
DWARF3: Better than DWARF2David B. AndersonDe
ember 1,2005Abstra
tThe Debugging Information Format DWARF Version 3 is an enhan
e-ment of DWARF Version 2. DWARF3 has new features for 
orre
tlyrepresenting everything in the 
urrent C++ and C and Fortran stan-dards. DWARF Version 3 provides new features to allow signi�
antspa
e-
ompression and allows generation of debug-information larger than4GBytes. Yet it is 
ompatible with DWARF Version 2 in that a DWARFreader (su
h as a debugger) 
an easily read both DWARF Version 2 andDWARF Version 3. DWARF Version 3 provides some basi
 support forand eliminates obsta
les to using DWARF for Ada and Java and COBOL.1 Introdu
tionA debugger, su
h as dbx or gdb, requires debugging information and DWARF isan information format in wide 
urrent use. DWARF Version 2 (DWARF2) waspublished in 1993 and re
ent standards developments en
ouraged the DWARF
ommittee to reform and to update DWARF.Volunteers from various 
ompanies parti
ipated beginning in 1999, 
ulminat-ing in the January 2002 release of the DWARF Version 3 (DWARF3) do
umentfor publi
 
omment. In 2004 dis
ussion resumed at http://dwarf.freestandards.orgresulting in a revised publi
 
omment do
ument (publi
 review 18 O
tober 2005thru 1 De
ember 2005). Committee membership was open to anyone throughoutthe pro
ess.Here we des
ribe the new features of DWARF3 and mention some 
orre
-tions and 
lari�
ations. We are assuming familiarity with the terminology ofDWARF2. We refer to the 1999 C standard as C99. We refer to the C++Standard as C++. We refer to the Fortran 90 and 95 standards as Fortran.2 Overriding GoalThe intent of the 
ommittee was to preserve 
ompatibility with DWARF2. Con-sequently the re
ording format was not 
hanged. By the end of the deliberationsenough had been 
hanged that the 
ommittee 
hanged the DWARF versionnumbers and renamed it DWARF3. This was not an easy de
ision: there was1




onsiderable sentiment to keep the existing version number(s). However in theend 
onsensus was rea
hed that version numbers should 
hange. An existing
onsumer (su
h as a debugger) will therefore not be able to use DWARF3. How-ever it is easy for a slightly modi�ed 
onsumer to read DWARF2 and DWARF3mixed into the same exe
utable, so ba
kward 
ompatibility is maintained.One impetus for the version 
hange was that the C++ 
hanges meant aDWARF2 
onsumer would be 
ompletely unable to get any useful info from a
ompilation unit whi
h implemented DWARF C++ namespa
e support.3 Major New Features3.1 C++ , in
luding Namespa
esDWARF2 was 
ompleted before the C++ Standard and before C++ names-pa
es were even 
onsidered. DWARF3 provides a 
omplete set of features usingDW_TAG_namespa
e, DW_TAG_imported_de
laration, DW_AT_import,and DW_AT_extension that enables an implementation to represent the visiblenamespa
es 
orre
tly in every fun
tion. Implementations may 
hoose to emit asingle namespa
e de
laration showing the 
omplete namespa
e at the end of the
ompilation unit as this is simpler, though it loses some of the details of someuses of C++ Namespa
es.3.2 Fortran 90 allo
ated and pointer dataFortran 90 allo
atable and pointer data 
ould not be des
ribed in DWARF2.Su
h dynami
ally allo
ated arrays and pointers that 
an be asso
iated at runtime mean that there are run-time data stru
tures pointing to the a
tual run-time data.DWARF3 provides the DW_AT_data_lo
ation attribute and the expres-sion operator DW_OP_push_obje
t_address. DW_AT_data_lo
ation is alo
ation expression that both de�nes this as having run-time stru
tures andspe
i�es the address of the run-time-stru
tures (
ommonly 
alled dope ve
torsand des
ribed in DWARF3 as des
riptors). DW_OP_push_obje
t_addressprovides the expressive 
apability in a lo
ation expression to des
ribe the dataas distin
t from the run-time data stru
tures.DW_AT_asso
iated and DW_AT_allo
ated attributes provide addressesor expressions that result in deriving a non-zero value if the array or pointer isa
tually asso
iated or allo
ated at the time of the evaluation.The run-time data stru
tures that have to be there anyway for the run-time to work and for a debugger to work 
an be des
ribed dire
tly in DWARF3without a need for the debugger to have apriori knowledge of the run-time-data-stru
tures.
2



3.3 Fortran subroutinesDW_AT_elemental, DW_AT_pure, DW_AT_re
ursive were added to allowthese Fortran subroutine des
riptive keywords to be represented.3.4 Subroutine 
alls in expressionsWhere DWARF2 spoke of Lo
ation Expressions, the DWARF3 do
ument gen-eralizes this somewhat to des
ribe DWARF Expressions separately and then tode�ne Lo
ation Expressions in terms of DWARF Expressions.If there are many 
ommon sequen
es in DWARF expressions it 
an be a largespa
e saving to use DW_OP_
all2, DW_OP_
all4, or DW_OP_
all_ref to
all a DWARF Expression subprogram. And this 
ommonization 
an be 
ar-ried a
ross 
ompilation units and a
ross shared-libraries 3.6. Be
ause in 
omesituations there is no 'obvious' pla
e to put the 
alled DWARF Expression,DW_TAG_dwarf_pro
edure was de�ned as a TAG to hold a DW_AT_lo
ationexpression to be 
alled.3.5 DWARF CompressionDWARF2 provided no re
ognizable means to avoid dupli
ating DWARF infor-mation. DWARF3 provides the means by de�ning DW_TAG_partial_unit andDW_TAG_imported_unit and providing an explanation and examples in anappendix. Be
ause mu
h of this involves obje
t format issues and is outside ofDWARF3, the explanation is a template o�ering means implementations 
an
hoose to use, not a detailed re
ipe.An appendix to the DWARF3 do
ument explains how a C or C++ imple-menation 
ould wind up with only a single 
opy of a header �le in the debuginformation. It also demonstrates how the same basi
 approa
h allows elim-inating dupli
ate fun
tions (as might arise from C++ templates) and unusedfun
tions from the DWARF3 debug information for an exe
utable or dynami
-shared-library.The appendix also shows how Fortran 
ommon 
ould be treated to eliminatedupli
ate DWARF3.3.6 Referen
es A
ross Shared-LibrariesDWARF2 had DW_FORM_ref_addr for referen
es between 
ompilation units,but the do
umentation of it was di�
ult to interpret. Moreover the expli
itspe
i�
ation of an address-size value of the referen
e was not useful. DWARF3makes it 
lear that these referen
es 
an be between 
ompilation units even ifthe 
ompilation units are in di�erent dynami
-shared-obje
ts. And DWARF3spe
i�es that the size of the �eld is an o�set-size. Referen
es from one dynami
-shared-obje
t to another requires relo
ations to be done by the debugger sin
eonly the debugger knows where ea
h dynami
-shared-obje
t is at run time.De�ning these relo
ations (what they look like, how to implement them) isoutside of DWARF, but the intent to allow su
h referen
es is 
learly spe
i�ed.3



3.7 64-Bit File O�setsWhile few 
olle
tions of debugging-information ex
eed a 32 bit o�set today, realexamples do 
ome 
lose (ex
eeding 30 bits of o�set). Su
h a large debugging-information 
olle
tion 
annot be represented in DWARF2. So an extensionwas added, usurping 255 values as 'es
ape 
odes' and allowing vendors to emitDWARF3 with 32-bit-o�sets when they are 
on�dent that is adequate and toemit DWARF3 with 64-bit-o�sets when they think it advisable to do so. Mix-ing 32-bit-o�set DWARF with 64-bit-o�set DWARF is simple and requires nospe
ial a
tion on the part of produ
ers (
ompiler vendors) or 
onsumers (de-buggers). Produ
ers and 
onsumers that have no interest in 64-bit-o�sets 
an
ompletely ignore the 64-bit-o�set extension and need not 
ode for it.This has nothing to do with 64-bit-addresses. DWARF2 was always perfe
tly
apable of representing obje
ts with 64-bit-addresses and DWARF3 retains thatability.There are no spe
i�
 TAGs or Attributes relating to 64-bit-o�sets. If o�setsdo ex
eed 64-bits in an exe
utable using 32-bit-o�set-DWARF and some o�set
annot be represented properly in DWARF it is a quality-of-implementationissue whether the stati
 linker warns of the problem.3.8 COBOL datatypesNew base types were added (example:DW_ATE_pa
ked_de
imal) along withattributes su
h as DW_AT_binary_s
ale, DW_AT_de
imal_s
ale, DW_AT_small,DW_AT_de
imal_sign, DW_AT_digit_
ount, and DW_AT_pi
ture_stringto allow normal COBOL datatypes to be des
ribed. New de
imal sign attributevalues su
h as 'DW_DS_trailing_overpun
h' are also part of this COBOL typesuppport. These are based on a
tual 
ompiler implementations so are known tobe adequate when 
ombined with other existing DWARF3 features.4 Minor Enhan
ements4.1 Des
ribing Void *DWARF2 provided a spe
i�
 means to des
ribe a C 'Fun
tion Returning void'(whi
h DWARF3 retains) but was silent about des
ribing C 'void *'. DWARF3provides a language-independent means to des
ribe su
h, using DW_TAG_unspe
i�edtype to des
ribe the language-notion and DW_AT_name of 'void' in the C/C++
ase as the referent of DW_TAG_pointer_type.4.2 Inlining informationAn appendix gives examples and interpretations of how to represent inlines inmessy 
ases.DWARF2 provided no way to des
ribe the *
aller lo
ation* at the site of aninlined-fun
tion. DWARF3 provides DW_AT_
all_�le, DW_AT_
all_line,4



DW_AT_
all_
olumn for those implementations wishing to provide this infor-mation.4.3 New Data TypeC99 de�nes the data type _Imaginary and DWARF3 de�nes DW_AT_imaginary_�oatto des
ribe this type.The C++ keyword mutable is representable with DW_AT_mutable_type.4.4 Fun
tion Prologue and Epilogue des
riptionsIn DWARF2, debuggers whi
h wished to have fun
tion-entry-breakpoints set af-ter the fun
tion prologue had run (
opying in
oming arguments to lo
al storage,saving registers, et
) had to use heuristi
s to �nd a pla
e to set su
h a breakpoint.For example, using line table information (whi
h was dependent on the detailsthe 
ompiler used in emitting the line information, so it was 
ompiler depen-dent). In DWARF3, the line table may 
ontain a DW_LNS_set_prologue_end�ag at the end of the prologue, providing debuggers a pre
ise address to set thebreakpoint.In DWARF3 the line table may 
ontain 1 or more DW_LNS_set_epilogue_begin�ags per fun
tion. Ea
h su
h identi�es an address where a debugger may set abreakpoint 'just before the fun
tion returns', again providing a language- and
ompiler-independent means of des
ribing su
h points (many 
ompilers emitmultiple return sequen
es for fun
tions where su
h improves performan
e of theappli
ation).4.5 ISA des
riptionIf an exe
utable may 
ontain instru
tions from distin
t ISAs (perhaps some ISAfor pa
king multiple �elds into words, for example) the DW_LNS_set_isa �agin the line table may be used to des
ribe exa
tly whi
h ISA is in use at whi
haddresses. ISA identities are vendor-de�ned, not spe
i�ed in DWARF3.4.6 New LanguagesSpe
i�
 
odes DW_LANG_Java, DW_LANG_C99, DW_LANG_Ada95, DW_LANG_Fortran95,DW_LANG_PLI DW_LANG_ObjC, DW_LANG_ObjC_plus_plus, DW_LANG_UPC,and DW_LANG_D were added so vendors need not de�ne extensions for theselanguage names: implementations are known to be planning to use the last four.4.7 Frame Des
ription enhan
ementsThere were two problems with DWARF2 frame des
riptions.First, DWARF2 provided no means for using DWARF expressions in a framedes
ription, whi
h was a problem for 
ertain unusual ar
hite
tures. DWARF35



provides DW_CFA_def_
fa_expression and DW_CFA_expression for thoseimplementations that require it.Se
ond, DWARF2 provided no means for des
ribing sta
k-frames with databoth above and below the CFA (virtual frame pointer for the frame). DWARF3provides DW_CFA_
fa_o�set_extended_sf, DW_CFA_def_
fa_sf, and DW_CFA_def_
fa_o�set_sfallowing a 
onsise representation for su
h a sta
k frame des
ription. These threeoperators are not stri
tly ne
essary sin
e the DW_CFA_def_
fa_expressionand DW_CFA_expression provide enough expressiveness, but the *_sf formswere su�
iently more spa
e e�
ient that they were adopted.4.8 TrampolineDWARF2 provided no means to identify 
ompiler-
reated 
ode for 
alls to fun
-tions in dynami
-shared-libraries (often 
alled 'stub 
ode' or 'trampoline') orto identify 
ode used to implement sta
k unwinding for ex
eption handling.DWARF3 allows an implementation to emit the DW_AT_trampoline attributeto identify su
h 
ode so a debugger 
an make a de
ision about how to deal withit.4.9 UTF8DWARF2 provided no means to deal with multibyte 
hara
ters. DWARF3 pro-vides DW_AT_use_UFT8 whi
h is a �ag telling the debugger that all stringsin this 
ompilation unit are UTF8 multibyte strings. This attribute only ap-pears in the .debug_info se
tion but applies to all strings for this 
ompilationunit in all DWARF3 se
tions having strings.4.10 Non-
ontiguous Fun
tionsDWARF2 provided no means to deal with non-
ontiguous fun
tions. Su
h fun
-tions might result from optimizations moving 'low frequen
y' 
ode o� away fromthe main high-frequen
y 
ode. For example, many error-message situationsnever ever arise. One result of su
h an optimization is a redu
ed working setsize.DWARF3 provides DW_AT_ranges as an alternative to the simple 
ontiguous-fun
tion DW_AT_low_p
 DW_AT_high_p
 attributes. DW_AT_rangesrefers to the new DWARF3 obje
t �le se
tion .debug_ranges, where the rangesare en
oded. DW_AT_ranges 
an be used anywhere DW_AT_low_p
 DW_AT_high_p
would appear. Compilers are known to mix together 
ode from DW_TAG_lexi
al_blo
k,DW_TAG_inlined_subroutine, DW_TAG_try_blo
k, DW_TAG_
at
h_blo
kso that these may 
ontain non-
ontiguous 
ode sequen
es.4.11 PubtypesDWARF2 had no spe
ial means of mentioning globally-distin
t types, su
h asC++ 
lasses, whi
h are guaranteed by the language to be unique and identi
al6



a
ross 
ompilation-units. DWARF3 de�nes the new se
tion .debug_pubtypes(with a format identi
al to .debug_pubnames used for global variables) provid-ing the debugger with a means for fast lookup (given a 
lass name �nd the right
ompilation unit).5 A sele
tion of 
orre
tions5.1 SpellingDW_TAG_template_type_parameter and DW_TAG_template_value_parameterwere also (in
onsistently) spelled DW_TAG_template_type_param and DW_TAG_template_value_paramin DWARF2. DWARF3 uniformly uses the longer spelling.DW_AT_bit_stride is a new spelling for what used to be spelled DW_AT_stride_size:it always represented a bit stride, so the new name is simply 
learer, and the(new) alternative attribute DW_AT_byte_stride is available when a byte stridesu�
es.6 Format in
ompatibilitiesThere are only three 
hanges dire
tly a�e
ting the format of the DWARF data, all mentioned in DWARF3 se
tion 1.5.1.6.1 Large Initial LengthCertain (large) values of the initial length �eld used in various DWARF se
tionswere reserved as es
ape 
odes 3.7. Be
ause no known instan
es of DWARFdata with lengths within 255 bytes of the maximum o�set re
ordable in 4 bytesexist this should have no pra
ti
al impa
t on the interpretation of DWARFinformation in existing obje
t �les.6.2 DW_FORM_ref_addrDW_FORM_ref_addr was de�ned in DWARF2 as being the size of a target-ma
hine address. DWARF3 de�nes this as a se
tion o�set, whi
h 
an be 32 or64 bits3.7.6.3 CIE return address register �eldThe return-address-register �eld in the Common Information Entry(CIE) in the.debug_frame se
tion was de�ned as an unsigned byte in DWARF2. This �eldis now de�ned as an unsigned LEB128 �eld. The 
hange was made as thede�nition seemed pointlessly 
onstraining to newer CPUs with large numbersof registers that might want a larger return-address-register designation. Noneof the implementations 
urrently using dwarf frame-des
ription information areknown to have needed a number here greater than 127. The a
tual bits re
orded7



are the same for both �eld de�nitions with the return-address-register value lessthan 128 (see the LEB128 de�nition in the DWARF 2 or DWARF3 do
uments)so all existing obje
t �les would show the same bit pattern with either de�nition.So no a
tual binary in
ompatibility applies to existing implementations.7 New TAGs, Attributes, et
 in briefSome of the new features are not just TAGS and attributes, but all the new en-tities given assigned values in DWARF3 are listed here with a short des
ription.
• DW_TAG_dwarf_pro
edure 0x36, used as a pla
eholder forDW_OP_
all*ed subroutines.
• DW_TAG_restri
t_type 0x37, restri
t is a a C99 keyword.
• DW_TAG_interfa
e_type 0x38, for Java interfa
e types.
• DW_TAG_namespa
e 0x39, used with C++ namespa
es
• DW_TAG_imported_module 0x3a, for example, used with Fortranmodules.
• DW_TAG_unspe
i�ed_type 0x3b, used for C 'void' for example.
• DW_TAG_partial_unit 0x3
, used in 
ompressing DWARF3(eliminating dupli
ate DWARF).
• DW_TAG_imported_unit 0x3d, used to referen
e a normalor partial 
ompilation unit that logi
ally belongs 'inside' the referen
ing
ompilation unit at the point of the referen
e.
• DW_TAG_mutable_type 0x3e, was in DWARF3 but has beenwithdrawn as it was in
orre
t, DO NOT USE. See DW_AT_mutableinstead.
• DW_TAG_
ondition 0x3f, des
ribes a COBOL level-88 
ondition.
• DW_TAG_shared_type 0x40, indi
ates the UPC 'shared' quali�er ap-plies to a type.
• DW_AT_bit_stride 0x2e, is a 
hanged spelling: used to be spelled DW_AT_stride_size,the new name indi
ates the true meaning better.
• DW_AT_allo
ated 0x4e, used with Fortran allo
ated data.
• DW_AT_asso
iated 0x4f, used with Fortran asso
iated data.
• DW_AT_data_lo
ation 0x50, used with Fortran allo
ated andasso
iated data. 8



• DW_AT_stride 0x51, has been removed from DWARF3(it was never in DWARF2). DO NOT USE. See DW_AT_bit_stride andDW_AT_byte_stride instead.
• DW_AT_entry_p
 0x52, for fun
tions whose entry point isnot the lowest address in the fun
tion.
• DW_AT_use_UTF8 0x53, to signal that all strings in the
ompilation unit are UTF8 multibyte form (the only 
lue UTF* is in use).
• DW_AT_extension 0x54, a general purpose attribute, 
ontentsvendor de�ned.
• DW_AT_ranges 0x55, referen
e to a new se
tion allowingfun
tion 
ode to be non-
ontiguous.
• DW_AT_trampoline 0x56, identi�es a fun
tion as being 
ompilergenerated su
h as dynami
-shared-library stub 
ode or ex
eption-handling
ode.
• DW_AT_
all_
olumn 0x57, identi�es the 
olumn of the 
allsite (not 
alled routine) for more pre
ise debugging of inlined fun
tions.
• DW_AT_
all_�le 0x58 , identi�es the �le of the 
all site (not
alled routine) for more pre
ise debugging of inlined fun
tions.
• DW_AT_
all_line 0x59, identi�es the line of the 
all site(not 
alled routine) for more pre
ise debugging of inlined fun
tions.
• DW_AT_des
ription 0x5a, for 
ompiler augmented des
riptionsof an entity.
• DW_AT_binary_s
ale 0x5b, for types with a binary s
ale fa
tor.
• DW_AT_de
imal_s
ale 0x5
, used with DW_ATE_pa
ked_de
imal andDW_ATE_numeri
_string.
• DW_AT_small 0x5d, for data types with arbitrary s
ale fa
tors (de�nedwith the Ada 'small' attribute in mind).
• DW_AT_de
imal_sign 0x5e, used with DW_ATE_pa
ked_de
imal andDW_ATE_numeri
_string.
• DW_AT_digit_
ount 0x5f, used with DW_ATE_pa
ked_de
imal andDW_ATE_numeri
_string.
• DW_AT_pi
ture_string 0x60, used with DW_ATE_edited base type.
• DW_AT_mutable 0x61, represents the C++ 'mutable' keyword.
• DW_AT_threads_s
aled 0x62, used to indi
ate a subrange is s
aled bya thread number (in UPC). 9



• DW_AT_expli
it 0x63, indi
ates a C++ member fun
tion has the 'ex-pli
it' property.
• DW_AT_obje
t_pointer 0x64, a referen
e to a non-stati
 C++ memberfun
tion parameter representing the obje
t the member applies to.
• DW_AT_endianity 0x65, indi
ates the endian-ness of a variable or 
ompile-unit is di�erent than the obje
t �le and ABI would normally suggest.
• DW_AT_elemental 0x66, indi
ates a Fortran fun
tion has the 'elemental'property.
• DW_AT_pure 0x67, indi
ates a Fortran fun
tion has the 'pure' property.
• DW_AT_re
ursive 0x68, indi
ates a Fortran fun
tion has the 're
ursive'property (the �ag is not used for C or C++ as those language fun
tionsdefault to being re
ursive).
• DW_AT_pointer 0x69, indi
ates a Fortran fun
tion with the 'pointer'property.
• DW_OP_push_obje
t_address 0x97, used with Fortran allo
atedand pointer types to 
orre
tly 
al
ulate addresses of data.
• DW_OP_
all2 0x98, 
all allows expression subroutines.
• DW_OP_
all4 0x99, 
all allows expression subroutines.
• DW_OP_
all_ref 0x9a, 
all allows expression subroutines
• DW_OP_form_tls_address 0x9b, is an operation whose implementationis left to user 
ode: forming an address that depends on a value on theoperation sta
k (needed for thread lo
al variables).
• DW_OP_
all_frame_
fa 0x9
, pushes the value of the CFA onto theoperation sta
k.
• DW_OP_bit_pie
e 0x9d, like DW_OP_pie
e, but giving a bit o�set.
• DW_ATE_imaginary_�oat 0x9, imaginary �oat is a new C99 datatype.
• DW_ATE_pa
ked_de
imal 0xa, represents de
imal string numeri
 datatypes, su
h as in COBOL.
• DW_ATE_numeri
_string 0xb, represents de
imal string numeri
 datatypes, su
h as in COBOL.
• DW_ATE_edited 0x
, represents a COBOL edited numeri
 or alphanum-beri
 data type. 10



• DW_ATE_signed_�xed 0xd, represents a signed �xed point binary datatype.
• DW_ATE_unsigned_�xed 0xe, represents an unsigned �xed point binarydata type.
• DW_ATE_de
imal_�oat 0xf, represents a de
imal �oating point number,su
h as may be spe
i�ed in COBOL.
• DW_DS_unsigned 0x01, signi�es de
imal sign base type attribute 'un-signed' (all DW_DS_* used in COBOL, for example).
• DW_DS_leading_overpun
h 0x02, signi�es de
imal sign is en
oded inthe most signi�
ant digit.
• DW_DS_trailing_overpun
h 0x03, signi�es de
imal sign is en
oded inthe least signi�
ant digit.
• DW_DS_leading_separate 0x04, signi�es de
imal sign is a '+' or '-' tothe left of the most signi�
ant digit.
• DW_DS_trailing_separate 0x05,signi�es de
imal sign is a '+' or '-' tothe right of the most signi�
ant digit.
• DW_END_default 0x00, value of DW_AT_endianity, indi
ating defaultendian-ness.
• DW_END_big 0x01, value of DW_AT_endianity, indi
ating implemen-tation de�ned big-endian.
• DW_END_little 0x02, value of DW_AT_endianity, indi
ating imple-mentation de�ned little-endian.
• DW_LANG_Java 0x000b
• DW_LANG_C99 0x000

• DW_LANG_Ada95 0x000d
• DW_LANG_Fortran95 0x000e
• DW_LANG_PLI 0x000f
• DW_LANG_ObjC 0x0010
• DW_LANG_ObjC_plus_plus 0x0011
• DW_LANG_UPC 0x0012
• DW_LANG_D 0x0013
• DW_LNS_set_prologue_end 10, used to pre
isely identify the endof the fun
tion prologue and the beginning of user 
ode in a fun
tion.11



• DW_LNS_set_epilogue_begin 11, used to pre
isely identify theend of user 
ode and the beginning of the return point (multiple points ifthere is 
ode generated for multiple returns) so a debugger 
an easily seta breakpoint before fun
tion return.
• DW_LNS_set_isa 12, allows pre
ise des
ription of whi
hinstru
tions are what instru
tion set ar
hite
ture in systems using multipleinstru
tion set ar
hite
tures in a single exe
utable.
• DW_LNE_lo_user 128, identify range of 
odes usable bythe 
ompiler implementor for vendor extensions.
• DW_LNE_hi_user 255, identify range of 
odes usable bythe 
ompiler implementor for vendor extensions.
• DW_CFA_def_
fa_expression 0x0f, allow for general expressions in framedes
riptions.
• DW_CFA_expression 0x10, allow for general expressions in framedes
riptions.
• DW_CFA_
fa_o�set_extended_sf 0x11, allow more �exible frame de-s
riptions, 
ompa
tly.
• DW_CFA_def_
fa_sf 0x12, allow more �exible frame des
riptions,
ompa
tly.
• DW_CFA def_
fa_o�set_sf 0x13, allow more �exible frame des
riptions,
ompa
tly
• DW_CFA_val_o�set 0x14, uses unsigned fa
tored o�set to 
al
ulate theaddress of a lo
ation where a register is stored.
• DW_CFA_val_o�set_sf 0x15, uses signed fa
tored o�set to 
al
ulate theaddress of a lo
ation where a register is stored.
• DW_CFA_val_expression 0x16, Like DW_CFA_expression, but 
om-putes the a
tual value, not the address where a value is stored.8 A
knowledgementsWhile many people have parti
ipated in the development of DWARF3 and manyhave made signi�
ant 
ontributions, two people have been instrumental in get-ting DWARF3 
ompleted and deserve spe
ial mention.Mi
hael Eager, eager�eager
on.
om, http://www.eager
on.
om 
haired the
ommittee and provided a web site for distribution of the drafts.Ron Brender edited the DWARF3 do
ument, produ
ing 9+ drafts and adding100 pages of new/
lari�ed 
ontent to the do
ument.12



9 ChangesNovember 2,2011: Fixed a spelling error.

13


