e e e ettt e e et a s e e e e eaeaeeaeeeeeeennnnnnnnas 69
6.2 Line Number INfOrmMation ... 71
6.3 MacCro INfOrMALIONouiiiiiiiiiiiei e 81
6.4 Call Frame INfOrmMationeeeiiiiiiiei e e e e e e e e eeeaeannees 85
7. DATA REPRESENZARTION oottt e e e e e e e e e e e e e e a s 93
7.1 Vendor EXtENSIDIIILYcoooeiiiiieeee e 93
7.2 ReServed Error VAlUES...........oooiiiiieiiiiiiee sttt e e e e e e e e e 94
7.3 Executable Objects and Shared ObJecCtS.......ccccoeeeeeeeiiiiiiiiiee e 94
7.4 File CONSIIAINTS ...uiiiiiiiee it e e e et et a e e e e e e e e e e e aeeeeeennenes 94
7.5 Format of Debugging INfOrmationooooiiiiiiiiiiiiiiiiceeecee e 94
7.6 Variable Length Datacccceoiiiiiiiiiiiiiiieeeeeeie e 101
7.7 LOCation DESCIIPLIONSccoiiiiiiiiieiiiiiiiie et e e e e e e e e 103
7.8 Base TYPE ENCOUINGS.uuuuuiiiiiiiiiiiiiiieee e e e e e e 104
7.9 ACCESSIDIlity COUBScoiiiieieeeeer et e e e e e e e e e e e eaeaaaeaes 104
7. 10VISIDIILY COUBS et e e e e e 105
7. 1IVITTUAIIEY COUBS ooieiiiiiieeeee ettt e e 105
7.12 SOUICE LANQUAGES.uuiiiiiiiiiiiie ettt e et e e et et e e et e e e e e e aa e e eaan s 105
7.13 AdAress Class ENCOAINGS.uuuuiiiiiiieieeeieeeieeeeeiiiites s e e e e e e eeeeeennnnees 106
4 o [T o] [T = L 106
7.15 Calling Comention ENCOAINGSvvvvviiiiiiiieiiie e 106
7.16 INlNE COUES ... e e e e e e e as 106
T.17 AITaY OFAEIING oottt e e e e e e e e e e e e bbbt e e e e e e e e aeaeeaaeasaaans 107
7.18 DISCIHMINANT LISIS ..evviiiiiiiiieeeeieii ettt e e 107
7.19 Name LOOKUP TabIEcoooeeeieee e 107
7.20 Address Range Table.........ooooiiii e 108
7.21 Line Number INfOrmationccuvviiiiiiiiiiii e 108
7.22 MACro INFOrMALIONoveieiiiiieee e 109
7.23 Call Frame INfOrmMationeeiiiiiiie e e e e e e e e e e e e eeeeeenannne 109
2 =T o 1= T oo [T g (ol 1T RSP 110
8. FUTURE DIRECTIONS ...ttt e e e e e e e e e s s eeees 111
Appendix 1 -- Current Attributes by Tag Value............cccoviiiiiiiis 113
Appendix 2 -- Oganization of Debugging Informationcccccooeeiiiiiiiiiiininn, 123
Appendix 3 -- Statement Program EXamples.............uuuueiiiiiiiinnnieeiiiieeeeeeeiiiiis 124
Appendix 4 -- Encoding and decoding variable length data.............ccccccevvveenenn. 126
Appendix 5 -- Call Frame Information Examples..........ccccoovvvviiiiiiiiiiiiieeeeeeeeeee, 128

List of Figures

FIQUrE 1. Tag NMAIMES ..ottt a e e e e e e e e e e e e e e e e e aeabban e e e s 7
Figure 2. AMNDULE NAMESooiiiiiiiieie et 8
Figure 3. ACCESSIDIlitY COUBS.....uuuuiiiiiiii it 22
Figure 4. VISIDIlity COUBSoiiiiiiiiiiiiee s 22
Figure 5. VITtUAlItY COUESooiiiiiiiiiiiiiie et 22
Figure 6. Example address Class COUES.........ooovvvviiiiiiiiiiiie e 24
FIgure 7. LangQUage NAMES.cooiiiieeeeeeiieeeeeeeiiitiiaa s e e e e e e e e e e e e eeeeseesaana e e e e e e e aaeaaans 28
Figure 8. ldentifier Case COURS........coooi i 29
FIQUrE 9. INlINE COUES ...ovviiiiiiiii it a e e e e e e 36
Figure 10.Encoding attribute ValUues............coooiiiiiiiiiiiecc e 49
Figure 11Type MOAIfIer TAgScooviiiiiiiiiiiiiit et 50
FIgure 12. Array OFAEIINGvuuuuieiiiiiii e e e e e e ee e et e e e e e e e e e e e e e e e e e e e rs e as 52
Figure 13.Discriminant descCriptor VAIUES..........covivii i 60
Figure 14Tag encodingsS (PArt 1)ccooeiiiiiiiiiiiiiiie et 96
Figure 15Tag encodings (PArt 2)cooeiiiiiiiiiiiieiie e e e e e e e e e eees 97
Figure 16. Child determination @NCOdINGS.........uuuuuiiiiiiiieieieieireeeeeeii e 97
Figure 17. Attribute encodings, Part L........ccccuuuiiiiiiiiiiiiiiee e 98
Figure 18. Attribute encodings, Part 2............euuuiiiiiiiiieeee e 99
Figure 19. Attribute fOrm €nCOdINGS......cooeiiiiiiieiiiieee e 101
Figure 20. Examples of unsigned LEB128 encodings...........cccccuvivimiiiiieiiiiiennnenn. 102
Figure 21. Examples of signed LEB128 encodingS........ccccoeveeeeeieiiiiieeeiiiiiiinnn, 102
Figure 22.Location operation encodings, part.l.........cccccoviiiiiiiiiiiiiiiiiiiee e 103
Figure 23.Location operation encodings, Part.2.............eeeeeeeeeeeeieeeeeeaninnnnnnnnennns 103
Figure 24.Base type encoding VAlUES............uuuuiiiiiiiiiiie e 105
Figure 25. Accessibility @NCOAINGScovuiiiiiiiiiiiiiee e 105
Figure 26Visibility @NCOdINGS ...ccooiiiiiiii e 105
Figure 27Virtuality @nNCOAINGSoccooiiiiiiieeeecee e 105
Figure 28.Language €NCOUINGS........cooiiiiiiiiiiiiiiiiiar e et e e e e e e 106
Figure 29.1dentifier case ENCOAINGS........ccocuurrrriiiiiiiiiiiiee e 106

Figure 30. Calling corention eNCOAINGScceeeeeiiiiiiiiiiiiiiees e e e e e e e e e e e 107

Figure 31.1NINE €NCOAINGSvvuriiiiiiieee e 107
Figure 32.0rdering €NCOAINGS.uuuiiiiiiiiieeeeeiei e e e e e e e e e e e e 107
Figure 33. Discriminant descriptor @NCOAINGS.......ccooeeeeeeeiiiiiiieeeeere e 107
Figure 34.Standard Opcode ENCOAINGS........uuuuuiiiiiiiiieeeeeeeeeeeeeeeeiiiie e 109
Figure 35.Extended Opcode ENCOTINGS.......uuiiiiiiiiiiiiiiaiiiiiieeiieeeeee e 109
Figure 36.Macinfo Type ENCOAINGS........cccoceiiiiiiiieiecee e 109
Figure 37.Call frame iNnStruction €NCOUINGS.......uuiiiiiiiiieeiiieeeieeeei e 110

