
DWARF3: Better than DWARF2David B. AndersonDeember 1,2005AbstratThe Debugging Information Format DWARF Version 3 is an enhane-ment of DWARF Version 2. DWARF3 has new features for orretlyrepresenting everything in the urrent C++ and C and Fortran stan-dards. DWARF Version 3 provides new features to allow signi�antspae-ompression and allows generation of debug-information larger than4GBytes. Yet it is ompatible with DWARF Version 2 in that a DWARFreader (suh as a debugger) an easily read both DWARF Version 2 andDWARF Version 3. DWARF Version 3 provides some basi support forand eliminates obstales to using DWARF for Ada and Java and COBOL.1 IntrodutionA debugger, suh as dbx or gdb, requires debugging information and DWARF isan information format in wide urrent use. DWARF Version 2 (DWARF2) waspublished in 1993 and reent standards developments enouraged the DWARFommittee to reform and to update DWARF.Volunteers from various ompanies partiipated beginning in 1999, ulminat-ing in the January 2002 release of the DWARF Version 3 (DWARF3) doumentfor publi omment. In 2004 disussion resumed at http://dwarf.freestandards.orgresulting in a revised publi omment doument (publi review 18 Otober 2005thru 1 Deember 2005). Committee membership was open to anyone throughoutthe proess.Here we desribe the new features of DWARF3 and mention some orre-tions and lari�ations. We are assuming familiarity with the terminology ofDWARF2. We refer to the 1999 C standard as C99. We refer to the C++Standard as C++. We refer to the Fortran 90 and 95 standards as Fortran.2 Overriding GoalThe intent of the ommittee was to preserve ompatibility with DWARF2. Con-sequently the reording format was not hanged. By the end of the deliberationsenough had been hanged that the ommittee hanged the DWARF versionnumbers and renamed it DWARF3. This was not an easy deision: there was1



onsiderable sentiment to keep the existing version number(s). However in theend onsensus was reahed that version numbers should hange. An existingonsumer (suh as a debugger) will therefore not be able to use DWARF3. How-ever it is easy for a slightly modi�ed onsumer to read DWARF2 and DWARF3mixed into the same exeutable, so bakward ompatibility is maintained.One impetus for the version hange was that the C++ hanges meant aDWARF2 onsumer would be ompletely unable to get any useful info from aompilation unit whih implemented DWARF C++ namespae support.3 Major New Features3.1 C++ , inluding NamespaesDWARF2 was ompleted before the C++ Standard and before C++ names-paes were even onsidered. DWARF3 provides a omplete set of features usingDW_TAG_namespae, DW_TAG_imported_delaration, DW_AT_import,and DW_AT_extension that enables an implementation to represent the visiblenamespaes orretly in every funtion. Implementations may hoose to emit asingle namespae delaration showing the omplete namespae at the end of theompilation unit as this is simpler, though it loses some of the details of someuses of C++ Namespaes.3.2 Fortran 90 alloated and pointer dataFortran 90 alloatable and pointer data ould not be desribed in DWARF2.Suh dynamially alloated arrays and pointers that an be assoiated at runtime mean that there are run-time data strutures pointing to the atual run-time data.DWARF3 provides the DW_AT_data_loation attribute and the expres-sion operator DW_OP_push_objet_address. DW_AT_data_loation is aloation expression that both de�nes this as having run-time strutures andspei�es the address of the run-time-strutures (ommonly alled dope vetorsand desribed in DWARF3 as desriptors). DW_OP_push_objet_addressprovides the expressive apability in a loation expression to desribe the dataas distint from the run-time data strutures.DW_AT_assoiated and DW_AT_alloated attributes provide addressesor expressions that result in deriving a non-zero value if the array or pointer isatually assoiated or alloated at the time of the evaluation.The run-time data strutures that have to be there anyway for the run-time to work and for a debugger to work an be desribed diretly in DWARF3without a need for the debugger to have apriori knowledge of the run-time-data-strutures.
2



3.3 Fortran subroutinesDW_AT_elemental, DW_AT_pure, DW_AT_reursive were added to allowthese Fortran subroutine desriptive keywords to be represented.3.4 Subroutine alls in expressionsWhere DWARF2 spoke of Loation Expressions, the DWARF3 doument gen-eralizes this somewhat to desribe DWARF Expressions separately and then tode�ne Loation Expressions in terms of DWARF Expressions.If there are many ommon sequenes in DWARF expressions it an be a largespae saving to use DW_OP_all2, DW_OP_all4, or DW_OP_all_ref toall a DWARF Expression subprogram. And this ommonization an be ar-ried aross ompilation units and aross shared-libraries 3.6. Beause in omesituations there is no 'obvious' plae to put the alled DWARF Expression,DW_TAG_dwarf_proedure was de�ned as a TAG to hold a DW_AT_loationexpression to be alled.3.5 DWARF CompressionDWARF2 provided no reognizable means to avoid dupliating DWARF infor-mation. DWARF3 provides the means by de�ning DW_TAG_partial_unit andDW_TAG_imported_unit and providing an explanation and examples in anappendix. Beause muh of this involves objet format issues and is outside ofDWARF3, the explanation is a template o�ering means implementations anhoose to use, not a detailed reipe.An appendix to the DWARF3 doument explains how a C or C++ imple-menation ould wind up with only a single opy of a header �le in the debuginformation. It also demonstrates how the same basi approah allows elim-inating dupliate funtions (as might arise from C++ templates) and unusedfuntions from the DWARF3 debug information for an exeutable or dynami-shared-library.The appendix also shows how Fortran ommon ould be treated to eliminatedupliate DWARF3.3.6 Referenes Aross Shared-LibrariesDWARF2 had DW_FORM_ref_addr for referenes between ompilation units,but the doumentation of it was di�ult to interpret. Moreover the expliitspei�ation of an address-size value of the referene was not useful. DWARF3makes it lear that these referenes an be between ompilation units even ifthe ompilation units are in di�erent dynami-shared-objets. And DWARF3spei�es that the size of the �eld is an o�set-size. Referenes from one dynami-shared-objet to another requires reloations to be done by the debugger sineonly the debugger knows where eah dynami-shared-objet is at run time.De�ning these reloations (what they look like, how to implement them) isoutside of DWARF, but the intent to allow suh referenes is learly spei�ed.3



3.7 64-Bit File O�setsWhile few olletions of debugging-information exeed a 32 bit o�set today, realexamples do ome lose (exeeding 30 bits of o�set). Suh a large debugging-information olletion annot be represented in DWARF2. So an extensionwas added, usurping 255 values as 'esape odes' and allowing vendors to emitDWARF3 with 32-bit-o�sets when they are on�dent that is adequate and toemit DWARF3 with 64-bit-o�sets when they think it advisable to do so. Mix-ing 32-bit-o�set DWARF with 64-bit-o�set DWARF is simple and requires nospeial ation on the part of produers (ompiler vendors) or onsumers (de-buggers). Produers and onsumers that have no interest in 64-bit-o�sets anompletely ignore the 64-bit-o�set extension and need not ode for it.This has nothing to do with 64-bit-addresses. DWARF2 was always perfetlyapable of representing objets with 64-bit-addresses and DWARF3 retains thatability.There are no spei� TAGs or Attributes relating to 64-bit-o�sets. If o�setsdo exeed 64-bits in an exeutable using 32-bit-o�set-DWARF and some o�setannot be represented properly in DWARF it is a quality-of-implementationissue whether the stati linker warns of the problem.3.8 COBOL datatypesNew base types were added (example:DW_ATE_paked_deimal) along withattributes suh as DW_AT_binary_sale, DW_AT_deimal_sale, DW_AT_small,DW_AT_deimal_sign, DW_AT_digit_ount, and DW_AT_piture_stringto allow normal COBOL datatypes to be desribed. New deimal sign attributevalues suh as 'DW_DS_trailing_overpunh' are also part of this COBOL typesuppport. These are based on atual ompiler implementations so are known tobe adequate when ombined with other existing DWARF3 features.4 Minor Enhanements4.1 Desribing Void *DWARF2 provided a spei� means to desribe a C 'Funtion Returning void'(whih DWARF3 retains) but was silent about desribing C 'void *'. DWARF3provides a language-independent means to desribe suh, using DW_TAG_unspei�edtype to desribe the language-notion and DW_AT_name of 'void' in the C/C++ase as the referent of DW_TAG_pointer_type.4.2 Inlining informationAn appendix gives examples and interpretations of how to represent inlines inmessy ases.DWARF2 provided no way to desribe the *aller loation* at the site of aninlined-funtion. DWARF3 provides DW_AT_all_�le, DW_AT_all_line,4



DW_AT_all_olumn for those implementations wishing to provide this infor-mation.4.3 New Data TypeC99 de�nes the data type _Imaginary and DWARF3 de�nes DW_AT_imaginary_�oatto desribe this type.The C++ keyword mutable is representable with DW_AT_mutable_type.4.4 Funtion Prologue and Epilogue desriptionsIn DWARF2, debuggers whih wished to have funtion-entry-breakpoints set af-ter the funtion prologue had run (opying inoming arguments to loal storage,saving registers, et) had to use heuristis to �nd a plae to set suh a breakpoint.For example, using line table information (whih was dependent on the detailsthe ompiler used in emitting the line information, so it was ompiler depen-dent). In DWARF3, the line table may ontain a DW_LNS_set_prologue_end�ag at the end of the prologue, providing debuggers a preise address to set thebreakpoint.In DWARF3 the line table may ontain 1 or more DW_LNS_set_epilogue_begin�ags per funtion. Eah suh identi�es an address where a debugger may set abreakpoint 'just before the funtion returns', again providing a language- andompiler-independent means of desribing suh points (many ompilers emitmultiple return sequenes for funtions where suh improves performane of theappliation).4.5 ISA desriptionIf an exeutable may ontain instrutions from distint ISAs (perhaps some ISAfor paking multiple �elds into words, for example) the DW_LNS_set_isa �agin the line table may be used to desribe exatly whih ISA is in use at whihaddresses. ISA identities are vendor-de�ned, not spei�ed in DWARF3.4.6 New LanguagesSpei� odes DW_LANG_Java, DW_LANG_C99, DW_LANG_Ada95, DW_LANG_Fortran95,DW_LANG_PLI DW_LANG_ObjC, DW_LANG_ObjC_plus_plus, DW_LANG_UPC,and DW_LANG_D were added so vendors need not de�ne extensions for theselanguage names: implementations are known to be planning to use the last four.4.7 Frame Desription enhanementsThere were two problems with DWARF2 frame desriptions.First, DWARF2 provided no means for using DWARF expressions in a framedesription, whih was a problem for ertain unusual arhitetures. DWARF35



provides DW_CFA_def_fa_expression and DW_CFA_expression for thoseimplementations that require it.Seond, DWARF2 provided no means for desribing stak-frames with databoth above and below the CFA (virtual frame pointer for the frame). DWARF3provides DW_CFA_fa_o�set_extended_sf, DW_CFA_def_fa_sf, and DW_CFA_def_fa_o�set_sfallowing a onsise representation for suh a stak frame desription. These threeoperators are not stritly neessary sine the DW_CFA_def_fa_expressionand DW_CFA_expression provide enough expressiveness, but the *_sf formswere su�iently more spae e�ient that they were adopted.4.8 TrampolineDWARF2 provided no means to identify ompiler-reated ode for alls to fun-tions in dynami-shared-libraries (often alled 'stub ode' or 'trampoline') orto identify ode used to implement stak unwinding for exeption handling.DWARF3 allows an implementation to emit the DW_AT_trampoline attributeto identify suh ode so a debugger an make a deision about how to deal withit.4.9 UTF8DWARF2 provided no means to deal with multibyte haraters. DWARF3 pro-vides DW_AT_use_UFT8 whih is a �ag telling the debugger that all stringsin this ompilation unit are UTF8 multibyte strings. This attribute only ap-pears in the .debug_info setion but applies to all strings for this ompilationunit in all DWARF3 setions having strings.4.10 Non-ontiguous FuntionsDWARF2 provided no means to deal with non-ontiguous funtions. Suh fun-tions might result from optimizations moving 'low frequeny' ode o� away fromthe main high-frequeny ode. For example, many error-message situationsnever ever arise. One result of suh an optimization is a redued working setsize.DWARF3 provides DW_AT_ranges as an alternative to the simple ontiguous-funtion DW_AT_low_p DW_AT_high_p attributes. DW_AT_rangesrefers to the new DWARF3 objet �le setion .debug_ranges, where the rangesare enoded. DW_AT_ranges an be used anywhere DW_AT_low_p DW_AT_high_pwould appear. Compilers are known to mix together ode from DW_TAG_lexial_blok,DW_TAG_inlined_subroutine, DW_TAG_try_blok, DW_TAG_ath_blokso that these may ontain non-ontiguous ode sequenes.4.11 PubtypesDWARF2 had no speial means of mentioning globally-distint types, suh asC++ lasses, whih are guaranteed by the language to be unique and idential6



aross ompilation-units. DWARF3 de�nes the new setion .debug_pubtypes(with a format idential to .debug_pubnames used for global variables) provid-ing the debugger with a means for fast lookup (given a lass name �nd the rightompilation unit).5 A seletion of orretions5.1 SpellingDW_TAG_template_type_parameter and DW_TAG_template_value_parameterwere also (inonsistently) spelled DW_TAG_template_type_param and DW_TAG_template_value_paramin DWARF2. DWARF3 uniformly uses the longer spelling.DW_AT_bit_stride is a new spelling for what used to be spelled DW_AT_stride_size:it always represented a bit stride, so the new name is simply learer, and the(new) alternative attribute DW_AT_byte_stride is available when a byte stridesu�es.6 Format inompatibilitiesThere are only three hanges diretly a�eting the format of the DWARF data, all mentioned in DWARF3 setion 1.5.1.6.1 Large Initial LengthCertain (large) values of the initial length �eld used in various DWARF setionswere reserved as esape odes 3.7. Beause no known instanes of DWARFdata with lengths within 255 bytes of the maximum o�set reordable in 4 bytesexist this should have no pratial impat on the interpretation of DWARFinformation in existing objet �les.6.2 DW_FORM_ref_addrDW_FORM_ref_addr was de�ned in DWARF2 as being the size of a target-mahine address. DWARF3 de�nes this as a setion o�set, whih an be 32 or64 bits3.7.6.3 CIE return address register �eldThe return-address-register �eld in the Common Information Entry(CIE) in the.debug_frame setion was de�ned as an unsigned byte in DWARF2. This �eldis now de�ned as an unsigned LEB128 �eld. The hange was made as thede�nition seemed pointlessly onstraining to newer CPUs with large numbersof registers that might want a larger return-address-register designation. Noneof the implementations urrently using dwarf frame-desription information areknown to have needed a number here greater than 127. The atual bits reorded7



are the same for both �eld de�nitions with the return-address-register value lessthan 128 (see the LEB128 de�nition in the DWARF 2 or DWARF3 douments)so all existing objet �les would show the same bit pattern with either de�nition.So no atual binary inompatibility applies to existing implementations.7 New TAGs, Attributes, et in briefSome of the new features are not just TAGS and attributes, but all the new en-tities given assigned values in DWARF3 are listed here with a short desription.
• DW_TAG_dwarf_proedure 0x36, used as a plaeholder forDW_OP_all*ed subroutines.
• DW_TAG_restrit_type 0x37, restrit is a a C99 keyword.
• DW_TAG_interfae_type 0x38, for Java interfae types.
• DW_TAG_namespae 0x39, used with C++ namespaes
• DW_TAG_imported_module 0x3a, for example, used with Fortranmodules.
• DW_TAG_unspei�ed_type 0x3b, used for C 'void' for example.
• DW_TAG_partial_unit 0x3, used in ompressing DWARF3(eliminating dupliate DWARF).
• DW_TAG_imported_unit 0x3d, used to referene a normalor partial ompilation unit that logially belongs 'inside' the refereningompilation unit at the point of the referene.
• DW_TAG_mutable_type 0x3e, was in DWARF3 but has beenwithdrawn as it was inorret, DO NOT USE. See DW_AT_mutableinstead.
• DW_TAG_ondition 0x3f, desribes a COBOL level-88 ondition.
• DW_TAG_shared_type 0x40, indiates the UPC 'shared' quali�er ap-plies to a type.
• DW_AT_bit_stride 0x2e, is a hanged spelling: used to be spelled DW_AT_stride_size,the new name indiates the true meaning better.
• DW_AT_alloated 0x4e, used with Fortran alloated data.
• DW_AT_assoiated 0x4f, used with Fortran assoiated data.
• DW_AT_data_loation 0x50, used with Fortran alloated andassoiated data. 8



• DW_AT_stride 0x51, has been removed from DWARF3(it was never in DWARF2). DO NOT USE. See DW_AT_bit_stride andDW_AT_byte_stride instead.
• DW_AT_entry_p 0x52, for funtions whose entry point isnot the lowest address in the funtion.
• DW_AT_use_UTF8 0x53, to signal that all strings in theompilation unit are UTF8 multibyte form (the only lue UTF* is in use).
• DW_AT_extension 0x54, a general purpose attribute, ontentsvendor de�ned.
• DW_AT_ranges 0x55, referene to a new setion allowingfuntion ode to be non-ontiguous.
• DW_AT_trampoline 0x56, identi�es a funtion as being ompilergenerated suh as dynami-shared-library stub ode or exeption-handlingode.
• DW_AT_all_olumn 0x57, identi�es the olumn of the allsite (not alled routine) for more preise debugging of inlined funtions.
• DW_AT_all_�le 0x58 , identi�es the �le of the all site (notalled routine) for more preise debugging of inlined funtions.
• DW_AT_all_line 0x59, identi�es the line of the all site(not alled routine) for more preise debugging of inlined funtions.
• DW_AT_desription 0x5a, for ompiler augmented desriptionsof an entity.
• DW_AT_binary_sale 0x5b, for types with a binary sale fator.
• DW_AT_deimal_sale 0x5, used with DW_ATE_paked_deimal andDW_ATE_numeri_string.
• DW_AT_small 0x5d, for data types with arbitrary sale fators (de�nedwith the Ada 'small' attribute in mind).
• DW_AT_deimal_sign 0x5e, used with DW_ATE_paked_deimal andDW_ATE_numeri_string.
• DW_AT_digit_ount 0x5f, used with DW_ATE_paked_deimal andDW_ATE_numeri_string.
• DW_AT_piture_string 0x60, used with DW_ATE_edited base type.
• DW_AT_mutable 0x61, represents the C++ 'mutable' keyword.
• DW_AT_threads_saled 0x62, used to indiate a subrange is saled bya thread number (in UPC). 9



• DW_AT_expliit 0x63, indiates a C++ member funtion has the 'ex-pliit' property.
• DW_AT_objet_pointer 0x64, a referene to a non-stati C++ memberfuntion parameter representing the objet the member applies to.
• DW_AT_endianity 0x65, indiates the endian-ness of a variable or ompile-unit is di�erent than the objet �le and ABI would normally suggest.
• DW_AT_elemental 0x66, indiates a Fortran funtion has the 'elemental'property.
• DW_AT_pure 0x67, indiates a Fortran funtion has the 'pure' property.
• DW_AT_reursive 0x68, indiates a Fortran funtion has the 'reursive'property (the �ag is not used for C or C++ as those language funtionsdefault to being reursive).
• DW_AT_pointer 0x69, indiates a Fortran funtion with the 'pointer'property.
• DW_OP_push_objet_address 0x97, used with Fortran alloatedand pointer types to orretly alulate addresses of data.
• DW_OP_all2 0x98, all allows expression subroutines.
• DW_OP_all4 0x99, all allows expression subroutines.
• DW_OP_all_ref 0x9a, all allows expression subroutines
• DW_OP_form_tls_address 0x9b, is an operation whose implementationis left to user ode: forming an address that depends on a value on theoperation stak (needed for thread loal variables).
• DW_OP_all_frame_fa 0x9, pushes the value of the CFA onto theoperation stak.
• DW_OP_bit_piee 0x9d, like DW_OP_piee, but giving a bit o�set.
• DW_ATE_imaginary_�oat 0x9, imaginary �oat is a new C99 datatype.
• DW_ATE_paked_deimal 0xa, represents deimal string numeri datatypes, suh as in COBOL.
• DW_ATE_numeri_string 0xb, represents deimal string numeri datatypes, suh as in COBOL.
• DW_ATE_edited 0x, represents a COBOL edited numeri or alphanum-beri data type. 10



• DW_ATE_signed_�xed 0xd, represents a signed �xed point binary datatype.
• DW_ATE_unsigned_�xed 0xe, represents an unsigned �xed point binarydata type.
• DW_ATE_deimal_�oat 0xf, represents a deimal �oating point number,suh as may be spei�ed in COBOL.
• DW_DS_unsigned 0x01, signi�es deimal sign base type attribute 'un-signed' (all DW_DS_* used in COBOL, for example).
• DW_DS_leading_overpunh 0x02, signi�es deimal sign is enoded inthe most signi�ant digit.
• DW_DS_trailing_overpunh 0x03, signi�es deimal sign is enoded inthe least signi�ant digit.
• DW_DS_leading_separate 0x04, signi�es deimal sign is a '+' or '-' tothe left of the most signi�ant digit.
• DW_DS_trailing_separate 0x05,signi�es deimal sign is a '+' or '-' tothe right of the most signi�ant digit.
• DW_END_default 0x00, value of DW_AT_endianity, indiating defaultendian-ness.
• DW_END_big 0x01, value of DW_AT_endianity, indiating implemen-tation de�ned big-endian.
• DW_END_little 0x02, value of DW_AT_endianity, indiating imple-mentation de�ned little-endian.
• DW_LANG_Java 0x000b
• DW_LANG_C99 0x000
• DW_LANG_Ada95 0x000d
• DW_LANG_Fortran95 0x000e
• DW_LANG_PLI 0x000f
• DW_LANG_ObjC 0x0010
• DW_LANG_ObjC_plus_plus 0x0011
• DW_LANG_UPC 0x0012
• DW_LANG_D 0x0013
• DW_LNS_set_prologue_end 10, used to preisely identify the endof the funtion prologue and the beginning of user ode in a funtion.11



• DW_LNS_set_epilogue_begin 11, used to preisely identify theend of user ode and the beginning of the return point (multiple points ifthere is ode generated for multiple returns) so a debugger an easily seta breakpoint before funtion return.
• DW_LNS_set_isa 12, allows preise desription of whihinstrutions are what instrution set arhiteture in systems using multipleinstrution set arhitetures in a single exeutable.
• DW_LNE_lo_user 128, identify range of odes usable bythe ompiler implementor for vendor extensions.
• DW_LNE_hi_user 255, identify range of odes usable bythe ompiler implementor for vendor extensions.
• DW_CFA_def_fa_expression 0x0f, allow for general expressions in framedesriptions.
• DW_CFA_expression 0x10, allow for general expressions in framedesriptions.
• DW_CFA_fa_o�set_extended_sf 0x11, allow more �exible frame de-sriptions, ompatly.
• DW_CFA_def_fa_sf 0x12, allow more �exible frame desriptions,ompatly.
• DW_CFA def_fa_o�set_sf 0x13, allow more �exible frame desriptions,ompatly
• DW_CFA_val_o�set 0x14, uses unsigned fatored o�set to alulate theaddress of a loation where a register is stored.
• DW_CFA_val_o�set_sf 0x15, uses signed fatored o�set to alulate theaddress of a loation where a register is stored.
• DW_CFA_val_expression 0x16, Like DW_CFA_expression, but om-putes the atual value, not the address where a value is stored.8 AknowledgementsWhile many people have partiipated in the development of DWARF3 and manyhave made signi�ant ontributions, two people have been instrumental in get-ting DWARF3 ompleted and deserve speial mention.Mihael Eager, eager�eageron.om, http://www.eageron.om haired theommittee and provided a web site for distribution of the drafts.Ron Brender edited the DWARF3 doument, produing 9+ drafts and adding100 pages of new/lari�ed ontent to the doument.12



9 ChangesNovember 2,2011: Fixed a spelling error.

13


